
SkimpyStash: RAM Space Skimpy Key-Value Store on
Flash-based Storage

Biplob Debnath∗,1 Sudipta Sengupta‡ Jin Li ‡

‡ Microsoft Research, Redmond, WA, USA
∗EMC Corporation, Santa Clara, CA, USA

ABSTRACT
We present SkimpyStash, a RAM space skimpy key-value store
on flas -based storage, designed for high throughput, low latency
server applications. The distinguishing feature of SkimpyStash is
the design goal of extremely low RAM footprint at about 1 (±
0.5) byte per key-value pair, which is more aggressive than ear-
lier designs. SkimpyStash uses a hash table directory in RAM to
index key-value pairs stored in a log-structured manner on flash
To break the barrier of a flas pointer (say, 4 bytes) worth of RAM
overhead per key, it “moves" most of the pointers that locate each
key-value pair from RAM to flas itself. This is realized by (i)
resolving hash table collisions using linear chaining, where mul-
tiple keys that resolve (collide) to the same hash table bucket are
chained in a linked list, and (ii) storing the linked lists on flas it-
self with a pointer in each hash table bucket in RAM pointing to
the beginning record of the chain on flash hence incurring multi-
ple flas reads per lookup. Two further techniques are used to im-
prove performance: (iii) two-choice based load balancing to reduce
wide variation in bucket sizes (hence, chain lengths and associated
lookup times), and a bloom filte in each hash table directory slot
in RAM to disambiguate the choice during lookup, and (iv) com-
paction procedure to pack bucket chain records contiguously onto
flas pages so as to reduce flas reads during lookup. The average
bucket size is the critical design parameter that serves as a power-
ful knob for making a continuum of tradeoffs between low RAM
usage and low lookup latencies. Our evaluations on commodity
server platforms with real-world data center applications show that
SkimpyStash provides throughputs from few 10,000s to upwards
of 100,000 get-set operations/sec.

Categoriesand Subject Descriptors
H.3 Information Storage and Retrieval [H.3.1 Content Analysis
and Indexing]: Indexing Methods

GeneralTerms
Algorithms, Design, Experimentation, Performance.
1Work done while Biplob Debnath was at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profi or commercial advantage and that copies
bear this notice and the full citation on the fir t page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specifi
permission and/or a fee.
SIGMOD’11,June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

Keywords
Key-value store, Flash memory, Indexing, RAM space efficien in-
dex, Log-structured index.

1. INTRODUCTION
A broad range of server-side applications need an underlying, of-

ten persistent, key-value store to function. Examples include state
maintenance in Internet applications like online multi-player gam-
ing and inline storage deduplication (as described in Section 3).
A high throughput persistent key-value store can help to improve
the performance of such applications. Flash memory is a natural
choice for such a store, providing persistency and 100-1000 times
lower access times than hard disk. Compared to DRAM, flas ac-
cess times are about 100 times higher. Flash stands in the middle
between DRAM and disk also in terms of cost – it is 10x cheaper
than DRAM, while 20x more expensive than disk – thus, making it
an ideal gap fille between DRAM and disk.
It is only recently that flas memory, in the form of Solid State

Drives (SSDs), is seeing widespread adoption in desktop and server
applications. For example, MySpace.com recently switched from
using hard disk drives in its servers to using PCI Express (PCIe)
cards loaded with solid state flas chips as primary storage for its
data center operations [5]. Also recently, Facebook released Flash-
cache, a simple write back persistent block cache designed to accel-
erate reads and writes from slower rotational media (hard disks) by
caching data in SSDs [6]. These applications have different stor-
age access patterns than typical consumer devices and pose new
challenges to flas media to deliver sustained and high throughput
(and low latency).
These challenges arising from new applications of flas are be-

ing addressed at different layers of the storage stack by flas device
vendors and system builders, with the former focusing on tech-
niques at the device driver software level and inside the device,
and the latter driving innovation at the operating system and appli-
cation layers. The work in this paper falls in the latter category.
To get the maximum performance per dollar out of SSDs, it is nec-
essary to use flas aware data structures and algorithms that work
around constraints of flas media (e.g., avoid or reduce small ran-
dom writes that not only have a higher latency but also reduce flas
device lifetimes through increased page wearing). In the rest of the
paper, we use NAND flas based SSDs as the architectural choice
and simply refer to it as flas memory. We describe the internal
architecture of SSDs in Section 2.
Recently, there are several interesting proposals to design key-

value stores using flas memory [10, 11, 15, 16]. These de-
signs use a combination RAM and flas memory – they store the
full key-value pairs on flas memory and use a small amount of
metadata per key-value pair in RAM to support faster insert and

25

lookup operations. For example, FAWN [11], FlashStore [16], and
ChunkStash [15] each require about six bytes of RAM space per
key-value pair stored on flas memory. Thus, the amount of avail-
able RAM space limits the total number of key-value pairs that
could be indexed on flas memory. As flas capacities are about
an order of magnitude bigger than RAM and getting bigger, RAM
size could well become the bottleneck for supporting large flash
based key-value stores. By reducing the amount of RAM bytes
needed per key-value pair stored on flas down to the extreme lows
of about a byte, SkimpyStash can help to scale key-value stores on
flas on a lean RAM size budget when existing current designs run
out.

Our Contributions
In this paper, we present the design and evaluation of SkimpyS-
tash, a RAM space skimpy key-value store on flas -based Stor-
age, designed for high throughput server applications. The distin-
guishing feature of SkimpyStash is the design goal of extremely low
RAM footprint at about1 byte per key-value pair, which is more
aggressive than earlier designs like FAWN [11], BufferHash [10],
ChunkStash [15], and FlashStore [16]. Our base design uses less
than 1 byte in RAM per key-value pair and our enhanced design
takes slightly more than 1 byte per key-value pair. By being RAM
space frugal, SkimpyStash can accommodate larger flas drive ca-
pacities for storing and indexing key-value pairs.

Design Innovations: SkimpyStash uses a hash table directory
in RAM to index key-value pairs stored in a log-structure on flash
To break the barrier of a flas pointer (say, 4 bytes) worth of RAM
overhead per key, it “moves" most of the pointers that locate each
key-value pair from RAM to flas itself. This is realized by

(i) Resolving hash table collisions using linear chaining, where
multiple keys that resolve (collide) to the same hash table
bucket are chained in a linked list, and

(ii) Storing the linked lists on flas itself with a pointer in each
hash table bucket in RAM pointing to the beginning record
of the chain on flash hence incurring multiple flas reads per
lookup.

Two further techniques are used to improve performance:

(iii) Two-choice based load balancing [12] to reduce wide vari-
ation in bucket sizes (hence, chain lengths and associated
lookup times), and a bloom filte [13] in each hash table
directory slot in RAM for summarizing the records in that
bucket so that at most one bucket chain on flas needs to be
searched during a lookup, and

(iv) Compaction procedure to pack bucket chain records contigu-
ously onto flas pages so as to reduce flas reads during
lookup.

The average bucket size is the critical design parameter that
serves as a powerful knob for making a continuum of tradeoffs be-
tween low RAM usage and low lookup latencies.

Evaluation on data center server applications:SkimpyStash
can be used as a high throughput persistent key-value storage layer
for a broad range of server class applications. We use real-world
data traces from two data center applications, namely, Xbox LIVE
Primetime online multi-player game and inline storage dedupli-
cation, to drive and evaluate the design of SkimpyStash on com-
modity server platforms. SkimpyStash provides throughputs from
few 10,000s to upwards of 100,000 get-set operations/sec on the
evaluated applications.

Figure 1: Inter nal architecture of a Solid State Drive (SSD)

The rest of the paper is organized as follows. We provide an
overview of flas memory in Section 2. In Section 3, we describe
two motivating real-world data center applications that can benefi
from a high throughput key-value store and are used to evaluate
SkimpyStash. We develop the design of SkimpyStash in Section 4.
We evaluate SkimpyStash in Section 5. We review related work in
Section 6. Finally, we conclude in Section 7.

2. FLASH MEMORY OVERVIEW
Figure 1 gives a block-diagram of an NAND flas based SSD.

In flas memory, data is stored in an array of flas blocks. Each
block spans 32-64 pages, where a page is the smallest unit of read
and write operations. A distinguishing feature of flas memory is
that read operations are very fast compared to magnetic disk drive.
Moreover, unlike disks, random read operations are as fast as se-
quential read operations as there is no mechanical head movement.
A major drawback of the flas memory is that it does not allow
in-place updates (i.e., overwrite). Page write operations in a flas
memory must be preceded by an erase operation and within a block,
pages need be to written sequentially. The in-place updateprob-
lem becomes complicated as write operations are performed in the
page granularity, while erase operations are performed in the block
granularity. The typical access latencies for read, write, and erase
operations are 25 microseconds, 200 microseconds, and 1500 mi-
croseconds, respectively [9].
The Flash Translation layer (FTL) is an intermediate software

layer inside SSD, which makes linear flas memory device act like
a virtual disk. The FTL receives logical read and write commands
from the applications and converts them to the internal flas mem-
ory commands. To emulate disk like in-place update operation
for a logical page (Lp), the FTL writes data into a new physical
page (Pp), maintains a mapping between logical pages and physical
pages, and marks the previous physical location ofLp as invalid for
future garbage collection. Although FTL allows current disk based
application to use SSD without any modifications it needs to inter-
nally deal with flas physical constraint of erasing a block before
overwriting a page in that block. Besides the in-place updateprob-
lem, flas memory exhibits another limitation – a flas block can
only be erased for limited number of times (e.g., 10K-100K) [9].
FTL uses various wear leveling techniques to even out the erase
counts of different blocks in the flas memory to increase its over-
all longevity [17]. Recent studies show that current FTL schemes
are very effective for the workloads with sequential access write
patterns. However, for the workloads with random access patterns,
these schemes show very poor performance [18, 20, 22]. One of
the design goals of SkimpyStash is to use flas memory in FTL-
friendly manner.

26

3. KEY-VALUE STORE APPLICATIONS
We describe two real-world applications that can use SkimpyS-

tash as an underlying persistent key-value store. Data traces ob-
tained from real-world instances of these applications are used to
drive and evaluate the design of SkimpyStash.

3.1 Online Multi-player Gaming
Online multi-player gaming technology allows people from geo-

graphically diverse regions around the globe to participate in the
same game. The number of concurrent players in such a game
could range from tens to hundreds of thousands and the number
of concurrent game instances offered by a single online service
could range from tens to hundreds. An important challenge in on-
line multi-player gaming is the requirement to scale the number of
users per game and the number of simultaneous game instances.
At the core of this is the need to maintain server-side state so as
to track player actions on each client machine and update global
game states to make them visible to other players as quickly as
possible. These functionalities map to set and get key operations
performed by clients on server-side state. The real-time responsive-
ness of the game is, thus, critically dependent on the response time
and throughput of these operations.
There is also the requirement to store server-side game state in

a persistent manner for (at least) the following reasons: (i) resume
game from interrupted state if and when crashes occur, (ii) offlin
analysis of game popularity, progression, and dynamics with the
objective of improving the game, and (iii) verificatio of player
actions for fairness when outcomes are associated with monetary
rewards. We designed SkimpyStash to meet the high throughput
and low latency requirement of such get-set key operations in
online multi-player gaming.

3.2 Storage Deduplication
Deduplication is a recent trend in storage backup systems that

eliminates redundancy of data across full and incremental backup
data sets [28]. It works by splitting file into multiple chunks us-
ing a content-aware chunking algorithm like Rabin fingerprintin
and using SHA-1 hash [24] signatures for each chunk to determine
whether two chunks contain identical data [28]. In inline storage
deduplication systems, the chunks (or their hashes) arrive one-at-
a-time at the deduplication server from client systems. The server
needs to lookup each chunk hash in an index it maintains for all
chunk hashes seen so far for that backup location instance – if there
is a match, the incoming chunk contains redundant data and can be
deduplicated; if not, the (new) chunk hash needs to be inserted into
the index.
Because storage systems currently need to scale to tens of ter-

abytes to petabytes of data volume, the chunk hash index is too big
to fi in RAM, hence it is stored on hard disk. Index operations are
thus throughput limited by expensive disk seek operations. Since
backups need to be completed over windows of half-a-day or so
(e.g., nights and weekends), it is desirable to obtain high through-
put in inline storage deduplication systems. RAM prefetching and
bloom-filte based techniques used by Zhu et al. [28] can avoid
disk I/Os on close to 99% of the index lookups. Even at this re-
duced rate, an index lookup going to disk contributes about 0.1msec
to the averagelookup time – this is about 103 times slower than a
lookup hitting in RAM. SkimpyStash can be used as the chunk hash
index for inline deduplication systems. By reducing the penalty of
index lookup misses in RAM by orders of magnitude by serving
such lookups from flas memory, SkimpyStash can help to increase
deduplication throughput.

99019
94500

16064
5948

0

20000

40000

60000

80000

100000

seq-reads rand-reads seq-writes rand-writes

IO
PS

Figure 2: IOPS for sequential/random reads and writes using 4KB
I/O request size on a 160GB fusionIO drive.

4. SkimpyStash DESIGN
We present the system architecture of SkimpyStash and the ra-

tionale behind some design choices in this section.

4.1 Coping with Flash Constraints
The design is driven by the need to work around two types of

operations that are not efficien on flas media, namely:

1. Random Writes: Small random writes effectively need to
update data portions within pages. Since a (physical) flas
page cannot be updated in place, a new (physical) page will
need to be allocated and the unmodifie portion of the data
on the page needs to be relocated to the new page.

2. Writes less than flash page size:Since a page is the smallest
unit of write on flash writing an amount less than a page ren-
ders the rest of the (physical) page wasted – any subsequent
append to that partially written (logical) page will need copy-
ing of existing data and writing to a new (physical) page.

To validate the performance gap between sequential and random
writes on flash we used Iometer [3], a widely used performance
evaluation tool in the storage community, on a 160GB fusionIO
SSD [2] attached over PCIe bus to an Intel Core 2 Duo E6850 3GHz
CPU. The number of worker threads was fi ed at 8 and the num-
ber of outstanding I/Os for the drive at 64. The results for IOPS
(I/O operations per sec) on 4KB I/O request sizes are summarized
in Figure 2. Each test was run for 1 hour. The IOPS performance
of sequential writes is about 3x that of random writes and wors-
ens when the tests are run for longer durations (due to accumulat-
ing device garbage collection overheads). We also observe that the
IOPS performance of (random/sequential) reads is about 6x that
sequential writes. (The slight gap between IOPS performance of
sequential and random reads is possibly due to prefetching inside
the device.)
Given the above, the most efficien way to write flas is to sim-

ply use it as an append log, where an append operation involves a
flas page worth of data, typically 2KB or 4KB. This is the main
constraint that drives the rest of our key-value store design. Flash
has been used in a log-structured manner and its benefit reported
in earlier works [11, 14, 15, 16, 19, 23, 27].

4.2 Design Goals
The design of SkimpyStash is driven by the following guiding

principles:

• Support low-latency, high throughput operations. This
requirement is extracted from the needs of many server class

27

applications that need an underlying key-value store to func-
tion. Twomotivating applications that are used for evaluating
SkimpyStash are described in Section 3.

• Use flash aware data structures and algorithms. This
principle accommodates the constraints of the flas device
so as to extract maximum performance out of it. Random
writes and in-place updates are expensive on flas memory,
hence must be reduced or avoided. Sequential writes should
be used to the extent possible and the fast nature of ran-
dom/sequential reads should be exploited.

• Low RAM footprint per key independent of key-value
size. The goal here is to index all key-value pairs on flas
in a RAM space efficien manner and make them accessi-
ble using a small number of flas reads per lookup. By be-
ing RAM space frugal, one can accommodate larger flas
drive capacities and correspondingly larger number of key-
value pairs stored in it. Key-value pairs can be arbitrarily
large but the RAM footprint per key should be independent
of it and small. We target a skimpy RAM usage of about 1
byte per key-value pair, a design point that is more aggres-
sive than earlier designs like FAWN [11], BufferHash [10],
ChunkStash [15], and FlashStore [16].

4.3 Architectural Components
SkimpyStash has the following main components. A base

version of the design is shown in Figure 3 and an enhanced version
in Figure 5. We will get to the details shortly.

RAM Write Buffer: This is a fi ed-size data structure maintained
in RAM that buffers key-value writes so that a write to flas
happens only after there is enough data to fil a flas page (which is
typically 2KB or 4KB in size). To provide strict durability guaran-
tees, writes can also happen to flas when a configurabl timeout
interval (e.g., 1 msec) has expired (during which period multiple
key-value pairs are collected in the buffer). The client call returns
only after the write buffer is flushe to flash The RAMwrite buffer
is sized to 2-3 times the flas page size so that key-value writes
can still go through when part of the buffer is being written to flash

RAM Hash Table (HT) Directory: The directory structure, for
key-value pairs stored on flash is maintained in RAM and is orga-
nized as a hash table with each slot containing a pointer to a chain
of records on flash Each key-value pair record on flas contains,
in addition to the key and value fields a pointer to the next record
(in the order in its respective chain) on flash The chain of records
on flas pointed to by each slot comprises the bucket of records
corresponding to this slot in the HT directory. This is illustrated in
Figure 3. The average number of records in a bucket, k, is a con-
figurabl parameter. In summary, we resolve hash table directory
collisions by linear chaining and store the chains in flash
In an enhancement of the design, we use two-choice based load

balancing to reduce wide variation in bucket sizes (hence, chain
lengths and associated lookup times), and introduce a bloom filte
in each hash table directory slot in RAM for summarizing the
records in that bucket so that at most one bucket chain on flas
needs to be searched during a lookup. These enhancements form
the the core of our design and are discussed in detail in Section 4.5.

Flash store:The flas store provides persistent storage for the key-
value pairs and is organized as a circular append log. Key-value
pairs are written to flas in units of a page size to the tail of the
log. When the log accumulates garbage (consisting of deleted or

key value

RAM

Flash Memory

key value

key value

key value

.

.

.

.

.

.

key value

key valueHash table
directory

Sequential log

null

null

null

Keys
ordered
by write
time in
log

ptr

Figure 3: SkimpyStash architecture showing the sequential log orga-
nization of key-value pair records on flash and base design for the hash
table directory in RAM. (RAM write buffer is not shown.)

older values of updated records) beyond a configurabl threshold,
the pages on flas from the head of the log are recycled – valid en-
tries from the head of the log are written back to the end of the log.
This also helps to place the records in a given bucket contiguously
on flas and improve read performance, as we elaborate shortly.
Each key-value pair record on flas contains, in addition to the key
and value fields a pointer to the next record (in the order in its HT
bucket chain) on flash

4.4 Overview of Key Lookup and Insert Op-
erations

To understand the relationship of the different storage areas in
our design, it is helpful to follow the sequence of accesses in key
insert and lookup operations performed by the client application.
A key lookup operation (get) firs looks up the RAM write

buffer. Upon a miss there, it lookups up the HT directory in RAM
and searches the chained key-value pair records on flas in the re-
spective bucket.
A key insert (or, update) operation (set) writes the key-value

pair into the RAM write buffer. When there are enough key-value
pairs in RAM write buffer to fil a flas page (or, a configurabl
timeout interval since the client call has expired, say 1 msec), these
entries are written to flas and inserted into the RAM HT directory
and flash
A delete operation on a key is supported through insertion of

a null value for that key. Eventually the null entry and earlier
inserted values of the key on flas will be garbage collected.
When flas usage and fraction of garbage records in the flas log

exceed a certain threshold, a garbage collection (and compaction)
operation is initiated to reclaim storage on flas in a manner similar
to that in log-structured fil systems [26]. This garbage collection
operation starts scanning key-value pairs from the (current) head of
the log – it discards garbage (invalid or orphaned, as define later)
key-value pair records and moves valid key-value pair records from
the head to the tail of the log. It stops when floo thresholds are
reached for flas usage or fraction of garbage records remaining in
the flas log.
The functionalities of (i) client key lookup/insert operations, (ii)

28

0

1

2

3

4

5

6

7

0 4 8 12 16 20 24 28 32

RA
M

by
tes

 pe
r k

ey
-va

lue
 pa

ir

Avg. keys per bucket (k)

Base design
Enhanced Design

Figure 4: RAM space usage per key-value pair in SkimpyStash for the
base and enhanced designs as the average number of keys per bucket
(k) is varied.

writing key-value pairs to flas store and updating RAM HT di-
rectory, and (iii) reclaiming space on flas pages are handled by
separate threads in a multi-threaded architecture. Concurrency is-
sues with shared data structures arise in our multi-threaded design,
which we address but do not describe here due to lack of space.

4.5 Hash Table Directory Design
At a high level, we use a hash table based index in RAM to in-

dex the key-value pairs on flash Earlier designs like FAWN [11]
and ChunkStash [15] dedicate one entry of the hash table to point
to a single key-value pair on flas together with a checksum that
helps to avoid (with high probability) following the flas pointer to
compare keys for every entry searched in the hash table during a
lookup. The RAM overhead in FAWN and ChunkStash is 6 bytes
per key-value pair stored on flash With such a design, we cannot
get below the barrier of a flas pointer (say, 4 bytes) worth of RAM
overhead per key-value pair (even if we ignore the other fields like
checksums, in the hash table entry).
Our approach, at an intuitive level, is to move most of the point-

ers that locate each key-value pair from RAM to flas itself. We
realize this by

• Resolving hash table collisions using linear chaining, where
multiple keys that resolve (collide) to the same hash table
bucket are chained in a linked list, and

• Storing the linked lists on flas itself with a pointer in each
hash table bucket in RAM pointing to the beginning record
of the chain on flash Each key-value pair record on flas
contains, in addition to the key and value fields a pointer to
the next record (in the order in its respective chain) on flash

Because we store the chain of key-value pairs in each bucket
on flash we incur multiple flas reads upon lookup of a key in
the store. This is the tradeoff that we need to make with lookup
times in order to be able to skimp on RAM space overhead per key-
value pair. We will see that the average number of keys in a bucket
(k) is the critical parameter that allows us to make a continuum of
tradeoffs between these two parameters – it serves as a powerful
knob for reducing RAM space usage at the expense of increase in
lookup times.
We firs begin with the base design of our hash table based in-

dex in RAM. Thereafter, we motivate and introduce some enhance-
ments to the design to improve performance.

Base Design
The directory structure, for key-value pairs stored on flash is main-
tained in RAM and is organized as a hash table with each slot con-
taining a pointer to a chain of records on flash as shown in Figure 3.

Each key-value pair record on flas contains, in addition to the key
and value fields a pointer to the next record (in the order in its re-
spective chain) on flash The chain of records on flas pointed to by
each slot comprises the bucket of records corresponding to this slot
in the HT directory. A hash function h is used to map keys to slots
in the HT directory. The average number of records in a bucket,
k, is a configurabl parameter. Then, to accommodate up to some
given number n key-value pairs, the number of slots required in
the HT directory is about n/k. In summary, we resolve hash table
directory collisions by linear chaining and store the chains in flash
We next describe the lookup, insert/update, anddeleteoperations
on this data structure.
A lookup operation on a key uses the hash function h to ob-

tain the HT directory bucket that this key belongs to. It uses the
pointer stored in that slot to follow the chain of records on flas to
search the key; upon findin the firs record in the chain whose key
matches the search key, it returns the value. The number of flas
reads for such a lookup is k/2 on the average, and at most the size
of the bucket chain in the worst case.
An insert (or, update) operation uses the hash function h to ob-

tain the HT directory bucket that this key belongs to. Let a1 be
the address on flas of the firs record in this chain (i.e., what the
pointer in this slot points to). Then a record is created correspond-
ing to the inserted (or, updated) key-value pair with its next-pointer
fiel equal to a1. This record is appended to the log on flas and
its address on flas now becomes the value of the pointer in the re-
spective slot in RAM. Effectively, this new record is inserted at the
beginning of the chain corresponding to this bucket. Thus, if this
insert operation corresponds to an update operation on an earlier
inserted key, the most recent value of the key will be (correctly)
read during a lookup operation (the old value being further down
the chain and accumulating as garbage in the log).
A delete operation is same as the insert (or, update) with null

value for that key. Eventually the null entry on flas and old values
of the key will be garbage collected in the log.

RAM Space Overhead for Base Design:Let us say that the
pointer to flas in each HT directory slot is 4 bytes. (This accom-
modates up to 4GB of byte-addressable log. If records are of a
fi ed size, say 64 bytes, then this can accommodate up to 256GB
of 64-byte granularity addressable log. Larger pointer sizes, up to
8 bytes, can be used according to application requirements.) Then,
with a value of k = 10 average bucket size, the RAM space over-
head is a mere 4/k = 0.4 bytes = 3.2 bits per entry, independent
of key-value size. At this sub-byte range, this design tests the ex-
tremes of low RAM space overhead per entry. The average number
of flas reads per lookup is k/2 = 5; with current SSDs achiev-
ing flas read times in the range of 10µsec, this corresponds to a
lookup latency of about 50 µsec. The parameter k provides a pow-
erful knob for achieving tradeoffs between low RAM space usage
and low lookup latencies. The RAM space usage per key-value pair
for the base design as a function of k is shown in Figure 4.

Design Enhancements
We identify some performance inefficiencie in the base design and
develop techniques to address them with only a slight increase in
the RAM space overhead per key-value pair. The enhanced design
is shown in Figure 5.

Load Balancing across Buckets
The hashing of keys to HT directory buckets may lead to skewed
distributions in the number of keys in each bucket chain, thus cre-
ating variations in average lookup times across buckets. Thus, it

29

key value

RAM

Flash Memory

key value

key value

key value

.

.

.

.

.

.

key value

key valueHash table
directory

Sequential log

null

null

null

Keys
ordered
by write
time in
log

ptrBF

Tw
o-c

ho
ice

 lo
ad

ba

lan
cin

g f
or

ke
y x

Figure 5: SkimpyStash architecture showing the sequential log orga-
nization of key-value pair records on flash and enhanced design for the
hash table directory in RAM. (RAM write buffer is not shown.)

might be necessary to enforce fairly equal load balancing of keys
across HT directory buckets in order to keep each bucket chain of
about the same size. One simple way to achieve this is to use the
power of two choice ideafrom [12] that has been applied to balance
a distribution of balls thrown into bins. With a load balanced design
for the HT directory, each key would be hashed to two candidate
HT directory buckets, using two hash functions h1 and h2, and ac-
tually inserted into the one that has currently fewer elements. We
investigate the impact of this design decision on balancing bucket
sizes on our evaluation workloads in Section 5. To implement this
load balancing idea, we add one byte of storage to each HT di-
rectory slot in RAM that holds the current number of keys in that
bucket – this space allocation accommodates up to a maximum of
28 − 1 = 255 keys per bucket.

Bloom Filter per Bucket
This design modification in its current form, will lead to an in-
crease in the number of flas reads during lookup. Since each key
will need to be looked up in both of its candidate buckets, the worst
case number of flas reads (hence lookup times) would double. To
remove this latency impact on the lookup pathway, we add a bloom
filter [13] per HT directory slot that summarizes the keys that have
been inserted in the respective bucket. Note that this bloom filte in
each HT directory slot can be sized to contain about k keys, since
load balancing ensures that when the hash table reaches its bud-
geted full capacity, each bucket will contain not many more than
k keys with very high probability. A standard rule of thumb for
dimensioning a bloom filte to use one byte per key (which gives a
false positive probability of 2%), hence the bloom filte in each HT
directory slot can be of size k bytes.
The introduction of bloom filter in each HT directory slot has

another desirable side effect – lookups on non-existent keys will
almost always not involve any flas reads since the bloom filter
in both candidate slots of the key will indicate that the key is not
present (module false positive probabilities). (Note that in the base
design, lookups on non-existent keys also lead to flas reads and
involve traversing the entire chain in the respective bucket.)
In an interesting reciprocity of benefits the bloom filter in each

Bloom Filter Bucket
size

pointer to key-value
pair chain on flash

≈ ≈

≈ ≈≈≈

≈ ≈
k bytes 1 byte 4 bytes

Figure 6: RAM hash table directory slot and sizes of component fields
in the enhanced design of SkimpyStash. The parameterk is the average
number of keys in a bucket.

bucket not only help in reducing lookup times when two-choice
load balancing is used but also benefi from load balancing. Load
balancing aims to keep the number of keys in each bucket upper
bounded (roughly) by the parameter k. This helps to keep bloom
filte false positive probabilities in that bucket bounded as per the
dimensioned capacity of k keys. Without load balancing, many
more than k keys could be inserted into a given bucket and this will
increase the false positive rates of the respective bloom filte well
beyond what it was dimensioned for.
The additional field added to each HT directory slot in RAM in

the enhanced design are shown in Figure 6.
During a lookup operation, the key is hashed to its two candidate

HT directory buckets and the chain on flas is searched only if the
respective bloom filte indicates that the key may be there in that
bucket. Thus, accounting for bloom filte false positives, the chain
on flas will be searched with no success in less than 2% of the
lookups.
When an insert operation corresponds to an update of an ear-

lier inserted key, the record is always inserted in the same bucket
as the earlier one, even if the choice determined by load balancing
(out of two candidate buckets) is the other bucket. If we followed
the choice given by load balancing, the key may be inserted in the
bloom filter of both candidate slots – this would not preserve the
design goal of traversing at most one bucket chain (with high proba-
bility) on flas during lookups. Moreover, the same problem would
arise with version resolution during lookups if different versions of
a key are allowed to be inserted in both candidate buckets. This
rule also leads to efficiencie during garbage collection operations
since all the obsolete values of a key appear in the same bucket
chain on flash Note that this complication involving overriding of
the load balancing based choice of insertion bucket can be avoided
when the application does not perform updates to earlier inserted
keys – one example of such an application is storage deduplication
as described in Section 3.
In summary, in this enhancement of the base design, two-choice

based load balancing strategy is used to reduce variations in the
the number of keys assigned to each bucket (hence, chain lengths
and associated lookup times). Each HT directory slot in RAM also
contains a bloom filte summarizing the keys in the bucket and
a size (count) fiel storing the current number of keys in that bucket.

RAM Space Overhead for Enhanced Design:With this design
modification the RAM space overhead per bucket now has three
components, namely,

• Pointer to chain on flas (4 bytes),

• Bucket size (1 byte), and

• Bloom filte (k bytes).

This space overhead per HT directory slot is amortized over an
average of k keys (in that bucket), hence the RAM space overhead
per entry can be computed as (k + 1 + 4)/k = 1 + 5/k which

30

is about 1.5 bytes for k = 10. The average number of flas
reads per lookup is still k/2 = 5 (with high probability); with
current SSDs achieving flas read times in the range of 10µsec,
this corresponds to a lookup latency of about 50 µsec. Moreover,
the variation across lookup latencies for different keys is better
controlled in this design (compared to the base design) as bucket
chains are about the same size due to two choice based load balanc-
ing of keys across buckets. The RAM space usage per key-value
pair for the enhanced design as a function of k is shown in Figure 4.

Storing key-value pairs to flash: Key-value pairs are organized
on flas in a log-structure in the order of the respective write
operations coming into the system. Each slot in the HT directory
contains a pointer to the beginning of the chain on flas that
represents the keys in that bucket. Each key-value pair record on
flas contains, in addition to the key and value fields a pointer to
the next record (in the order in its respective chain) on flash We
use a 4-byte pointer, which is a combination of a page pointer and
a page offset. The all-zero pointer is reserved for the null pointer
– in the HT directory slot, this represents an empty bucket, while
on flas this indicates that the respective record has no successor
in the chain.

RAM and Flash Capacity Considerations: We designed our
RAM indexing scheme to use 1 byte in RAM per key-value pair so
as to maximize the amount of indexable storage on flas for a given
RAM usage size. Whether RAM or flas capacity becomes the bot-
tleneck for storing key-value pairs on flas depends further on the
key-value pair size. With 64-byte key-value pair records, 1GB of
RAM can index about 1 billion key-value pairs on flas which oc-
cupy 64GB on flash This flas memory capacity is well within the
capacity range of SSDs shipping in the market today (from 64GB to
640GB). On the other hand, with 1024-byte key-value pair records,
the same 1GB of RAM can index 1 billion key-value pairs which
now occupy 1TB on flas – at currently available SSD capacities,
this will require multiple flas drives to store the dataset.

4.6 Flash Storage Management
Key-value pairs are organized on flas in a log-structure in the

order of the respective write operations coming into the system.
When there are enough key-value pairs in the RAM write buffer
to fil a flas page (or, when a pre-specifie coalesce time inter-
val is reached), they are written to flash The pages on flas are
maintained implicitly as a circular log. Since the Flash Trans-
lation Layer (FTL) translates logical page numbers to physical
ones, this circular log can be easily implemented as a contiguous
block of logical page addresses with wraparound, realized by two
page number variables, one for the firs valid page (oldest writ-
ten) and the other for the last valid page (most recently written).
We next describe two maintenance operations on flas in SkimpyS-
tash, namely, compactionand garbage collection. Compaction is
helpful in improving lookup latencies by reducing number of flas
reads when searching bucket. Garbage collection is necessary to
reclaim storage on flas and is a consequence of flas being used
in a log-structured manner.

Compaction to Reduce Flash Reads during
Lookups
In SkimpyStash , a lookup in a HT directory bucket involves fol-
lowing the chain of key-value records on flash For a chain length
of c records in a bucket, this involves an average of c/2 flas reads.
Over time, as keys are inserted into a bucket and earlier inserted
keys are updated, the chain length on flas for this bucket keeps

Figure 7: Diagram illustrating the effect of compaction procedure on
the organization of a bucket chain on flash in SkimpyStash.

increasing and degrading lookup times. We address this by peri-
odically compactingthe chain on flas in a bucket by placing the
valid keys in that chain contiguously on one or more flas pages
that are appended to the tail of the log. Thus, if m key value pairs
can be packed onto a single flas page (on the average), the number
of flas reads required to search for a key in a bucket of k records
is k/(2m) on the average and at most ⌈k/m⌉ in the worst case.
The compaction operations proceed over time in a bucket as fol-

lows. Initially, as key-value pairs are added at different times to
a bucket, they appear on different flas pages and are chained to-
gether individually on flash When enough valid records accumu-
late in a bucket to fil a flas page (say, m of them), they are com-
pacted and appended on a new flas page at the tail of the log –
the chain is now of a single flas page size and requires one flas
read (instead of m) to search fully. Thereafter, as further keys are
appended to a bucket, they will be chained together individually
and appear before the compacted group of keys in the chain. Over
time, enough new records may accumulate in the bucket to allow
them to be compacted to a second flas page, and so the process
repeats. At any given time, the chain on flas for each bucket now
begins with a chained sequence of individual records followed by
groups of compacted records (each group appearing on the same
flas page). This organization of a bucket chain as a result of com-
paction is illustrated in Figure 7.
When a key-value pair size is relatively small, say 64 bytes as

in the storage deduplication application, there may not be enough
records in a bucket to fil a flas page, since this number is (roughly)
upper bounded by the parameter k. In this case, we may reap the
same benefit of compaction by applying the procedure to groups
of chains in multiple buckets at a time.
The compaction operation, as described above, will lead to or-

phaned) (or, garbage) records on the flas log. Moreover, garbage
records also accumulate in the log as a result of key update and
delete operations. These need to be garbage collected on flas as
we describe next.

Garbage Collection
Garbage records (holes) accumulate in the log as a result of com-
paction and key update/delete operations. These operations create

31

garbage records corresponding to all previous versions of respec-
tive keys.
When a certain configurabl fraction of garbage accumulates in

the log (in terms of space occupied), a cleaning operation is per-
formed to clean and compact the log. The cleaning operation con-
siders currently used flas pages in oldest firstorder and deallo-
cates them in a way similar to garbage collection in log-structured
fil systems [26]. One each page, the sequence of key-value pairs
are scanned to determine whether they are valid or not. The clas-
sificatio of a key-value pair record on flas follows from doing a
lookup on the respective key starting from the HT directory – if this
record is the same as that returned by the lookup, then it is valid; if
it appears later in the chain than a valid record for that key, then this
record is invalid and corresponds to an obsolete version of they key;
otherwise, the record is orphanedand cannot be reached by follow-
ing pointers from the HT directory (this may happen because of the
compaction procedure, for example). When an orphaned record is
encountered at the head of the log, it is skipped and the head posi-
tion of the log is advanced to the next record.
From the description of the key insertion procedure in Section

4.5, it follows that the firs record in each bucket chain (the one
pointed to from the HT directory slot) is the most recently inserted
record, while the last record in the chain is the earliest inserted
record in that bucket. Hence, the last record in a bucket chain will
be encountered firs during the garbage collection process and it
may be a valid or invalid (obsolete version of the respective key)
record. A valid record needs to be reinserted at the tail of the log
while an invalid record can be skipped. In either case, the next
pointer in its predecessor record in the chain would need to be up-
dated. Since we want to avoid in-place updates (random writes) on
flash this requires relocating the predecessor record and so forth
all the way to the firs record in the chain. This effectively leads to
the design decision of garbage collecting entire bucket chains on
flash at a time.
In summary, when the last record in a bucket chain is encoun-

tered in the log during garbage collection, all valid records in that
chain are compacted and relocated to the tail of the log. This
garbage collection strategy has two benefits

• First, the writing of an entire chain of records in a bucket
to the tail of the log also allows them to be compacted and
placed contiguously on one or more flas pages and helps to
speed up the lookup operations on those keys, as explained
above in the context of compaction operations, and

• Second, since garbage (orphaned) records are created fur-
ther down the log between the (current) head and tail (cor-
responding to the locations of all records in the chain before
relocation), this helps to speedup the garbage collection pro-
cess for the respective pages when they are encountered later
(since orphaned records can be simply discarded).

We investigate the impact of compaction and garbage collection
on system throughput in Section 5.

4.7 Crash Recovery
SkimpyStash ’s persistency guarantee enables it to recover from

system crashes due to power failure or other reasons. Because the
system logs all key-value write operations to flash it is straight-
forward to rebuild the HT directory in RAM by scanning all valid
flas pages on flash Recovery using this method can take some
time, however, depending on the total size of valid flas pages that
need to be scanned and the read throughput of flas memory.
If crash recovery needs to be executed faster so as to support

“near" real-time recovery, then it is necessary to checkpoint the

Trace Total get- get:set Avg. size (bytes)
set ops ratio Key Value

Xbox 5.5 millions 7.5:1 92 1200
Dedup 40 millions 2.2:1 20 44

Table 1: Properties of the two traces used in the performance evalua-
tion of SkimpyStash.

RAM HT directory periodically into flas (in a separate area from
the key-value pair logs). Then, recovery involves reading the last
written HT directory checkpoint from flas and scanning key-value
pair logged flas pages with timestamps after that and inserting
them into the restored HT directory. During the operation of check-
pointing the HT directory, all insert operations into it will need to
be suspended (but the read operations can continue). We use a tem-
porary, small in-RAM hash table to provide index for the interim
items and log them to flash After the checkpointing operation com-
pletes, key-value pairs from the flas pages written in the interim
are inserted into the HT directory. Key lookup operations, upon
missing in the HT directory, will need to check in these flas pages
(via the small additional hash table) until the later insertions into
HT directory are complete. The flas garbage collection thread is
suspended during the HT directory checkpointing operation, since
the HT directory entries cannot be modifie during this time.

5. EVALUATION
We evaluate SkimpyStash on real-world traces obtained from the

two applications described in Section 3.

5.1 C# Implementation
We have prototyped SkimpyStash in approximately 3000 lines

of C# code. MurmurHash [4] is used to realize the hash func-
tions used in our implementation to compute hash table directory
indices and bloom filte lookup positions; different seeds are used
to generate different hash functions in this family. The metadata
store on flas is maintained as a fil in the fil system and is
created/opened in non-buffered mode so that there are no buffer-
ing/caching/prefetching effects in RAM from within the operating
system. TheReaderWriterLockSlim and Monitor classes
in .NET 3.0 framework [1] are used to implement the concurrency
control solution for multi-threading.

5.2 Evaluation Platform and Datasets
We use a standard server configuratio to evaluate the perfor-

mance of SkimpyStash. The server runs Windows Server 2008 R2
and uses an Intel Core2 Duo E6850 3GHz CPU, 4GB RAM, and
fusionIO 160GB flas drive [2] attached over PCIe interface. We
compare the throughput (get-set operations per sec) on the two
traces described in Table 1.
We described two real-world applications in Section 3 that

can use SkimpyStash as an underlying persistent key-value
store. Data traces obtained from real-world instances of these ap-
plications are used to drive and evaluate the design of SkimpyStash.

Xbox LIVE Primetime trace
We evaluate the performance of SkimpyStash on a large trace of
get-set key operations obtained from real-world instances of
the Microsoft Xbox LIVE Primetime online multiplayer game
[7]. In this application, the key is a dot-separated sequence of
strings with total length averaging 94 characters and the value
averages around 1200 bytes. The ratio of get operations to set
set operations is about 7.5:1.

32

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32

Std
de

v/
me

an
 of

 bu
cke

t s
ize

s

Avg. keys per bucket (k) (log scale)

Xbox trace
Base design
Enhanced Design

Figure 8: Xbox trace: Relative variation in bucket sizes (standard-
deviation/mean) for different values of average bucket size (k) for the
base and enhanced designs. (Behavior on dedup trace is similar.)

0

500

1000

1500

2000

2500

1 2 4 8 16 32

Av
g.

loo
ku

p t
im

e (
us

ec
)

Avg. keys per bucket (k) (log scale)

Xbox trace
Base design
Enhanced Design

Figure 9: Xbox trace: Average lookup (get) time for different values
of average bucket size (k) for the base and enhanced designs. The en-
hanced design reduces lookup times by factors of6x-24x ask increases.

Storage Deduplication traceWe have built a storage dedupli-
cation analysis tool that can crawl a root directory, generate the
sequence of chunk hashes for a given average chunk hash size, and
compute the number of deduplicated chunks and storage bytes.
The enterprise data backup trace we use for evaluations in this
paper was obtained by our storage deduplication analysis tool
using 4KB chunk sizes. The trace contains 27,748,824 total chunks
and 12,082,492 unique chunks. Using this, we obtain the ratio of
get operations to set operations in the trace as 2.2:1. In this
application, the key is a 20-byte SHA-1 hash of the corresponding
chunk and the value is the meta-data for the chunk, with key-value
pair total size upper bounded by 64 bytes.

The properties of the two traces are summarized in Table 1. Both
traces include get operations on keys that have not been set ear-
lier in the trace. (Such get operations will return null.) This is
an inherent property of the nature of the application, hence we play
the traces “as-is" to evaluate throughput in operations per second.

5.3 Performance Evaluation
We evaluate the performance impact of our design decisions and

obtain ballpark ranges on lookup times and throughput (get-set
operations/sec) for SkimpyStash on the Xbox LIVE Primetime
online multi-player game and storage deduplication application
traces (from Table 1). We disable the log compaction procedure
for all but the last set of experiments. In the last set of experiments,
we investigate the impact of garbage collection (which also does
compaction) on system throughput.

0

20

40

60

80

100

1 2 4 8 16 32

Av
g.

loo
ku

p t
im

e (
us

ec
)

Avg. keys per bucket (k) (log scale)

Dedup trace
Base design
Enhanced Design

Figure 10: Dedup trace: Average lookup (get) time for different val-
ues of average bucket size (k) for the base and enhanced designs. The
enhanced design reduces lookup times by factors of1.5x-2.5x ask in-
creases.

Impact of load balancing on bucket sizes:In the base design,
hashing keys to single buckets can lead to wide variations in the
chain length on flas in each bucket, and this translates to wide
variations in lookup times. We investigate how two-choice based
load balancing of keys to buckets can help reduce variance among
bucket sizes. In Figure 8, we plot the relative variation in the
bucket sizes (standard-deviation/mean of bucket sizes) for different
values of k = 1, 2, 4, 8, 16, 32 on the Xbox trace (the behavior on
dedup trace is similar). This metric is about 1.4x-6x times better
for the enhanced design than for the based design on both traces.
The gap starts at about 1.4x for the case k = 1 and increases to
about 6x for the case k = 32. This provides conclusive evidence
that two choice based load balancing is an effective strategy for
reducing variations in bucket sizes.

Key lookup latencies: The two ideas of load balancing across
buckets and using a bloom filte per bucket help to significantl
reduce average key lookup times in the enhanced design, with the
gains increasing as the average bucket size parameter k increases.
At a value of k = 8, the average lookup time in the enhanced
design is 20 µsec for the Xbox trace and 12 µsec for the dedup
trace. In Figures 9 and 10, we plot the average lookup time
for different values of k = 1, 2, 4, 8, 16, 32 on the two traces
respectively. As the value of k increases, the gains in the enhanced
design increase from 6x to 24x for the Xbox trace and from 1.5x
to 2.5x for the dedup trace. The gains are more for the Xbox trace
since that trace has many updates to earlier inserted keys (while the
dedup trace has none), hence chains accumulate garbage records
and get longer over time and bloom filter help even more to
speedup lookups on non-existing keys (by avoiding searching the
entire chain on flash)

Throughput (get-set operations/sec): The enhanced design
achieves throughputs in the range of 10,000-69,000 ops/sec on the
Xbox trace and 34,000-165,000 ops/sec on the dedup trace, with
throughputs decreasing (as expected) with increasing values of k.
This is shown in Figures 11 and 12. The throughput gains for the
enhanced design over the base design are in the range of 3.5x-20x
on the Xbox trace and 1.3x-2.5x on the dedup trace, with the gains
increasing as the parameter k increases in value. These trends are
in line with that of average lookup times.
The higher throughput of SkimpyStash on the dedup trace can

be explained as follows. The write mix per unit operation (get or
set) in the dedup trace is about 2.65 times that of the Xbox trace.
However, since the key-value pair size is about 20 times smaller
for the dedup trace, the number of syncs to stable storage per write

33

0

10000

20000

30000

40000

50000

60000

70000

1 2 4 8 16 32

Th
rou

gh
pu

t (g
et-

set
 op

s/s
ec)

Avg. keys per bucket (k) (log scale)

Xbox trace
Base design
Enhanced Design

Figure 11: Xbox trace: Throughput (get-set ops/sec) for different
values of average bucket size (k) for the base and enhanced designs.
The enhanced design improves throughput by factors of3.5x-20x ask

increases.

0
20000
40000

60000
80000

100000
120000

140000
160000

1 2 4 8 16 32

Th
rou

gh
pu

t (g
et-

set
 op

s/s
ec)

Avg. keys per bucket (k) (log scale)

Dedup trace
Base design
Enhanced Design

Figure 12: Dedup trace: Throughput (get-set ops/sec) for different
values of average bucket size (k) for the base and enhanced designs.
The enhanced design improves throughput by factors of1.3x-2.5x ask

increases.

operation is about 20 times less. Overall, the number of syncs to
stable storage per unit operation is about 7.6 times less for the
dedup trace. Moreover, bucket chains get longer in the Xbox trace
due to invalid (garbage) records accumulating from key updates.
For these reasons, SkimpyStash obtains higher throughputs on the
dedup trace. In addition, since the dedup trace has no key update
operations, the lookup operation can be avoided during key inserts
for the dedup trace; this also contributes to the higher through-
put of dedup trace over the Xbox trace. Garbage collection can
help to improve performance on the Xbox trace, as we discuss next.

Impact of garbage collection activity: We study the impact of
garbage collection (GC) activity on system throughput (ops/sec)
and lookup times in SkimpyStash. The storage deduplication ap-
plication does not involve updates to chunk metadata, hence we
evaluate the impact of garbage collection on the Xbox trace. We fi
an average bucket size of k = 8 for this set of experiments.
The aggressiveness of the garbage collection activity is con-

trolled by a parameter g which is the interval of number of key up-
dateoperations after which the garbage collector is invoked. Note
that update operations are only those insert operations that update
an earlier value of an already inserted key. Hence, the garbage
collector is invoked after everyg key-value pair records worth of
garbage accumulate in the log. When the garbage collector is in-
voked, it starts scanning from the (current) head of the log and skips
over orphaned records until it encounters the firs valid or invalid
record (that is part of some bucket chain). Then, it garbage collects
that entire bucket chain, compacts and writes the valid records in
that chain to the tail of the log, and returns.
In Figure 13, we plot the throughput (ops/sec) obtained on the

����� ����� ����� ����� ����� ����� �	��� �����
30000

40000

50000

60000

70000

2 4 8 16 32 64 128 no GC

Th
rou

gh
pu

t (g
et-

set
 op

s/s
ec)

Garbage Collection parameter (g)

Xbox trace

Figure 13: Xbox trace: Throughput (get-set ops/sec) for different
values of the garbage collection parameterg. (The average bucket size
parameter is fixed atk = 8.)

�
 ��
 ��� ��� ��� ���� ���
 ����
0

4

8

12

16

20

24

2 4 8 16 32 64 128 no GC
Av

g.
loo

ku
p t

im
e (

us
ec

)
Garbage Collection parameter (g)

Xbox trace

Figure 14: Xbox trace: Average lookup (get) time for different val-
ues of the garbage collection parameterg. (The average bucket size
parameter is fixed atk = 8.)

Xbox trace as the garbage collection parameter g is varied. (The
average bucket size parameter is fi ed at k = 8.) We see that as
g is increased from g = 2 onwards, the throughput firs increases,
peaks at g = 8, and then drops off all the the way to g = 128,
at which point the throughput is close to that without garbage col-
lection. This trend can be explained as follows. For small values
of g, the high frequency of garbage collection is an overhead on
system performance. As g is increased, the frequency of garbage
collection activity decreases while lookup times continue to bene-
fi (but less and less) from the compaction procedure involved in
garbage collection (as explained in Section 4.6). Thus, the param-
eter g pulls system throughput in two different directions due to
different effects, with the sweet spot for optimal performance oc-
curring at gopt = 8. We also reran the experiments for an average
bucket size parameter of k = 4 and found the optimal value of g to
be gopt = 8 in that case also. It appears that the value of gopt is a
property of the trace and depends on the rate at which the applica-
tion is generating garbage records.
Finally, we study the impact of the compaction procedure (as

part of garbage collection activity) on average lookup times. As
the compaction procedure helps to remove invalid records from
bucket chains and reduce their lengths as well as place them
contiguously on one or more flas pages, it helps to reduce search
times in a bucket, as explained in Section 4.6. The impact can
be seen in Figure 14, where lookup times steadily decreaseas
the aggressiveness of the garbage collection activity is increased
(through decreaseof the parameter g).

Comparison with earlier key-value store design:We compare
SkimpyStash with FlashStore [16], a flash-base key-value store

34

Trace FlashStore SkimpyStash (k = 1)
(ops/sec) (ops/sec)

Xbox 58,600 69,000
Dedup 75,100 165,000

Table 2: FlashStore [16] vs. SkimpyStash (k= 1).

which uses a variant of cuckoo hashing-based collision resolution
policy [25] and compact key signatures to store metadata per key-
value pair in the RAM.We use n = 16 hash functions to implement
cuckoo hashing as suggested in [16]. Since FlashStore keeps meta-
data for only one key-value pair per hash table bucket, we compare
it with the SkimpyStash design with the average bucket size param-
eter (k) set to 1, so as to keep the comparisons fair. Table 2 gives
the summary of the throughput performance on Xbox and Dedup
traces. SkimpyStash shows superior performance due to the fewer
number of RAM accesses when non-existing keys are looked up
– in such cases, SkimpyStash needs only two memory accesses,
while FlashStore needs as many as 16. In addition, due to the na-
ture of cuckoo hashing, FlashStore also needs to lookup an auxil-
iary hash table when items are not found in the main (cuckoo) hash
table, which contributes to its reduced throughput. Since the ra-
tio of the insert (set) to the lookup (get) operations on the Dedupe
trace is higher than the Xbox trace (as explained in Section 5.2),
SkimpyStash shows relatively better performance for the Dedupe
trace as it has less overheads during the insertion of non-existing
keys.

6. RELATED WORK
Flash memory has received lots of recent interest as a stable stor-

age media that can overcome the access bottlenecks of hard disks.
Researchers have considered modifying existing applications to im-
prove performance on flas as well as providing operating system
support for inserting flas as another layer in the storage hierarchy.
In this section, we briefl review work that is related to SkimpyS-
tash and point out its differentiating aspects.
MicroHash [27] designs a memory-constrained index structure

for flash-base sensor devices with the goal of optimizing energy
usage and minimizing memory footprint. Keys are assigned to
buckets in a RAM directory based on range and flushe to flas
when RAM buffer page is full. The directory needs to be reparti-
tioned periodically based on bucket utilizations. SkimpyStash ad-
dresses this problem by hashing keys to hash table directory buck-
ets and using two-choice load balancing across them, but gives up
the ability to serve range queries. It also uses a bloom filte in
each directory slot in RAM to disambiguate the two-choice dur-
ing lookups. Moreover, MicroHash needs to write partially fille
(index) pages to flas corresponding to keys in the same bucket,
while the writes to flas in SkimpyStash always write full pages of
key-value pair records.
FlashDB [23] is a self-tuning B+-tree based index that dynam-

ically adapts to the mix of reads and writes in the workload. Like
MicroHash, it also targets memory and energy constrained sensor
network devices. Because a B+-tree needs to maintain partially
fille leaf-level buckets on flash appending of new keys to these
buckets involves random writes, which is not an efficien flas op-
eration. Hence, an adaptive mechanism is also provided to switch
between disk and log-based modes. The system leverages the fact
that key values in sensor applications have a small range and that
at any given time, a small number of these leaf-level buckets are
active. Minimizing latency is not an explicit design goal.
Tree-based index structures optimized for the flas memory are

proposed in [8, 21]. These works do not focus on the RAM space

reduction. In contrast, here we are mainly focusing on the hash-
based index structure with low RAM footprint.
The benefit of using flas in a log-like manner have been ex-

ploited in FlashLogging [14] for synchronous logging. This system
uses multiple inexpensive USB drives and achieves performance
comparable to flas SSDs but with much lower price. Flashlogging
assumes sequential workloads. In contrast, SkimpyStash works
with arbitrary key access workloads.
FAWN [11] uses an array of embedded processors equipped with

small amounts of flas to build a power-efficien cluster architec-
ture for data-intensive computing. The differentiating aspect of
SkimpyStash includes the aggressive design goal of extremely low
RAM usage – SkimpyStash incurs about 1 byte RAM overhead per
key-value pair stored on flas while FAWN uses 6 bytes. This re-
quires SkimpyStash to use some techniques that are different from
FAWN. Moreover, we investigate the use of SkimpyStash in data
center server-class applications that need to achieve high through-
put on read-write mixed workloads.
BufferHash [10] builds a content addressable memory (CAM)

system using flas storage for networking applications like WAN
optimizers. It buffers key-value pairs in RAM, organized as a hash
table, and flushe the hash table to flas when the buffer is full.
Past copies of hash tables on flas are searched using a time series
of Bloom filter maintained in RAM and searching keys on a given
copy involve multiple flas reads. Thus, a key uses as many bytes in
RAM (across all bloom filters as the number of times it is updated.
Moreover, the storage of key-value pairs in hash tables on flas
wastes space on flash since hash table load factors need to be well
below 100% to keep lookup times bounded.
FlashStore [16] is a high throughput persistent key-value store

that uses flas memory as a non-volatile cachebetween RAM and
hard disk. It is designed to store the working set of key-value pairs
on flas and use one flas read per key lookup. As the working
set changes over time, space is made for the current working set
by destaging recently unused key-value pairs to hard disk and re-
cycling pages in the flas store. FlashStore organizes key-value
pairs in a log-structure on flas to exploit faster sequential write
performance. It uses an in-memory hash table to index them, with
hash collisions resolved by a variant of cuckoo hashing [25]. The
in-memory hash table stores compact key signatures instead of full
keys so as to strike tradeoffs between RAM usage and false flas
read operations. The RAM usage is 6 bytes per key-value stored on
flash
ChunkStash [15] is a key-value store on flas that is designed

for speeding up inline storage deduplication. It indexes data
chunks (with SHA-1 hash as key) for identifying duplicate data.
ChunkStash uses one flas read per chunk lookup and organizes
chunk metadata in a log-structure on flas to exploit fast sequen-
tial writes. It builds an in-memory hash table to index them using
techniques similar to FlashStore [16] to reduce RAM usage.

7. CONCLUSION
We designed SkimpyStash to be used as a high throughput per-

sistent key-value storage layer for a broad range of server class ap-
plications. The distinguishing feature of SkimpyStash is the design
goal of extremely low RAM footprint at about 1 byte per key-value
pair, which is more aggressive than earlier designs. We used real-
world data traces from two data center applications, namely, Xbox
LIVE Primetime online multi-player game and inline storage dedu-
plication, to drive and evaluate the design of SkimpyStash on com-
modity server platforms. SkimpyStash provides throughputs from
few 10,000s to upwards of 100,000 get-set operations/sec on the
evaluated applications.

35

8. REFERENCES
[1] C# System.Threading.

http://msdn.microsoft.com/en-us/library/
system.threading.aspx.

[2] Fusion-IO Drive Datasheet . http://www.fusionio.
com/PDFs/Data_Sheet_ioDrive_2.pdf.

[3] Iometer. http://www.iometer.org/.
[4] MurmurHash Fuction.

http://en.wikipedia.org/wiki/MurmurHash.
[5] MySpace Uses Fusion Powered I/O to Drive Greener and

Better Data Centers. http://www.fusionio.com/
case-studies/myspace-case-study.pdf.

[6] Releasing Flashcache. http://www.facebook.com/
note.php?note_id=388112370932.

[7] Xbox LIVE Primetime game.
http://www.xboxprimetime.com/.

[8] AGRAWAL, D., GANESAN, D., SITARAMAN, R., DIAO, Y.,
AND SINGH, S. Lazy-Adaptive Tree: An Optimized Index
Structure for Flash Devices. In VLDB (2009).

[9] AGRAWAL, N., PRABHAKARAN, V., WOBBER, T., DAVIS,
J., MANASSE, M., AND PANIGRAHY, R. Design Tradeoffs
for SSD Performance. In USENIX(2008).

[10] ANAND, A., MUTHUKRISHNAN, C., KAPPES, S.,
AKELLA, A., AND NATH, S. Cheap and Large CAMs for
High Performance Data-Intensive Networked Systems. In
NSDI (2010).

[11] ANDERSEN, D., FRANKLIN, J., KAMINSKY, M.,
PHANISHAYEE, A., TAN, L., AND VASUDEVAN, V. FAWN:
A Fast Array of Wimpy Nodes. In SOSP(2009).

[12] AZAR, Y., BRODER, A., KARLIN, A., AND UPFAL, E.
Balanced Allocations. In SIAM Journal on Computing
(1994).

[13] BRODER, A., AND MITZENMACHER, M. Network
Applications of Bloom Filters: A Survey. In Internet
Mathematics(2002).

[14] CHEN, S. FlashLogging: Exploiting Flash Devices for
Synchronous Logging Performance. In SIGMOD(2009).

[15] DEBNATH, B., SENGUPTA, S., AND LI, J. ChunkStash:
Speeding up Inline Storage Deduplication using Flash
Memory. In USENIX(2010).

[16] DEBNATH, B., SENGUPTA, S., AND LI, J. FlashStore: High
Throughput Persistent Key-Value Store. In VLDB (2010).

[17] GAL, E., AND TOLEDO, S. Algorithms and Data Structures
for Flash Memories. In ACM Computing Surveys(2005),
vol. 37.

[18] GUPTA, A., KIM, Y., AND URGAONKAR, B. DFTL: A
Flash Translation Layer Employing Demand-Based Selective
Caching of Page-Level Address Mappings. In ASPLOS
(2009).

[19] KAWAGUCHI, A., NISHIOKA, S., AND MOTODA, H. A
Flash-Memory Based File System. In USENIX(1995).

[20] KOLTSIDAS, I., AND VIGLAS, S. Flashing Up the Storage
Layer. In VLDB (2008).

[21] LI, Y., HE, B., 0001, J. Y., LUO, Q., AND YI, K. Tree
Indexing on Solid State Drives. PVLDB 3, 1 (2010).

[22] NATH, S., AND GIBBONS, P. Online Maintenance of Very
Large Random Samples on Flash Storage. In VLDB (2008).

[23] NATH, S., AND KANSAL, A. FlashDB: Dynamic
Self-tuning Database for NAND Flash. In IPSN(2007).

[24] NATIONAL INSTITUTE OF STANDARDS AND
TECHNOLOGY, FIPS 180-1. Secure Hash Standard. U.S.
Department of Commerce, 1995.

[25] PAGH, R., AND RODLER, F. F. Cuckoo hashing. Journal of
Algorithms 51, 2 (May 2004).

[26] ROSENBLUM, M., AND OUSTERHOUT, J. The Design and
Implementation of a Log-Structured File System. ACM
Transactions on Computer Systems 10(1991).

[27] ZEINALIPOUR-YAZTI, D., LIN, S., KALOGERAKI, V.,
GUNOPULOS, D., AND NAJJAR, W. A. Microhash: An
Efficien Index Structure for Flash-based Sensor Devices. In
FAST(2005).

[28] ZHU, B., LI, K., AND PATTERSON, H. Avoiding the Disk
Bottleneck in the Data Domain Deduplication File System.
In FAST(2008).

36

