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Abstract—The prevalence of datasets that can be represented
as networks has recently fueled a great deal of work in the area
of Relational Machine Learning (RML). Due to the statistical
correlations between linked nodes in the network, many RML
methods focus on predicting node features (i.e., labels) using the
network relationships. However, many domains are comprised
of a single, partially-labeled network. Thus, relational versions
of Expectation Maximization (i.e., R-EM), which jointly learn
parameters and infer the missing labels, can outperform methods
that learn parameters from the labeled data and apply them for
inference on the unlabeled nodes. Although R-EM methods can
significantly improve predictive performance in networks that are
densely labeled, they do not achieve the same gains in sparsely
labeled networks and can perform worse than RML methods.

In this work, we show the fixed-point methods that R-EM
uses for approximate learning and inference result in errors
that prevent convergence in sparsely labeled networks. We then
propose two methods that do not experience this problem.
First, we develop a Relational Stochastic EM (R-SEM) method,
which uses stochastic parameters that are not as susceptible
to approximation errors. Then we develop a Relational Data
Augmentation (R-DA) method, which integrates over a range of
stochastic parameter values for inference. R-SEM and R-DA can
use any collective RML algorithm for learning and inference
in partially labeled networks. We analyze their performance
with two RML learners over four real world datasets, and show
that they outperform independent learning, RML and R-EM—
particularly in sparsely labeled networks.

I. INTRODUCTION

As online social and information networks have grown in
popularity, many domains now consist of a set of items (e.g.,
people, websites) connected by relationships (e.g., friendships,
hyperlinks). These relationships typically encode statistical
dependencies, or autocorrelation, between the linked items.
Relational Machine Learning (RML) aims to leverage these
correlations by collectively inferring (i.e., predicting) the at-
tributes of unlabeled items throughout the network [1].

To make predictions, RML methods typically learn a model
from observed network data, then the learned model is applied
to collectively infer the unobserved labels in a network. RML
methods typically utilize a local conditional model to represent
the dependencies of a node’s label with the features of neigh-
boring nodes. Local models, such as Relational Naive Bayes
(RNB) or Relational Logistic Regression (RLR), are combined
with joint inference algorithms (e.g., Gibbs sampling [2] or
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Fig. 1: (a) Partially labeled network. (b) Label Probabilities.

Variational Mean Field (VMF) [3]) to collectively predict
labels (see e.g., [4], [5]).

Many RML methods were developed for across-network
classification, where there is an assumption of separate net-
works for learning and prediction. However, in practice many
datasets are comprised of a single, partially-labeled network
(Figure 1.a). For this type of domain, within-network classifi-
cation methods, such as Relational Expectation Maximization
(R-EM), are more appropriate. R-EM methods jointly infer the
missing labels (Figure 1.b) in the network while estimating
model parameters using a fixed point iterative framework.

R-EM generally outperforms traditional RML on within-
network classification tasks [6], [7]. However, recent work has
reported some problems with collective inference approaches
in scenarios where the network is sparsely labeled ([6], [8]).
More specifically, [6] showed that fixed point parameters
learned through Maximum Composite Likelihood Estimation
(MCLE)1 can create over propagation error when perform-
ing inference in sparsely labeled networks. Although R-EM
methods can significantly improve predictive performance in
networks that are densely labeled, they do not achieve the same
gains in sparsely labeled networks and can perform worse than
RML methods [9]. Since many single-network domains are
sparsely labeled, this presents a significant impediment to the
adoption of relational methods.

In this paper, we investigate this issue in more detail.
First, we introduce the Relational Stochastic EM (R-SEM)
and Relational Data Augmentation (R-DA) approaches for
within-network statistical relational learning (Figure 2). Our
R-SEM method utilizes samples from the joint distribution to

1RML literature generally refers to this as the pseudolikelihood, but
composite likelihood is more accurate due to the sole maximization of labeled
components given their Markov blankets.



Parameters
Predictions

Fixed Point Stochastic
Fixed Point R-EM –
Stochastic R-SEM R-DA

Fig. 2: Comparison of alternatives for incorporating estimates
into within-network learning. We introduce R-SEM and R-DA.

iteratively maximize the MCLE, rather than using approxi-
mations of the expectations as in R-EM. Our R-DA method
moves beyond the fixed point parameters used to make final
predictions in both R-EM and R-SEM, by integrating over the
posterior distribution of parameters for a stochastic estimate.
For R-DA, we provide the corresponding composite likelihood
sampling distributions for the RNB and RLR conditional
distributions. Further, we provide evidence that substituting the
Maximum a Posteriori (MAP) provides a good approximation
for distributions where the posterior cannot be easily sampled.

Next, we demonstrate how the structure of a network
directly impacts the quality of the estimates produced by RML
and R-EM. Namely, we demonstrate how applying fixed point
MCLE parameters for collective inference leads to distribu-
tions of labels that are far from the correct distribution—in
many cases the inferred labels are primarily comprised of
a single class label. First, we show that the samples drawn
from the joint distribution of unlabeled items through Gibbs
sampling do not empirically mix (converge) to the correct
label distribution. Second, we show how the correct inference
solution for VMF can be cast as an equilibrium state of a
Nonlinear Dynamical System. By analyzing the first eigen-
value of the solution vector, we show that for sparsely labeled
networks the inference method might not converge to a stable
solution. Further, even if it does converge to a stable solution,
using the predictions to relearn the parameters through MCLE
(as is done with R-EM) commonly results in widely varying
parameter estimates. Due to these approximation errors, R-EM
is no longer covered by EM’s guarantees (i.e., [10]) and does
not converge.

The contributions of this paper include:
• Introduction of the R-DA and R-SEM within-network

learning methods. In particular, R-DA is a Bayesian
approach that infers over a distribution of parameters,
rather than a fixed point estimate.

• Analysis of the extremums found through Gibbs sampling
and VMF inference using parameters learned by MCLE.

• Demonstration that these extremums interfere with the R-
EM learning and inference algorithm, showing that R-EM
does not converge in sparsely labeled networks.

• Theoretical and empirical motivation for the substitution
of samples from the posterior with the MAP for R-DA.

In the next section we give notation and background. In
Section III we introduce the proposed R-SEM and R-DA
algorithms, and in Section IV we demonstrate that parameters
learned through MCLE during R-EM do not converge. Section
V demonstrates R-DA and R-SEM’s improvement over exist-
ing methods on four real world networks. In Section VI we
discuss further related work and in Section VII we conclude.

II. NOTATION AND BACKGROUND

Define a graph G = 〈V,E〉, where v ∈ V correspond to
vertices and E ⊆ V×V correspond to edges (or relationships)
between the vertices. Let X,Y define the sets of attributes
and labels. Every vi ∈ V has a corresponding set of attributes
xi ∈ X and a class label yi ∈ Y. We divide the vertices into
two disjoint sets: the labeled set L consists of the items where
the labels are known, or observed, and the unlabeled set U ,
where the labels are unknown. Subscripts refer to a subset of
associated items from the full graph (e.g., YL and YU refer
to item labels in the labeled and unlabeled sets, respectively).

The primary goal of within-network relational learning is
to jointly infer the unknown labels of YU given the labeled
data YL, attributes X and network G: P (YU |YL,X, G). This
contrasts with standard machine learning, where the primary
goal is to estimate the parameters ΘC of a model C, which are
then applied to infer future samples.

A general assumption within RML is that a label yi∈Y only
depends on the attributes xi∈X and the direct neighbors in the
graph. Define the Markov Blanket (e.g., neighbors) of a vertex
vi ∈ V: MB(vi) = {vj |(vi, vj) ∈ E}. The corresponding
conditional distribution for yi is then P (yi|Y\i,X, G) =
P (yi|YMB(vi),xi,ΘC), which is a chosen local conditional
model, such as RNB or RLR.

Collective inference algorithms (e.g., Gibbs Sampling or
VMF) iteratively apply the learned local conditional parame-
ters to each unlabeled item to jointly infer the set of unlabeled
examples. For future equations, we omit the X variables as
they are fixed and always conditioned on. Let ΘC indicate the
parameters for a given model C.

From within the frequentist framework, the basic approach
to joint inference would correspond to performing:

Estimate Parameters: Θ̂C = arg max
ΘC

P (YL|ΘC)

Perform Inference: P (YU |YL, Θ̂C)
(1)

The first step estimates parameters by maximizing the likeli-
hood (i.e., MLE) of the observed data. A common approach is
to replace the full likelihood with a corresponding composite
likelihood for efficiency:2

log P (YL|ΘC) ≈
∑

yi∈YL

logP (yi|YMBL(vi),ΘC)

Unlike MLE, Maximum Component Likelihood Estimation
(MCLE) does not compute a partition function over all com-
binations of labels, which makes it tractable [4].

The second step jointly infers the unknown labels in a
frequentist manner, using fixed point parameter estimates.
Bayesian posterior inference would marginalize over the distri-
bution of parameters ΘC given a prior with hyper parameter α:

P (YU |YL, α) =

∫
P (YU |YL,ΘC)P (ΘC |YL, α) dΘC

Since direct computation of this integral is generally hard,
approximations are used by sampling from the posterior dis-
tribution3 of ΘC (i.e., P (ΘC |YL)) and averaging the results.

2Here we use MBL to refer to the Markov blanket in the labeled set.
3α is dropped for clarity; it always defines the ΘC prior.



Algorithm 1 LearningFromIncompleteData(Wobs,Wmis, C)

1: Θ̃0
C = InitialParameters(Wobs, C)

2: while More Iterations or Not Converged do
3: # The E/I Step, then the M/P Step
4: P̃ t(Wmis) = IterativeAssignment(Wobs, C, Θ̃t−1

C )
5: Θ̃t

C = IterativeParameters(Wobs, P̃
t(Wmis), C)

6: Θ̂C = FinalizeParameters(Wobs, P̃
1,...,T (Wmis), Θ̃

0,...,T
C , C)

7: P̂ (Wmis) = FinalizeInference(Wobs, P̃
1,...,T (Wmis), Θ̂C , C)

A. General Learning from Incomplete Data

For many problem domains, accurate estimation of a set of
parameters ΘC can be difficult when given a set of partially
observed data Wobs. In these cases, incorporating latent
variables into the model (representing the unobserved data
Wmis) can improve MLE or posterior estimates of ΘC .

For domains with unknown latent variables, a general class
of methods learn by iteratively evaluating both the latent
variables Wobs and parameters ΘC . Both the deterministic
Expectation Maximization (EM) method [10] and the Bayesian
Data Augmentation (DA) method [11] are examples of meth-
ods in this class. Algorithm 1 gives an overview of the general
approach for a classifier C.

The algorithm begins by assigning initial values to the
parameters (Line 1). This assignment can be random or
possibly something more clever if allowed by the domain.
Lines 2-5 are the heart of the algorithm, which alternates
between inferring the latent variables P̃ t(Wmis) (Line 4)
and estimating parameters Θ̃t

C (Line 5). This continues until
convergence or for a fixed number of iterations (denoted T ).
Lastly, using the set of parameter estimates and latent variable
evaluations from the iterations, the algorithm produces final
estimates Θ̂C and inferences P̂ (Wmis) (Lines 6-7).

Expectation Maximization: The EM method is an iterative,
deterministic method for learning with missing data [10].
Algorithm 1 decribes EM with the following specifications:

E-Step (Line 4): evaluate P̃ t(Wmis|Wobs, Θ̃
t−1
C )

M-Step (Line 5): maximize for Θ̃t
C

arg max
ΘC

∑
Wmis

P̃ (Wmis|Wobs, Θ̃
t−1
C ) logP (Wobs,W

t−1
mis|ΘC)

That is, each iteration first computes the expected values of
the missing data, then maximizes the expected log likelihood
(over the missing data). Each step maximizes a lower bound
of the log likelihood and converges to a local maximum
[12]. The estimated Θ̂C is the final maximization of Θ̃C
(Line 6) and Ŵmis is finally inferred (Line 7) with Θ̂C (i.e.,
P (Wmis|Wobs, Θ̂C)).

For many domains, the ‘E’-Step is intractable to compute
exactly and various approximate inference techniques exist
(e.g., [13], [14]). For example, the Stochastic EM (SEM)
algorithm replaces the ‘E’ step with a sample from the
conditional distribution P (Wmis|Wobs, Θ̃

t
C) [13]. Further,

averaging over the collection of intermediate parameters can
reduce the variance of the final parameter estimates. Note that

approximations to the ‘E’ and ‘M’ steps do not necessarily
carry the same convergence guarantees as the original EM.

Data Augmentation: The DA method is a stochastic Markov
Chain Monte Carlo (MCMC) method for computing the joint
posterior distributions of ΘC and Wmis [11]. Algorithm 1
also describes DA, but instead of the deterministic ‘E’ and
‘M’, DA has stochastic Imputation (I) and Posterior (P) steps
in its specification:

I-Step (Line 4): sample W̃t
mis ∼ P (Wmis|Wobs, Θ̃

t−1
C )

P-Step (Line 5): sample Θ̃t
C ∼ P (ΘC |Wobs,W̃

t
mis)

The iterative sampling process forms two correlated Markov
Chains from the posterior distributions of P (ΘC |Wobs) and
P (Wmis|Wobs). DA can be viewed as a special case of the
Gibbs sampler [2] in that both missing data and parameters
are jointly sampled. As the samples are drawn from the
joint distribution of unlabeled data and parameters, the final
Maximum a Posteriori (MAP) estimates/inferences are:

Parameters (Line 6) Variables (Line 7)

Θ̂C ≈
1

T

∑
t

Θ̃t
C P̂ (Wmis) ≈

1

T

∑
t

P̃ t(Wmis)

B. Relational Expectation Maximization

The R-EM method is an application of EM to network
domains [9]. In this case, the observed variables Wobs are
the label YL and attributes X, while the missing data Wmis

are the unlabeled YU . The ‘E’-Step in Line 4 involves
collective (i.e., joint) inference for P̃ t(YU |YL, Θ̃

t−1
C ), which

is intractable to compute exactly. Thus, the expectations are
approximated using Gibbs sampling or VMF.

The form of the local conditional distribution (e.g., RNB or
RLR) specifies the parameters ΘC . For tractable estimation, R-
EM uses MCLE rather than MLE for the ‘M’-step, by assum-
ing conditional independence of the unlabeled components:

R-M-Step (Line 5): maximize Θ̃t
C

arg max
ΘC

∑
YU

∏
yi∈YU

P̃ t(yi|Ỹ\i, Θ̃t−1
C )

∑
yj∈YL

logP (yj |ỸMB(vj),ΘC)

(2)

To produce final parameter estimates Θ̂C (e.g., for RNB
or RLR) on Line 6, R-EM simply performs one additional
learning step (e.g., Θ̂C = Θ̃T

C ). Lastly, R-EM performs
one final round of collective inference with Θ̂C to produce
P̂ (YU ) = P (YU |YL, Θ̂C) (Line 7).

III. THE RELATIONAL STOCHASTIC EM AND
RELATIONAL DATA AUGMENTATION METHODS

The R-EM method described above can be viewed as a
series of iterative fixed point updates that incorporate YU

into the learning process. Due to the complexity of real world
networks, algorithms must use approximations for both the ‘E’
and ‘M’ steps. As a result, errors with either approximation can
interfere with REM’s fixed point estimates, which does occur
in practice. Section IV explores this issue in more detail.

In this work, we propose two stochastic methods for within
network learning and inference instead of using fixed point



estimates: (1) Relational Stochastic EM (R-SEM) and (2) Re-
lational Data Augmentation (R-DA). The differences between
our proposed methods and conventional R-EM are shown in
Table 2. Our proposed R-SEM method utilizes a fixed point
Θ̂C similar to R-EM to perform a final round of inference.
But, R-SEM learns the parameters Θ̂C by aggregating over a
range of probable values, which reduces parameter estimation
error compared to R-EM. Our proposed R-DA method does
not use fixed point estimates when inferring P̂ (YU ). Instead,
R-DA performs inference by marginalizing over a distribution
of parameters ΘC , which makes it more robust than utilizing
a single, fixed point estimate.

A. Relational Stochastic EM

Our first proposed method, R-SEM, is a stochastic version
of the standard R-EM method, where the ‘E’-Step from R-EM
is replaced with a stochastic ‘SE’-Step:

SE-Step (Line 4): sample ỸU ∼ P̃ t(YU |YL, Θ̃
t−1
C )

(i.e.) sample ỹj ∼ P (yj |ỸMB(vj),Θ
i−1
C ) ∀ yj ∈ YU

M-Step (Line 5): maximize Θ̃
t
C

arg max
ΘC

∑
yj∈YL

logP (yj |ỸMB(vj),ΘC)

(3)

For the SE-Step, we draw each ỹj according to the local
conditional distribution (e.g., RNB or RLR) and utilize ỹj
for subsequent local samples or learning. By sampling across
all yj ∈ YU , the corresponding set of samples represents
a collective sample from the joint distribution. The M-Step
maximizes the parameters Θ̃C for the local conditionals. This
produces a key difference between R-SEM and R-EM. R-SEM
utilizes a collective sample ỸU for MCLE estimation, while
R-EM assumes conditional independence of the expectations
for the unlabeled YU (Equation 2). Thus, R-SEM maximizes
the parameters using the joint sample, unlike R-EM.

As suggested by [13], rather than using a single Θ̃T
C as our

final estimate we average the set of parameters learned over
all iterations and the final parameters are used for inference:

Parameters (Line 6) Variables (Line 7)

Θ̂C ≈
1

T

∑
t

Θ̃t
C evaluate: P̂ (YU |YL, Θ̂C) (4)

Thus, as indicated in Table 2, R-SEM utilizes an aggregated
parameter estimate, but inference is a fixed point operation.

B. Relational Data Augmentation

Our proposed R-DA marginalizes over a distribution of
parameters for the local conditional (RNB or RLR) rather
than using fixed point estimates. In particular, R-DA iteratively
samples from the conditional distributions of both labels and
parameters:

I-Step: (Line 4): sample Ỹt
U ∼ P̃ t(YU |YL,Θ

t−1
C )

(i.e.) sample ỹj ∼ P̃ t(yj |ỸMB(vj),Θ
t−1
C ) ∀ yj ∈ YU

P-Step: (Line 5): sample Θ̃t
C ∼ P (ΘC|YL, Ỹ

t
U )

(5)

The I-Step repeatedly draws from the local conditionals
(RNB or RLR), while the P-Step samples from the posterior
distribution of local conditional parameters Θ̃C . The resulting

draws are from the joint distribution of labels and parameters,
forming two intertwined Markov Chains [11]. Importantly, the
samples for each are drawn from their corresponding marginal
distributions. Thus, the MAP estimate is:

Parameters (Line 6) Variables (Line 7)

Θ̂C ≈
1

T

T∑
t=1

Θ̃t
C P̂ (YU ) ≈ 1

T

T∑
i=1

P̃ t(YU ) (6)

In contrast with R-EM and R-SEM, R-DA inferences are
averages over the prior samples Ỹ1,...,T

U rather than fixed point
inferences based on Θ̂C . These samples are from the distribu-
tion P (YU |YL) that marginalizes over ΘC , thus inference in
no longer dependent on a single fixed point estimate.

Another important distinction exists between the R-SEM
and R-DA parameter estimates. R-DA averages over the sam-
pled parameters that are drawn from the marginal probability
distributions over the iterations, while R-SEM averages over
the maximized parameters Θ̃1,...,T

C in order to reduce the
variance of a fixed point estimate. This reflects the difference
between the frequentist and Bayesian point of view, where
frequentists average fixed point estimates to reduce error due
to variance in the data and Bayesians view the parameters
themselves as random variables that have uncertainty. Thus,
despite the apparent similarity in estimation equations, they
reflect contrasting viewpoints.

Lastly, the current representation for the full joint posterior
of ΘC is intractable due to the complexity of computing the
full likelihood. Thus, we substitute the composite likelihood:

Composite P-Step:

sample Θ̃t
C ∼ P (ΘC|YL, Ỹ

t
U ) ∝∼

∏
yi∈YL

P (yi|Ỹt
MB(vj),ΘC)P (ΘC)

This replaces the update on Line 5.

C. Composite Parameter Posteriors and MAP Approximation

In this subsection, we illustrate the simplicity of using
the composite posteriors for the local conditionals RNB and
RLR within R-DA and R-SEM. We begin by discussing the
sampling process from the local parameter posteriors for DA
(Composite P-Step). For many local conditional forms, such
as RNB, selecting the corresponding conjugate prior results
in a closed form posterior distribution. For local conditionals
such as RLR there is no conjugate prior, but we can use
methods such as Metropolis-Hastings (e.g., [15]) to sample.
Lastly, we’ll discuss theoretical motivations for allowing a
replacement of a sample with the MAP estimate for R-DA.
This allows virtually all existing relational learning conditional
distributions to be incorporated into R-DA. This maximization
is similar to the ‘M’-Step for R-SEM; however, R-DA remains
distinct from R-SEM as R-DA samples from the posterior of
YU . As a reminder, each of these methods also condition over
the attributes; however, we continue to omit their notation to
reduce clutter.

Composite Relational Naive Bayes: We next give an example
of the composite posterior corresponding with the RNB [4]



local conditional distribution. For this example, we begin by
assuming the labels are binary {0, 1} and let θ indicate the
parameter corresponding with P (yj |yi = 1, θ): that is, the
conditional distribution of the neighboring label corresponding
with the observed label being yi = 1. The RNB composite
likelihood term when yi=1 is:

P (yi=1|Ỹt
MB(vi),ΘRNB) ∝ P (yi=1)

∏
ỹtj∈Ỹ

t
MB(vi)

P (ỹtj |yi=1, θ)

We must estimate the posterior distribution of θ (Line
4 and corresponding Equation 5): as a reminder, α is the
associated hyper parameter which defines the prior distribution
of θ. As the labels are Bernoulli, the corresponding conjugate
prior distribution for P (θ|α) is the Beta(α1, α2) distribution.
The posterior of θ is not dependent on either a) the prior
P (y = 1) or b) the attribute conditionals P (x|y = 1). Thus,
the corresponding posterior θ for a single datapoint is:

P (θ|yi, Ỹt
MB(vi)

, α) ∝P (θ|α)
∏

ỹt
j
∈ỸtMB(vi)

P (ỹ
t
j |yi=1, θ)

=θ
α1−1

(1− θ)α2−1
∏

ỹt
j
∈ỸtMB(vi)

θ
ỹtj (1− θ)1−ỹtj

=θ
α1+

∑
ỹtj−1

(1− θ)α2+
∑

(1−ỹtj)−1

meaning that the posterior again follows a Beta distribution.
The corresponding posterior for θ on the full data Ỹt is:

P (θ|Ỹt, α) ∝ θα1+
∑
yi
∑
ỹtj−1(1− θ)α2+

∑
yi
∑

(1−ỹtj)−1

which also follows a Beta distribution. Thus, after sampling
variables for YU in the I-step, we sample from the posterior θ
of the relational parameters using the above. A slight general-
ization would be to use a multinomial distribution, rather than
Bernoulli, with the corresponding Dirichlet conjugate prior.

Composite Relational Logistic Regression: In this subsec-
tion, we give an example of the corresponding composite
posterior corresponding to the RLR [5] local conditional
distribution. Let Ri0 =

∑
ỹtj∈ỸMB(vi)

(1 − ỹtj) and Ri1 =∑
ỹtj∈ỸMB(vi)

(ỹtj). The composite likelihood is:

P (yi|ỸMB(vi)
,ΘRLR)=

(
1

1+e−(θ0R
i
0+θ1R

i
1)

)yi e−(θ0R
i
0+θ1R

i
1)

1+e−(θ0R
i
0+θ1R

i
1)

1−yi

RLR does not have a conjugate prior, so we instead set
the prior distribution to be a Normal with mean µ = 0 and
variance σ2 (the hyper parameters α). Thus, the full composite
posterior for Θ over the labeled components becomes:

P (ΘRLR|Ỹt, σ2) ∝ g(ΘRLR|σ2)

=
∏

yi∈YL

(
1

1+e−(θ0R
i
0+θ1R

i
1)

)yi(
e−(θ0R

i
0+θ1R

i
1)

1+e−(θ0R
i
0+θ1R

i
1)

)1−yi∏
θ∈Θ

N (θ|0, σ2)

This posterior does not have a closed form solution like the
RNB methods did. Hence, we must utilize alternative sampling
algorithms, such as Metropolis-Hastings [15]. In this example,
let Θ̃t

RLR be the current assignment of the sampled parameters.
Generate a candidate Θ̃′RLR ∼ Θ̃t

RLR + N (0, σ2). Let U ∼
Uniform(0, 1). The next iteration of Θ̃t+1

RLR is:

Algorithm 2 RelationalDataAugmentation(Yobs,Ymis, C)

1: Θ̃0
C = MaximizeMCLE MAP(Yobs, C)

2: while More Iterations do
3: # I Step, then P Step
4: Ỹmis = SampleLabels(Yobs, C, Θ̃t−1

C )
5: Θ̃t

C = MaximizeMCLE MAP(Yobs, Ỹmis, C)
6: Θ̂C = AverageParameters(Θ̃0,...,T

C )
7: P̂ (Ymis) = AverageSamples(Ỹ1,...,T

mis )

Θ̃t+1
RLR =

{
Θ̃′RLR if U < min

(
g(Θ̃′RLR|σ

2)

g(Θ̃t
RLR

|σ2)
, 1
)

Θ̃t
RLR otherwise

In this example we have used Normal priors over the param-
eters, which is equivalent to a L2-regularization.

MAP Substitution: In [16], the authors note that
P (YU |YL) = P (YU |θ̂,YL)(1 +O(n−1)), meaning that the
distribution of the unlabeled data given the MAP is a close
approximation to the posterior distribution. This motivated
them to introduce the ‘Poor Man’s Data Augmentation’, in
order to estimate the probability of the posterior parameters
by maximizing the MAP and sampling multiple times. In this
work, we wish to take advantage of that approximation in a
different way: that is, we replace the composite P-Step with
the maximization of the local parameters (for, e.g., RNB or
RLR) instead of a sample:

MaxComposite P-Step: maximize Θ̃t
C

arg max
ΘC

∏
vj∈YL

P (yj |ỸMB(vj),ΘC)P (ΘC) (7)

Our motivation for this is the abundance of previous work
on relational algorithms which may require significant work
to be transferrable to the Bayesian framework (e.g., choice
of proposal distribution). Prior work which focuses on the
maximization includes the Relational Generative Models (e.g.,
RNB) [1], Relational Logistic Regression [5] and others (e.g.,
[4], [17]). By utilizing this MAP approximation step, we can
directly apply each of these respective local learners without
the overhead of determining the acceptance steps. Further, we
effectively learn a distribution of maximizations to apply for
inference, rather than a fixed point estimate. Thus, we again
avoid any instabilities that could result from a single fixed
point parameter estimate. The I-Step will not change, and our
inference is still performed by aggregating the samples from
the marginal distribution (i.e., Equation 6).

In Algorithm 2, we give just our R-DA algorithm. The algo-
rithm begins by determining initial MAP parameters (Line 1).
The algorithm then alternates between sampling from the
posterior distribution of labels (Line 4) and maximizing the
MCLE MAP (Line 5) until the desired number of iterations
are performed. Lastly, on Line 6 we average the previously
sampled parameters, and on Line 7 we average the previously
sampled labels to recover our predictions. Note that in most
domains, the actual parameters are unnecessary to know as we
simply desire the final predictions.
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IV. FIXED POINT LEARNING ERROR AND
ITS EFFECT ON R-EM

In this section, we discuss the learning error of MCLE using
the corresponding Gibbs sampling and Variational Mean Field
inference methods in relational networks. In particular, we
find that the parameter estimates create equilibriums that are
far from the true label distribution. These effects compound
themselves during R-EM, with the parameter estimates failing
to converge for sparsely labeled networks. Out analysis is with
respect to a single, fixed point iteration method with respect
to a single set of parameters being learned (or iteratively up-
dated). For space, we primarily give results here utilizing the
RLR conditional; however, we will also show the parameters
of RNB do not converge.

A. Empirical Convergence of Gibbs Sampling

The Gibbs sampler is a theoretically guaranteed MCMC
method to sample from the joint distribution of a set of
(possibly correlated) variables [2]. For relational inference,
this corresponds to repeatedly sampling from the condi-
tional distributions of the unlabeled items: i.e., ỹmi ∼
Pm(yi|ỸMB(vi),ΘC) ∀ yi ∈ YU . The samples correspond
to draws from the joint distribution and the MAP inference is
performed by averaging: i.e., ỹti = 1

M

∑
m ỹ

m
i .

In the R-EM framework, this corresponds to Line 4 of
Algorithm 1. As our state space is finite, when the probabilities
for all vertices and labels is nonzero the chain is ergodic,
meaning it will sample from the states in a finite number
of steps [18]. However, the mixing rate, or time it takes
to converge, can be greatly affected by the correlation of
variables [19]. As an example, we present a simple bivariate
normal in Figure 3.a, where the variables X1 and X2 are
highly correlated. In this example, we draw 100 samples
independently from the bivariate normal, which we compare
with 100 samples drawn utilizing a Gibbs sampler. When
trapped in an extremum, the high correlation limits the Gibbs
sampler (red) to only a small portion of the space.

When performing Gibbs sampling for relational networks,
we find a similar problem exists when the parameters are
learned from varying amounts of labeled data. Figure 3.b
shows the number of positives and negatives recorded per
iteration of Gibbs sampling using the RLR conditional dis-
tribution. In particular, we show five different trials for each

local conditional distribution, with different randomly assigned
labeled values for learning. For each trial, we label 10% of
the Facebook network to learn from (dataset discussed in
Section V-A) and report results over 1000 iterations over the
unlabeled data. Our analysis shows that for each trial, the
Gibbs sampling iterations give different results for the number
of positives and negatives existing. Of the 10 trials for RLR, no
trial gives a reasonable coverage of the space, with sampling
from each set of parameters converging to a single (incorrect)
point. Although 1000 iterations seems moderate, recall that
each iteration involves sampling from over 5000 conditional
distributions, resulting in over 5,000,000 total samples drawn.
Thus, the parameters learned from the sparsely labeled set
create highly correlated estimates of the unlabeled vertices.
This results in the Gibbs sampler converging to an incorrect
fixed point estimate without fully exploring the label space.

B. Empirical Stability of Variational Mean Field

As the theoretically correct Gibbs sampler fails to efficiently
search the space, we next analyze the Variational Mean Field
(VMF) inference approximation [3]. VMF approximates the
full joint distribution of ỸU through the approximating dis-
tribution Q(ỸU ) =

∏
yi∈ỸU

Q(yi). Each component Q(yi) is
iteratively updated in a coordinate ascent algorithm:

Q(yi) =
1

ZQ(i)

exp
{
EYU\i∼Q[log f(yi|ỸMB(vi)

Θ̃C)]
}

(8)

where f(·) is the unnormalized energy function and ZQ(i) is
the partition function for the local Q(yi) conditional. VMF
is guaranteed to converge to a fixed point equilibrium [20];
thus, VMF inference can be cast as a Nonlinear Dynamical
System (NLDS). A useful theorem exists about the stability of
a NLDS system at an equilibrium:

Theorem 1: [Asymptotic Stability ([21])] The system given
by P∗ = Q(P∗) is asymptotically stable at an equilibrium
point P∗ = ỹ if the eigenvalues of the Jacobian J = OQ(ỹ)

are less than 1 in absolute value, where: Ji,j = ∂ Q(yi)
∂ Q(yj)

.

Hence, given a set of labeled data YL and unlabeled vertices
YU to infer, we can determine whether or not the system will
stay in an equilibrium P∗ using the partial derivatives of the
VMF update in Equation 8. In particular, the labeled data is a
fixed value (1 or 0, depending on the state and label), meaning
partial derivatives with respect to all other variables is 0. The
corresponding Jacobian matrix J is:



J =
YU YL

YU JU×U JU×L
YL JL×U JL×L

=
YU YL

YU JU×U 0
YL 0 0

where JU×L = 0 as the corresponding rows JL are 0
(they do not affect the maximal eigenvalue [21]). Thus, we
need only evaluate the partial derivatives of the unlabeled
Q(yi) conditionals (with learned parameterization Θ̂C) at the
stationary convergence equilibrium P∗. Solutions for the RNB
and RLR partials can be found in Appendix A.

In Figure 3.c, we evaluate the eigenvalues at the converged
P∗ for four datasets. For this starting example, we use a single
fixed parameter estimate (i.e., Θ̃0

C) and perform inference with
respect to those parameters. This corresponds to traditional
RML, without performing R-EM (i.e., the inferences are not
used to relearn). In general, the eigenvalues reach a fairly
stable state, with the average eigenvalues largely being at or
below the 1 threshold. However, for some cases of RLR it
is clear the achieved equilibriums are not necessarily stable,
meaning small perturbations during inference could have a
large effect on P∗.

C. MCLE Error on R-EM

In this section we study the empirical error produced by
the R-EM algorithm. In particular, we analyze whether the
algorithm ever converges (in practice) to a stationary point,
whether using Gibbs sampling or VMF.

We first analyze the convergence of R-EM utilizing Gibbs
sampling for inference. For the RLR relational classifier, we
analyze the Facebook network for convergence (Section V).
The networks are initially assigned 10% of the data labeled:
the rest is unlabeled and must be inferred. The model is then
utilized to compute the expectations of the unlabeled instances
utilizing the Gibbs sampler and the process is repeated. We
allow each method 100,000 passes over the unlabeled data
for performing the Gibbs sampling, with maximizations per-
formed every 1000 passes.

We show results in Figure 4, with Figure 4.a containing
the learned relational conditional distributions for RLR. The
scatterplots illustrate the learning parameters after each ‘M’-
Step; we observe that they follow a periodic behavior. That is,
for example, in Figure 4.a when a learned state corresponds
to the bottom left state, the next maximization will result in
parameters from the upper right state. This occurs despite
the initial parameter estimates beginning in a less extreme
portion of the parameter space; even though each method has
(potentially) started near a good solution, the estimates quickly
degrade. Figure 4.b demonstrates that even over 100,000
passes of the data, the estimates of Θ̂ never converge (we
plot both the weight variance for RLR and the neighboring
conditionals’ variance for RNB).

The Variational R-EM approach allows us to draw a more
general conclusion regarding the convergence R-EM. Let JW
be the within-iteration Jacobian, where first the parameters Θ̃t

C
are learned; then we estimate P∗ using the parameters. As
an alternative, let J C be the cross-iteration Jacobian matrix.
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For J C , we use the equilibrium P∗ to learn a new set of
parameters (Θ̃t+1

C ). We then define J C using P∗ and Θ̃t+1
C .

Corollary 1: [Parameter Convergence] If the first eigen-
value λW1 of JW is less than 1 in absolute value, and the
parameters Θ̃t

C = Θ̃C
t+1

, then the first eigenvalue λC1 of J C
is less than 1 in absolute value.

This is a consequence of Equation 8 having equivalence for
Θ̃t
C and Θ̃t+1

C , and J comprising the partial derivatives with
respect to Equation 8. This is easily seen as a consequence
of JW = J C when Θ̃t

C = Θ̃t+1
C . In Figure 5a-b, we plot

the λW1 and λC1 within R-EM. Note that the within-iteration
eigenvalue is small, and usually indicates a stable convergence
to P∗. However, λC1 in Figure 5.b is exceptionally large for
small amounts of labeled data. Thus, we conclude that the
parameters have not reached a stable equilibrium (even after
100 iterations). For each dataset, when using both RLR and
RNB (not shown for space), R-EM does not converge prior to
the 20% labeled data mark. This is an extreme limitation to
the method as most partially labeled datasets have few labels.

V. EXPERIMENTS

In this section, we compare our R-SEM and R-DA frame-
works against the existing R-EM within-network relational
learning approach. We test each method on four large, real
world datasets, and compare against independent and collec-
tive inference methods based on two local conditional imple-
mentations (RNB and RLR) combined with Gibbs sampling.4

A. Datasets

We compare each of the above methods on four datasets.
The full statistics for the datasets are compiled in Table I.

4Implementation can be found at: http://nld.cs.purdue.edu/ .

http://nld.cs.purdue.edu/


Dataset Nv Ne W ρ P (+)

Facebook 5,906 73,374 2 0.174 0.320
IMDB 11,280 426,167 37 0.207 0.494
DVD 16,118 75,596 28 0.177 0.510
Music 56,891 272,544 26 0.114 0.491

TABLE I: From left: dataset, number vertices, number edges,
number attributes, label correlation across edges, positive prior.

When possible, we set thresholding for the labels such that
the label set is closely balanced, to keep skew from impacting
our error measurements.

Facebook: This is a snapshot of the Purdue University
Facebook network. We use the users’ Political views as the
label, with Religious Views and Gender as attributes.

IMDB: This is the IMDB dataset (www.imdb.com), where
we predict whether a movie is successful. We discretize the
label by assigning the value 1 if the gross receipts were greater
than $300 million. For features, we use the genres and average
user ratings, which gives a total of 37 features. Edges in the
network represent when two moves share a producer.

DVD: This is the Amazon copurchase network compiled
by [22], but we only select the DVD items. This allows us to
incorporate 24 genres of movies as features in addition to the
1 through 5 star ratings for a total of 28 features. The label we
predict is whether the item is a top seller. We use the provided
sales rank and set the top seller threshold at 20000.

Music: This is the Amazon copurchase network compiled
by [22], but we only select the Music items. This allows us to
incorporate 22 styles of music as features. We keep our user
rating features which gives us 26 features total, and also set
our sales rank threshold at 65000.

B. Methods Compared

We test the RNB and RLR conditionals with six differ-
ent learning and representations, ranging from independent
learning and inference to the proposed R-DA. The collective
approaches are allowed a total of 1000 iterations of Gibbs
sampling over the unlabeled dataset, regardless of the method,
allowing us to directly compare their relative performance on
the same number of iterations over the data. The parameters
in the RNB formulation have a Beta(α1 = α2 = .5) prior;
the parameters in the RLR formulation have a N (0, 1) prior.
Each uses the MAP approximation and we use LibLinear [23]
for optimization. Each method can be viewed as different
implementations of various lines in Algorithm 1—we mention
each specifically.

Ind (NB and LR): (Lines 6 & 7, Equation 1). This method
uses just the attribute components of the data, and ignores the
relational components.

Rel (IND) (RNB and RLR): (Lines 6 & 7, Equation 1).
This method estimates from the observed attributes and rela-
tional components. These estimates are applied on the remain-
ing data. It does not utilize the unlabeled data when learning,
and does not perform collective inference.

Rel (CI) (RNB and RLR): (Lines 6 & 7, Equation 1). This
method estimates from the observed attributes and relational
components. These estimates are applied on the remaining

data. It does not utilize the unlabeled data when learning, but
does perform collective inference.

R-EM (RNB and RLR): (Lines 1–7, Equation 2). This
is the fixed point estimation method of [9], and is the first
iterative method. The method begins by computing the expec-
tations of the unlabeled data, then utilizes these to maximize
the full data likelihood. We allow 10 iterations of the full EM
loop, with 100 iterations of Gibbs sampling each EM iteration.
As EM can have extreme variance, we average in 10 and 11
iterations to give the expected error.

R-SEM (RNB and RLR): (Lines 1–7). This is the first
of our proposed methods. We allow 900 iterations of R-SEM
(Equation 3) and averages over the intermediate parameters are
used for the final parameters. This final parameter set is used
for a final round of collective inference using an additional
100 iterations of Gibbs sampling (Equation 4).

R-DA (RNB and RLR): (Lines 1–7, Equation 3). This is
the second of our proposed methods. We allow R-DA 1000
iterations of Gibbs sampling (Equation 5), and utilize the
MAP approximation to the parameters between each iteration
(Equation 7). We perform the final inference by aggregating
over the intermediate Gibbs samples (Equation 6).

C. Methodology

We compare each method on each dataset. For each per-
centage of labeled information a random subset was selected
from the respective networks and used for learning/inference.
All methods are given the same starting set for each of the 25
recorded trials (10 for the larger Music dataset). For error, we
measure the Mean Absolute Error (MAE) and the 0-1 Loss.
Standard error bars are plotted but small (i.e., < .01).

D. Results

In Figure 6 we report error results when applying the meth-
ods, each using the RNB conditional distribution. Note that
R-DA is equal or better than all competitors across all label
percentages, regardless of the error measure used. Importantly,
R-DA exceeds previous methods with small percentages of
labeled data. It is important to notice the previous R-EM
suffers for small amounts of labeled data in comparison to
relational RNB which does not perform collective inference.
This is due to the unstable collective inference impacting the
learned parameters of R-EM. Not surprisingly, NB performs
well with small amounts of information but never improves.

In Figure 7 we report the RLR conditional distribution
error results. In each dataset R-DA outperforms or equals
the corresponding R-EM collective inference algorithm, par-
ticularly when fewer labels are available. In these examples,
the RLR without collective inference performs competitively
with R-DA on the denser datasets, even outperforming R-DA
on IMDB. However, this is not generally the case—for most
datasets R-DA largely outperforms the independent relational
method. Our experiments demonstrate R-DA’s ability to com-
pete and outperform competing methods, across a variety of
datasets and label percentages.
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Fig. 6: RNB Conditionals. We show the MAE and 0/1 Loss on a) Facebook, b) IMDB, c) DVD and d) Music.
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Fig. 7: RLR Conditionals. We show the MAE and 0/1 Loss on a) Facebook, b) IMDB, c) DVD and d) Music.
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Fig. 8: For the RLR conditional, (a) the within iteration eigen-
values for SEM and (b) the SEM cross iteration eigenvalues.

As a final note, we see that R-SEM outperforms R-EM
across all datasets and performs nearly as well as R-DA in
many cases, despite being a fixed point estimate. However,
we cannot always use the inferences that result from R-SEM
for additional fixed point estimations. This is shown in Figure
8 for the RLR conditional, where the Facebook network has
low within iteration Jacobian eigenvalues but still has high
cross iteration eigenvalues. Thus, even with largely correct
inferences MCLE can still learn unstable parameters.

VI. DISCUSSION AND FURTHER RELATED WORK

Our proposed R-SEM and R-DA tie several research ar-
eas together. First, we demonstrated that the approximations
necessary for tractable learning and inference substantially
interfere with the guarantees provided by EM [10]. However,
by utilizing a distribution of maximizations, R-SEM is able
to find a reasonable fixed point in the parameter space which
results in empirically stable inference. We further improve on
the R-SEM implementation and remove the fixed point infer-
ence process, introducing the Bayesian R-DA method. These
methods facilitate the application of RML techniques (e.g., [1],
[4]) to make predictions over entire networks from minimal
amounts of label data using collective inference—improving
on independent inference, despite using approximations for
scalable learning (e.g., the component likelihood).

Collective Inference (CI) error for sparsely labeled datasets
has been noted before, although we carry out the first empirical
analysis of the Gibbs mixing rate and Variational Inference
stability when parameters are learned through MCLE. Our
methods fit easily within current Cautious Collective Inference



(CCI) methods [8]; these methods only utilize inferred labels
with high confidence during CI to overcome the possible
error in the parameter estimates. R-SEM and R-DA provide
better confidence estimates for these methods to use during
CCI. Specialized conditionals, as proposed by [24], place
more weight on the attributes of neighboring instances to
improve CI. By weighting the attributes more heavily, these
conditionals implicitly stabilize the inference process. R-SEM
and R-DA can again improve these methods by incorporat-
ing the unlabeled data into the conditionals’ learning, while
maintaining their implicit stability.

The Gibbs mixing and VMF inference stability creates
connections to other areas of Statistical Network Analysis,
notably virus propagation. The stability analysis of VMF
was partially motivated by the work of [21], which showed
common virus propagation models can be tied to the stability
of the network and the maximal eigenvalue. Our R-DA model
can be tied to Ensemble Methods [25]. In particular, as each
fixed point MCLE step has error, R-DA takes an ensemble
of estimates over the missing data for inference. Although
each individual value may only be weakly correlated with
the correct solution, the aggregation over these methods can
produce a good solution.

VII. CONCLUSIONS

In this work we introduced the R-DA method for within-
network relational learning and inference. We began with an
analysis of the fixed point relational inference methods in
conjunction with MCLE learning methods. In particular, we
demonstrated that Gibbs sampling and VMF inference are
inaccurate when the parameters are learned through MCLE,
and that these errors interfere with R-EM’s convergence. By
introducing the R-SEM method, we were able to learn fixed
point parameter estimates with a reasonable inference solution.
R-DA further extends this idea and removes fixed point
inference, replacing it with a distribution of inferences. We
demonstrated that R-DA significantly outperforms competing
methods when utilized in conjunction with multiple learning
algorithms. Most importantly, R-DA improves prediction in
sparsely labeled networks, an important practical application
where RML techniques have traditional struggled.

This work implicates multiple avenues for future work.
A central finding is the ties between relational inference
and the maximal eigenvalue of the inference solution. By
selectively labeling items that reduce the maximal eigenvalue,
network active learning could improve estimates through the
creation of a more stable inference task. Algorithms such as
cautious collective inference can utilize the improved estimates
to further improve their own methods. Lastly, analyzing the
extremums that result from MCLE estimation can hopefully
motivate new, stable learning methods.
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APPENDIX A
Let h(yi|yj) = exp

{
EỸU∼Q[log f(yi|yj , ỸMB(vi)\j)]

}
.

The partials for Jij are:

∂ Q(yi)

∂ Q(yj)
=
φ(yi, yj)h(yi|yj)ZQ(i) − h(yi|yj)

∑
y′∈Y φ(y, yj)h(y|yj)

Z2
Q(i)

where φ(y, yj)=logP (yj |y) (RNB) or φ(y, yj)=θy (RLR).
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