
Supporting Exploratory Data Analysis

with Live Programming
 Robert DeLine and Danyel Fisher

Microsoft Research

Redmond, WA, USA

{rdeline, danyelf}@microsoft.com

Abstract—Data scientists often conduct exploratory data analy-

sis in scripting environments with a read-eval-print loop

(REPL), like R, IPython or MATLAB. This user experience re-

quires diligent management of execution and generates lengthy

histories of unwanted command responses. This paper explores

the alternative of live programming, a user experience in which

the user’s edits immediately and automatically update the

script results—a “ripple” effect familiar from spreadsheets.

Which user experience provides better support for exploratory

data analysis, REPL or ripple? We conducted a controlled lab

study with 15 data-experienced professionals. Each participant

explored four datasets, two in each experience. The REPL ses-

sions left histories with both significantly more data results and

significantly more errors than the live sessions. However, both

experiences produced comparable numbers of data results that

participants self-rated as insightful. Participants largely pre-

ferred the live experience for its responsiveness and ability to

keep the script content clean, but missed the visible history that

a REPL provides.

Keywords—Programming environments; read-eval-print

loop (REPL); command loop; live programming; data analysis;

data mining; data science.

I. INTRODUCTION

The practice of data science is becoming increasingly im-

portant as businesses, governments and other institutes shift

towards data-driven decision making. The Harvard Business

Review calls data scientist the “sexiest job of the 21st cen-

tury” [1], yet the tools that many data scientists use are seem-

ingly from the mainframe era [2]. In this paper, we focus on

what is often a key stage for generating insights from data,

namely, the use of scripting environments to perform explor-

atory data analysis. During exploratory data analysis, a data

scientist investigates, visualizes and summarizes her data in

order to understand them, before moving on to deeper statis-

tical techniques. While some data exploration can be done in

specialized direct-manipulation tools, such as Tableau or Mi-

crosoft Excel, more powerful data cleaning and manipulation

still requires interactive scripting. Today’s most popular en-

vironments for this activity—Python, R, and MATLAB—

are all based on the read-eval-print loop (REPL), a user ex-

perience that dates to the 1960s.

Using a REPL, a data analyst iteratively enters a scripting

statement, waits for it to evaluate, and sees the resulting

value or error message. During a REPL session, an analyst

might try many alternatives, building up a lengthy history of

statements and their values. These statements often chain to-

gether to form longer computations. For example, in Figure

2, a data scientist enters two statements in a REPL to look at

the survival of male Titanic passengers. Switching to female

passengers requires a series of clerical steps: she uses the up

arrow key to bring back the first statement in her history; she

changes “male” to “female” and enters the edited statement;

finally, she uses the up arrow key to re-enter the histogram

statement, since her previous edit requires the histogram to

be recomputed. In short, while data scientists find REPL en-

vironments useful for exploratory data analysis, they have

downsides like noisy session histories and the diligence

needed to manage re-execution.

Researchers have explored the concept of live program-

ming to improve programming education and programmer

productivity. In a live programming environment, editing a

program has an immediate and automatic effect on the pro-

gram’s execution. This level of responsiveness is a good fit

for exploratory data analysis. To replay the earlier Titanic

data analysis in a live environment, the data scientist enters

Figure 1. In a live environment, a data scientist enters a two-line script to see the male survival rate (left). She then edits the script to change “male” to “fe-
male” (right), which automatically triggers the histogram to update. She can switch between the two results by alternately typing and deleting “fe”.

type fe

delete fe

two statements to investigate male survival, as before (Figure

1 left). This time, to switch to female survival, she edits the

document in place to change “male” to “female”, causing the

two results to update immediately and automatically (Figure

1, right).

In a live scripting environment, the user’s edits have a

“ripple” effect on the displayed values, like in a spreadsheet.

This reduces clerical work and clutter, at the cost of hiding

history. Given these tradeoffs, we wonder: which user expe-

rience is better for exploratory data analysis, REPL or ripple?

In particular, does the choice of user experience affect how

data scientists handle errors or the number or quality of the

data results they produce?

To investigate these questions, we created a prototype

live programming environment for exploratory data analysis.

Next, we conducted a controlled lab study of 15 participants

at a large, data-driven software company. The contributions

of this paper are:

 an algorithm for implementing a live user experience,

given a scripting language with a parser, interpreter and

introspection;

 a controlled lab study comparing REPL and live user ex-

periences in a scripting environment; and

 data scientists’ subjective assessments of REPL and live

user experiences for exploratory data analysis.

II. BACKGROUND

We chose to explore live scripting rather than direct ma-

nipulation because of its ubiquity within data science. Kan-

del et al. [3] interviewed 35 data analysts and categorized

them into three “archetypes.” Two of the three archetypes

make extensive use of scripting languages in their process of

data analysis and visualization.

Live programming was first created for visual program-

ming languages, focused on specific problem domains like

physics simulation [4] and image processing [5]. This domain

focus continues today. Much of the current live program-

ming community works on live coding, in which a program-

mer-musician continuously updates a MIDI program to cre-

ate a live musical performance [6] [7].

Other live programming systems help students learn pro-

gramming, using multiple variations of the live model. For

example, Alvis Live provides live algorithm animation side-

by-side with program text, to help novice programmers learn

data structures and control flow [8]. Flogo II, an environment

for end-user robot programming, provides live text, in which

the appearance of the program text reflects the current exe-

cution behavior, for example, by graying out untaken

branches [9]. AgentSheets provides a live spreadsheet repre-

sentation of rewrite rules that encode the logic of a simula-

tion [10]. YinYang supplements live programming with a de-

bugging experience that allows the user to probe the values

of expressions [11]. In a variation of live programming, The-

seus supplements a standard program environment with al-

ways-on visualizations of execution behavior [12].

According to Tanimoto’s liveness taxonomy [5], a pro-

gramming environment can offer four levels of liveness:

(level 1) a user’s edits have no effect on the computation (e.g.

a typical text editor); (level 2) a user explicitly submits edits

to cause updates to the computation (e.g. a REPL or the IPy-

thon Notebook [13]); (level 3) a user’s edits automatically

trigger any necessary re-computation (e.g. a spreadsheet);

and (level 4) a user’s edits trigger updates to ongoing com-

putations (e.g. changing a game while it is played [14]). In

this paper, we focus on level-3 liveness because data analysis

scripts are often functional programs, rather than interactive

behaviors. Our environment exhibits level-4 liveness when a

data scientist uses it on live streaming data, which we cover

in another paper [15].

III. LIVE PROGRAMMING FOR DATA SCIENTISTS

We begin our explorations in a live programming envi-

ronment with the Tempe analytics system [15] [16]. Here,

we briefly discuss several design decisions in Tempe’s im-

plementation of live coding, to clarify the user study.

Tempe’s overall look and feel is a research notebook, in

the style of Mathematica [17] or the IPython Notebook [13].

Whereas the notebook pages in both Mathematica and the

IPython Notebook host REPL sessions, a Tempe notebook

page instead contains a live script, which we believe is a bet-

ter fit for the notebook model. Hosting a REPL session in a

notebook makes it possible to create notebook pages that

look incorrect. For example, consider the IPython notebook

in Figure 3. If the user deletes the second command box, la-

beled “In [2]”, from the notebook page, the remaining state-

ments look nonsensical. The statement numbering providing

the only hint about the root cause. IPython Notebook users

Figure 2. In a REPL, the user looks at male and female survival rates in

several steps. She enters the first two script lines to see the results for

males. Then she types up arrow twice and changes “male” to “female”.

Last, she types up arrow twice to re-compute the histogram.

avoid this problem by grouping dependent statements to-

gether a single command box, which forces them to execute

together. Instead, Tempe tracks dependencies and maintains

the invariant that the evaluation results always reflect the

script’s current content.

Tempe shows a scripting error inside an orange box, with

the relevant text underlined in orange:

This is similar to the “red squiggle” feedback in modern pro-

gramming environments, except that Tempe errors encom-

pass both compile-time errors and run-time exceptions.

We also made several design choices to strike a balance

between responsiveness and distraction. To keep the backend

from trying to execute incomplete thoughts, the frontend

sends updates only when the user is idle for a threshold

amount of time (currently, 500 ms). Tempe also attempts to

maintain spatial stability as results change. In particular,

when a user’s edits produce a new, non-error result, Tempe

replaces the old result. However, if an edit produces an error

or no result, Tempe grays out the obsolete result, but leaves

it in place, in anticipation that the user will shortly produce a

new result.

Statements execute asynchronously. If the user enters a

non-terminating or unwanted statement, Tempe provides a

global Stop button that cancels all ongoing computations.

A. Implementation

Tempe uses C# as its scripting language, chosen in part

for its LINQ feature. LINQ is an API for querying and trans-

forming data [18] and provides a syntax extension for embed-

ding SQL-like queries in C# code (Figure 2, first statement).

Tempe invokes our live programming algorithm when-

ever the user changes the script (Figure 4). The first half of

the algorithm computes the top-level statements that need to

be re-executed. The initial set consists of those statements

that have syntactically changed since last execution, based

on Wagner and Fischer’s dynamic programming algorithm

for shortest edit distance [19]. (Most descriptions of this al-

gorithm have it return the number of edits; our version Diff

returns the edits themselves.) Finding the minimal set of

changes between consecutive versions reduces the re-com-

putation that the backend performs, which is particularly im-

portant for large datasets. The algorithm then extends the set

of statements to re-compute, based on the results of a defini-

tion-use chain analysis [20]. Namely, the algorithm adds a

statement to the set if the statement (transitively) uses a var-

iable that an edited statement defines. The second half of the

algorithm uses an interpreter to execute all the changed state-

ments and summarizes the resulting objects.

Data analyses written in LINQ tend to be functional, i.e.

free of side effects. Our implementation of the DefUseAnal-

ysis provides a conservative over-approximation, but will

nonetheless miss any side effects that occur in library code

outside the script’s text.

This algorithm requires three capabilities of a scripting

language: a parser to produce a list of top-level statements;

an interpreter to execute statements to produce values; and

the ability to inspect values. Tempe’s implementation uses

Microsoft Roslyn for the first two and standard .NET reflec-

tion for the third. This algorithm could also be implemented

interface ILanguage
{
 SyntaxTree Parse(string text);
 List<object> Interpret(List<Statement> stmts);
 List<Result> Inspect(List<object> obj);
}

class LiveProgram
{
 ILanguage language;
 SyntaxTree oldTree;

 List<Result> UpdateResults(string newContent)
 {
 var newTree = language.Parse(newContent);

 var diffs = Diff(oldTree.Statements,
 newTree.Statements);
 var changed =
 from diff in diffs
 where diff.Kind == Change ||
 diff.Kind == Insert
 select diff.Statement;

 var du = new DefUseAnalysis(newTree);
 changed.AddRange(
 du.GetUses(du.GetDefs(changed)));

 var values = language.Interpret(changed);

 oldTree = newTree;
 return language.Inspect(values);
 }
}

Figure 4. Our live programming algorithm, with its dependencies on an
interpreter.

Figure 3. Hosting a REPL session in a notebook is awkward. If the user

erases the second command from the page, the sequence looks strange.

http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx

for R and Python since their environments have these capa-

bilities.

IV. CONTROLLED STUDY

To evaluate the effect of the user experience on how data

scientists do exploratory data analysis, we conducted a con-

trolled lab study. We chose a within-subjects design for two

reasons. First, participants could directly compare the two

user experiences. Second, this design mitigates individual

variability in skill level and work pace.

A. Software

In addition to the live scripting environment described

above, we added a REPL experience to Tempe, which di-

rectly submits the user’s input to the underlying language in-

terpreter. In designing and implementing the REPL user ex-

perience, we carefully balanced two goals: providing a rep-

resentative implementation of each class of user experience,

while minimizing the differences between them.

Each participant completed each task in its own notebook

page. Notebook pages in each condition had the same fea-

tures, except for the choice of scripting experience. Within

the scripting experience, both versions included familiar pro-

gramming features, like code completions, method tooltips,

and undo/redo. In the REPL version, these features were

available for the current expression at the command prompt;

in the live version, these features were available in the entire

script. Both versions presented the same kinds of error mes-

sages and visualizations in response to the user’s input. In the

REPL, the response appeared after hitting Enter; in the live

version, a response appeared whenever the user’s editing is

idle.

We modeled the REPL user experience after the one in

RStudio, a popular scripting environment for data analysis.

In particular, we copied its key bindings, its command his-

tory semantics, and its command prompts (the > sign for the

first line of an expression, and the + sign for continued lines

of the same expression).

To be true to each user experience, there was a small dif-

ference in the allowed scripting input. In both experiences,

the user could enter C# statements, classes and methods. In

the REPL experience only, the user could also enter C# ex-

pressions. This difference is because the live experience is

about producing a legal C# program; whereas, the REPL ex-

perience accepts a series of “commands”. As a simple illus-

tration, the lines

2+3

4*5

are valid as a pair of commands, but are not syntactically

valid as a C# program.

In total, then, there are three interrelated differences between

the REPL and live conditions:

 The live experience updates automatically, while the

REPL updates only when the user presses enter.

 Live code can be edited anywhere in the script, while the

REPL is append-only.

 The live code tracks dependencies for selective re-reval-

uation, while REPL results did not update after initial

evaluation.

B. Hardware

We conducted the study on an HP Z420 PC, with four 64-

bit processors and 16 GB of memory. The PC had two 22-

inch screens. Each participant conducted the tasks on the left

screen. The right screen displayed reference material about

the LINQ and visualization APIs.

C. Participants

The role of data scientist is still emerging at the company

where we recruited participants. As a result, we could not use

job title as a reliable marker for potential participants. In-

stead, we chose a random sample from three internal distri-

butions lists. We sent personalized email invitations that

screened for experience in C#, LINQ, and data analysis.

From this pool, 16 participants took part in the study,

with one dismissed for lacking the required skills. The re-

maining 15 (1 female) reported an average of

 9.0 years of professional experience;

 5.7 years of C# experience;

 2.8 years of LINQ experience;

 3.9 years using scripting environments;

 4.7 years analyzing data with plots and charts;

 3.0 years analyzing data to help their team make better

business or engineering decisions.

In terms of job roles, eight described themselves as de-

velopers, six as testers, and one as a data scientist.

D. Tasks

Each study session lasted roughly 1½ hours, in which the

participant:

 signed a consent form and filled in a short questionnaire

about work experience (5–10 min)

 read a short tutorial about both versions of the user expe-

rience and practiced using each one (15–20 min)

 analyzed four datasets, two using the REPL user experi-

ence and two using the live user experience (4 × 15 min

per dataset = 60 min)

 filled in a questionnaire rating and comparing the user ex-

periences (5–10 min)

The analysis tasks used five datasets downloaded from

public web sites, which we selected for their size and intui-

tive domains:

 A table about passengers on the Titanic (practice session)

 A table about recent visitors to the White House

 A table about recent house sales in a major US metropolis

http://www.rstudio.com/
http://research.microsoft.com/en-us/projects/tempe/

 A table about loan applications from a lending club

 Three tables with Yelp reviews, users, and rated busi-

nesses

The four non-warmup datasets had 105–106 rows and

13–28 columns. For each dataset, we instructed the analysts

to explore and analyze the data. Our instructions read, in part,

“During each play session (15 min), you’ll be given some

data that we hope you’ll find interesting. Your task is to think

up questions about the data and to use Tempe to try to an-

swer those questions. You are completely free to choose

whatever questions you like and however many you like.” Pi-

lot testing confirmed that while these instructions were open-

ended, they were meaningful to the analysts. Each analyst

proceeded immediately on the task; we frequently had to in-

terrupt them at the end of the fifteen-minute period.

We used counterbalancing to mitigate order effects. Each

participant completed the four tasks in either the order

REPL-live-REPL-live or live-REPL-live-REPL, in counter-

balanced fashion. We further counterbalanced the order in

which the participants used the four datasets in the tasks.

At the end of each of the four exploratory data analyses,

we asked the participant to review his/her work and to mark

those data results that he/she personally found insightful, in-

teresting, or worth sharing with a friend. To do the marking,

the user selected text in the query generating the result and

clicked an Annotate button.

The final questionnaire contained three sections asking

the participant to rate the REPL experience, to rate the live

experience, and to compare the two. The REPL and the live

sections each contained six standard usability questions on a

5-point Likert scale (strongly disagree to strong agree), plus

two free-response questions asking for their favorite and

least favorite things about that experience (Figure 11). The

comparison section contained 11 questions on a 5-point Lik-

ert scale (1 expressed strong preference for REPL and 5 ex-

pressed strong preference for live), plus two free-response

questions asking when they prefer REPL to live and vice

versa (Figure 12).

V. RESULTS

Because Tempe is a web application, the web server

keeps a database of the user’s content, including notebook

pages, datasets, edits, error results, data results, and annota-

tions. We mined this database to analyze how the participants

used the REPL and live user experiences.

A. REPL sessions make frequent use of the history

We wanted to understand how often participants needed

to edit and resubmit a statement before getting the desired

result (or giving up and moving on). We mined the partici-

pants’ REPL edits for sequences of consecutive resubmis-

sions. A histogram of the lengths of these sequences find that

many commands were submitted once. However, it was also

not uncommon for participants to re-submit a statement

many times, up to a maximum of 18.

Figure 5. Number of times that REPL users re-executed statements, which

was often two or more times.

One challenge in a REPL environment is the phenome-

non of “up, up, up, enter,” when a user updates a variable

early in a sequence, then resubmits those statements that use

that variable in order to see the effect of the new value. Nine

of the 15 participants re-executed previous statements, some-

times as far back as eight steps in the history.

Figure 6: Distance to re-executed commands in REPL condition. On three

occasions, users reached back eight steps to re-execute a command.

There were also 21 instances where participants re-exe-

cuted their previous command (distance=1), which do not

represent re-executions to deal with changed variables. After

inspecting several of these cases, these seem to be occasions

where the participant did not believe an error message until

seeing it twice.

B. Edits in live sessions were often spread across the script

All participants had previous experience using REPLs

(M=3.9 years), and none had experience using a live envi-

ronment. This creates the potential for them to treat the live

experience as though it were a REPL, by consistently adding

new statements to the bottom of the script.

To test this, we looked at the line numbers of consecutive

edits. In a REPL session, the first edit is on line 1 of the

script, the second is on line 2, and so on, which means that

the difference in line numbers between consecutive edits is

always 1. In the live experience, the difference in line num-

bers between consecutive edits is typically zero (many edits

on the same line), but ranged from 10 lines above the previ-

ous edit to 17 line below. All participants except P11 edited

the script two or more lines away from the previous edit.

Most participants did it several times:

Figure 7. Number of times each participant edited at least one statement

two or more lines away from their previous edit in the live condition. All

participants edited in a variety of places around the script.

This demonstrates that all but one participant took ad-

vantage of the live programming environment to edit the live

script as a document, rather than treating it like a REPL.

[I like] how easy it was to make small changes to existing

queries [P1]

Quick updates to the visualizations as I tweak my ideas.

[P9]

[REPL makes it] hard to edit a chain of commands. I

needed to retype everything [P5]

Many participants particularly appreciated the ripple ef-

fect of re-evaluation.

 [I like] the waterfall effect of editing a small value on the

top of a chain of queries. [P5]

It is easy to build on data and evolve queries as you pro-

gress through your thinking. [P14]

However, some participants were concerned about the

performance cost of re-evaluation.

I really like how the live version automatically reevalu-

ates data, but this might become a bottleneck if computa-

tion takes a lot of time or happens on server [P13]

C. REPL sessions leave a history of errors

In the REPL experience, participants often corrected er-

rors iteratively over many commands, leaving an unwanted

history of errors. In the live experience, participants similarly

iterated to correct errors, but the live experience removes ob-

solete errors. For many participants, this was a key difference

between the experiences.

Queries that are genuine errors (syntax errors e.g.) don't

need to stay in history forever. [P12]

You can fix mistakes quickly. [P1]

It hides all the mistakes I made along the way, showing

only the final results. [P3]

Much easier to go back and tweak when I made a mistake

or changed my mind. [P10]

To measure the difference, we can inspect each session’s

final notebook page and measure the fraction of responses

that were errors versus non-error outputs.

Figure 8. Fraction of error responses per session in the final session output.

In the live condition, users corrected almost all errors.

These error fractions are significantly less in the live ex-

perience than the REPL (Wilcoxon signed rank, p=4.4×10-6).

For REPL sessions, up to half the responses on the final page

were errors; whereas for live sessions, almost all the errors

were corrected and removed.

On the other hand, some participants felt that the live ex-

perience obliged them to correct mistakes, even when they

felt it was unnecessary.

[REPL had] less state associated with each query, so one

is not maintaining code after it has been written. [P14]

Although participants could remove unwanted erroneous

code in the live experience, this requires additional effort;

whereas, in the REPL experience, “what’s done is done.”

D. REPL sessions retain more results than live sessions

For a data scientist, the goal of exploratory data analysis

is to gain insights into the data. We operationalize this by

looking at the number of non-error responses participants

produced per session and the number that they marked as in-

sightful.

A direct comparison between the numbers of responses

produced in each user experience is not meaningful, since the

REPL produces a response only when the user types Enter

and the live experience potentially produces a response for

each burst of user input. Indeed, the mean number of re-

sponses for REPL sessions is 13.2 (SD=5.9) and for live ses-

sions is 33.5 (SD=16.8). Instead, we can look at the final

number of responses per session, which eliminates all the in-

termediate responses that the live experience produces.

Figure 9: Count of final, non-error responses per session by condition

The number of final non-error responses per session is

significantly less in live experience than the REPL experi-

ence (Wilcoxon signed rank, p=9.9×10-7). However, this

comparison offers REPL an advantage, since REPL sessions

retain all responses, even intermediate or unwanted ones.

E. REPL and live sessions produce as many responses

marked insightful

If we look instead at the number of responses that partic-

ipants marked as insightful in each session, the distributions

between the REPL and live conditions are are not signifi-

cantly different (Wilcoxon signed rank, p=.17).

Figure 10: Number of responses marked "insightful" per session

This measure might undercount the insightful responses

in live sessions, since participants could not mark responses

that had been overwritten during live sessions. However, no

participants mentioned this issue, and many chose to mark

throughout the session.

F. Subjective Assessments

Based on participants’ subjective assessments of both the

REPL and live experiences, they enjoyed both (Figure 11).

Given the participants’ considerable experience with REPLs,

it is not surprising that they gave the REPL experience high

marks for ease of learning and ease of use. More surprisingly,

however, less than half agreed that the REPL experience

makes them effective or productive at analyzing data. The

live experience received high marks across the board. Al-

most everyone agreed that the live experience is easy and

productive to use and should be recommended to a friend.

 The second half of the subjective assessment asked par-

ticipants to compare the two experiences on a custom Likert

scale:

1 REPL is definitely better.

2 REPL is a bit better.

3 Both versions are about the same; or, sometimes one is

better, sometimes the other.

4 Live is a bit better.

5 Live is definitely better.

The live experience was clearly preferred on almost all

items (Figure 12). The two items where the REPL experience

had the upper hand were ease of learning and ease of use.

However, this preference may simply reflect the participant’s

prior experience with REPL environments, given that they

Figure 11. The participants' subjective assessments of the two user experiences, shown as the fraction of participants who chose each of five Likert-scale
responses. The items are sorted by percent agreement. (The REPL experience was called “Command” in the participant materials, to avoid jargon.)

Figure 12. The participants' subjective comparison of the two experiences, shown as the fraction of participants who chose each of five Likert-scale re-
sponses. The items are sorted by the percent who favored the live experience. While the REPL version seems quicker to learn, the live version seems to

be stronger for exploration, iteration, spotting insights, and productivity.

separately gave the live experience high marks on ease of

learning and ease of use.

VI. DISCUSSION

A. Live programming hides history

Several participants remarked that keeping history was

their favorite aspect of the REPL experience.

[The REPL keeps] the history/footprint of what I have

tried [P5]

[The REPL] keeps all the history. [P11]

The lack of history was a major downside of the live ex-

perience.

It doesn't remember the history, so I need to be explicit

on when to save something in a variable, just to see it.

[P3]

Easy to get carried away with modifying current query

and intermediate data is lost. [P12]

Ironically, the web server maintains a complete history

of all edits and responses (which we mined for our data anal-

ysis), but the live experience lacks a user interface for sur-

facing this history. In designing a new feature for browsing

and resurrecting live programming history, we hope to take

advantage of recent work by Yoon et al. [21] [22]

B. Live programming helps convey intent

 In choosing a notebook model for our environment, we

want to encourage users to share and preserve their analyses.

This is also the reason for the rich-text annotations that par-

ticipants used to mark their insightful results. Participants

felt that the live experience itself encouraged them to be in-

tentional about the contents of the page.

The ability to modify line by line is much more effective—

it allows me better control over what data points to visu-

alize and helps bridge the gap between exploratory &

prod[uction] better. [P9]

It lets me design what I want to see. [P11]

No useless query remains. [P12]

For the live experience, this is the flip side of lacking a

complete history: the user can curate what computations are

worth preserving.

VII. LIMITATIONS

Conducting a controlled lab study required some com-

promises that affect external validity. In a professional con-

text, exploratory data analyses typically last longer than 15

minutes and use datasets that are larger, messier and more

complex than those we chose for the lab. Nonetheless, our

datasets had thousands to millions of rows, with dozens of

columns. They were sufficiently complex that participants

pursued different questions on the same dataset.

Using C# as the scripting language, while a good fit for

our participants’ skills, is unusual for exploratory data anal-

ysis. Most data scientists use languages like R, IPython, and

MATLAB. Our live programming algorithm and user expe-

rience are equally applicable to these languages, but without

further studies we cannot conclude that our results generalize

to other languages.

Our participants were recruited from a single company,

although from different businesses within the company. The

participants may share common training or culture that bi-

ases the results.

VIII. CONCLUSIONS

In our controlled lab study, we saw participants exercise

the core behaviors associated with the REPL and live user

experiences. In the REPL experience, participants repeatedly

edited and resubmitted statements to reach desired results,

leaving histories with many errors and data results they con-

sidered uninteresting. They also manually resubmitted previ-

ous statements to bring their results up to date. In the live

experience, participants corrected errors in place and made

some edits spread across the script, allowing them to experi-

ence the ripple of automatic updates.

Comparing the two experiences, REPL sessions pro-

duced both more errors and more results than live session. In

REPL sessions, the errors amounted to almost half of the to-

tal responses on the page. REPL sessions also left a history

of more results than live sessions. However, the numbers of

results that participants marked as insightful were not signif-

icantly different in the two experiences. The difference in the

raw number of results may be because the live experience

allowed participants to overwrite uninteresting intermediate

results.

Participants strongly preferred the live experience, par-

ticularly for its error correction and its control over script

content. Nonetheless, they liked a REPL’s retention of com-

plete history. This suggests that the live experience would

benefit from a history browsing mechanism, which might

help achieve the best of both worlds.

IX. REFERENCES

[1] D. Patil and T. Davenport, "Data Scientist: The Sexiest Job
of the 21st Century.," Harvard Business Review, October
2012.

[2] D. Fisher, R. DeLine, M. Czerwinski and S. Drucker,
"Interactions with big data analytics," interactions, vol. 19,
no. 3, pp. 50-59, May/June 2012.

[3] S. Kandel, A. Paepcke, J. M. Hellerstein and J. Heer,
"Enterprise Data Analysis and Visualization: An Interview
Study," in IEEE Visual Analytics Science & Technology
(VAST), 2012.

[4] R. B. Smith, "The Alternate Reality Kit: An animated
environment for creating interactive simulations," in IEEE
Computer Society Workshop on Visual Languages, 1986.

[5] S. L. Tanimoto, "VIVA: A visual language for image
processing," Journal of Visual Languages and Computing,
vol. 1, no. 2, p. 127–139, June 1990.

[6] A. R. Brown and A. Sorensen, "Interacting with Generative
Music through Live Coding," Contemporary Music Review,
vol. 28, no. 1, pp. 17-29, February 2009.

[7] S. Aaron, A. F. Blackwell, R. Hoadley and T. Regan, "A
principled approach to developing new languages for live
coding," in Proceedings of New Interfaces for Musical
Expression, 2011.

[8] C. D. Hundhausen and J. L. Brown, "What You See Is What
You Code: A “Live” Algorithm Development and
Visualization Environment for Novice Learners," Journal of
Visual Languages and Computing, vol. 18, no. 1, pp. 22-47,
2007.

[9] C. M. Hancock, Real-Time Programming and the Big Ideas
of Computational Literacy, Massachusetts Institute of
Technology, 2003.

[10] A. Repenning, "AgentSheets: An interactive simulation
environment with end-user programmble agents,"
Interactions, 2000.

[11] S. McDirmid, "Usable Live Programming," in SPLASH
Onward!, 2013.

[12] T. Lieber, J. R. Brandt and R. C. Miller:, "Addressing
Misconceptions About Code with Always-On Programming
Visualizations," in CHI, Toronto, 2014.

[13] F. Pérez and B. E. Granger, "IPython: A System for
Interactive Scientific Computing," Computing in Science
and Engineering, vol. 9, no. 3, pp. 21-29, May/June 2007.

[14] B. Victor, Inventing on principle, Invited talk at the
Canadian University Software Engineering Conference
(CUSEC). http://vimeo.com/36579366, 2012.

[15] R. DeLine, D. Fisher, B. Chandramouli, J. Goldstein, M.
Barnett, J. F. Terwilliger and J. Wernsing, "Tempe: Live
Scripting for Live Data," Proc. of IEEE Symp. on Visual
Languages and Human-Centric Computing, 2015.

[16] M. Barnett, B. Chandramouli, R. DeLine, S. Drucker, D.
Fisher, J. Goldstein, J. Platt and P. Morrison, "Stat! - An
Interactive Analytics Environment for Big Data," in
Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2013.

[17] S. Wolfram, The Mathematica Book, Wolfram Media, Inc.,
1996.

[18] E. Meijer, B. Beckman and G. Bierman, "LINQ: reconciling
object, relations and XML in the .NET framework," in
Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, 2006.

[19] R. Wagner and M. Fischer, "The String-to-String Correction
Problem," Journal of the ACM, vol. 21, no. 1, p. 168–173,
1974.

[20] A. V. Aho, R. Sethi and J. D. Ullman, Compilers:
Principles, Techniques and Tools, Addison-Wesley
Publishing, 1986.

[21] Y. Yoon and B. A. Myers, "A Longitudinal Study of
Programmers' Backtracking," in IEEE Symposium on Visual
Languages and Human-Centric Computing, 2014.

[22] Y. Yoon, B. A. Myers and S. Koo, "Visualization of Fine-
Grained Code Change History," in IEEE Symposium on
Visual Languages and Human-Centric Computing , 2013.

