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ABSTRACT

Conversational speech recognition has served as a flagship
speech recognition task since the release of the DARPA
Switchboard corpus in the 1990s. In this paper, we measure
the human error rate on the widely used NIST 2000 test set,
and find that our latest automated system has reached human
parity. The error rate of professional transcriptionists is 5.9%
for the Switchboard portion of the data, in which newly ac-
quainted pairs of people discuss an assigned topic, and 11.3%

collections of the 1990s and early 2000s provide what is to
date the largest and best studied of the conversational corpora.
The history of work in this area includes key contributions
by institutions such as IBM [12], BBN [13]], SRI [14]], AT&T
[15]], LIMSI [16]], Cambridge University [17], Microsoft [18]]
and numerous others.

In the past, human performance on this task has been
widely cited as being 4% [19]. However, the error rate es-
timate in [19] is attributed to a “personal communication,”
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Human Parity in Conversational Speech
Recognition

* What is Human Parity?
e Humans make mistakes, too. Can ASR make fewer?

* Conversational Speech Recognition
 Humans talking in unplanned way
* Focus on each other, not on a computer

* The result of thirty years of progress
 DARPA / US Government programs

* Conversational Speech Recognition is the latest in a series of increasingly
difficult tasks.



Significance: History

WORD ERROR RATE

DARPA Speech Recognition Benchmark Tests
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Significance: Community
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Significance: Technical
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* The right tool for the right job
* CNNs, LSTMs!

 Building on lots of past innovations:
* HMM modeling
* Distributed Representations [Hinton ‘84]

e Early CNNs, RNNs, TDNNs [Lang & Hinton ‘88, Waibel
et al. ‘89, Robinson '91, Pineda ‘87]

* Hybrid training [Renals et al. ‘91, Bourlard & Morgan ‘94]
e Discriminative modeling

* Speaker adaptation

* System combination
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Acoustic Modeling: Hybrid HMM/DNN

" Transition Probabilities
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[Yu et al., 2010; Dahl et al., 2011]

Call[Home | Switchboard
HMM DNN 21.9% 13.4%
15t pass decoding
h|.\1| — Observation
I W Probabilities . .
] Record performance in 2011 [Seide et al.]
“es DNN
0 Hybrid HMM/NN approach standard

l W, But DNN model now obsolete (!)
* Poor spatial/temporal invariance




Acoustic Modeling: VGG CNN

224 w224 x 3 224 x 224 x OGd

Adapted from image processing
Robust to temporal and
frequency shifts

112 % 128

D6 56 = 206

/ / 28 x 28 x 512 7xTx512

#ﬁﬂﬂ_xl-lx.su L 1x1x4096 1x1x 100D

@ convolution4 KellS

A max pooling

rd
F

fully connected+Hel.l

| softmax

/

[Simonyan & Zisserman, 2014; Frossard 2016,
Saon et al., 2016, Krizhevsky et al., 2012]
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Acoustic Modeling: ResNet

Add a non-linear offset to linear transformation of features
Similar to fMPE in Povey et al., 2005

See also Ghahremani & Droppo, 2016

Our best single model after rescoring

weight layer
relu
F(x) | ! .
CallHome | Switchboard weight layer identity
DNN | 21.9% 13.4%
ResNet | 17.3% 11% F(x) +x

15t pass decoding
[He et al., 2015]
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Acoustic Modeling: LACE CNN

Softmax

*

Convolution
(Weighted Sum Across
Width and Height)

*

JumpBlock

JumpBlock .

*

JumpBlock

?

feature

Switchboard

Call[Home

DNN

21.9% 13.4%

ResNet

17.3% 11.1%

16.9% 10.4%

LACE

15t pass decoding

RelU
|
! bn2
; t
!
1 | Batch Normalization
!
Element-wise Matrix ff *
Product | P
I
* / Plus =
!
]
I f c2
JumpNet Convolution
(Keep Same Channel/
? Width/Height)
$ »n
aee
f RelU
* bnl
JumpNet L
Batch Normalization
cl
\ t \ t
N AN
A Convolution N Convolution
(Increase Channel + [Keep Same Channel/
Reduce Width/Height) Width/Height)

t

block input

Combines batch normalization, Resnet

jumps, and attention masks in CNN
Tied for 2" best single model after
rescoring
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CNN Comparison

VGG Net (85M
Parameters)

Residual-Net (38M
Parameters)

LACE (65M
Parameters)

14 weight layers

49 weight layers

22 weight layers

40x41 input

40x61 input

3 —conv 3x3, 96

40x41 input

3 —[conv 1x1, 64
conv 3x3, 64
conv 1x1, 256]

5—conv 3x3, 128

Max pool

4 —[conv1x1,128
conv 3x3, 128
conv 1x1, 512]

5—conv 3x3, 256

4 —conv 3x3,192

6 —[conv 1x1, 256
conv 3x3, 256
conv 1x1, 1024]

5—conv 3x3,512

Max pool

3 —[conv 1x1,512
conv 3x3, 512
conv 1x1, 2048]

5—conv 3x3, 1024

4 —conv 3x3, 384

Average pool

1—conv3x4,1

Max pool

Softmax (9000)

Softmax (9000)

2—FC—-4096

Softmax (9000)

Very deep

Many parameters

Small convolution patterns
Processing ~ % second per window
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Acoustic Modeling: Bidirectional LSTMs

Outputs - Y Yt Yt+1 - - -
Backward Layer ' ’ ' ’ @
Forward Layer @ e —I-

[Graves & Jaitly ‘14]

Call[Home | Switchboard
DNN 21.9% 13.4%
ResNet 17.3% 11.1%
LACE 16.9% 10.4%
BLSTM | 17.3% 10.3%

Stable form of recurrent neural net
Robust to temporal shifts
Tied for 2"d best single model

[Hochreiter & Schmidhuber, 1997,
Graves & Schmidhuber, 2005; Sak et al., 2014]
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l-vector Adaptation

5-10% relative improvement for Switchboard

Configuration ResNet LACE BLSTM

CH [ SWB | CH | SWB | CH | SWB
Basclinc 175 | 11.1 | 169 | 104 | 173 | 10.3 LABELS
i-vector 166 | 100 | 164 | 93 | 176 | 99

|-vectors provide a
fixed-length
representation of a
speaker’s voice
characteristics.

[Dehak et al. 2011; Saon et al., 2013] /




Spatial Regularization

Auditory cortex activation
(auditory encoded stimulus)
Post training

[Droppo et al. in progress]

Regularize with L2 norm of Hi-frequency residual

[ X ( N
2-D Unrolling Smoothed 2D Hi-Freq
Senones CallHome WER (%) SWB WER (%)
- | Baseline | Smoothing | Baseline | Smoothing
9000 21.4 19.2 9.9 9.3
27000 20.5 19.5 10.6 9.2

5-10% relative improvement for BLSTM

17



Lattice Free MM

e Simple brute force MMI

argmax Y log P(w,3,0)
o wimw  PW)P(a;0) * Avoids need to generate lattices
- arg max > lo PS(L\.N(;()@) * Alignments always current
w,aeData
P(a|w;©) [Chen et al., 2006, McDermott et al., 2914, Povey et al., 2016]
=argmax Y lo

© w,acData Z P(W )P(a | W ®)

Traditionally approximated by
word sequences in lattice (DAG)

Instead LFMMI uses all possible
word sequences in cyclic FSA

18



Denominator GPU computation

* Represent FSA of all possible state
seguences as a sparse transition matrix A

* Implement exact alpha beta computations

O = (Aat—l)' o

,Bt =A' (:Bt+1 ' Ot+1)

* Execute in straight “for” loops on GPU with
and

e Beautifully simple



LFMMI Improvements

Configuration ResNet LACE BLSTM
CH | SWB | CH | SWB | CH | SWB
Baseline 17.5 11.1 16.9 104 | 17.3 10.3
1-vector 16,6 | 10.0 | 164 9.3 17.6 99
1-vector+LFMMI | 15.2 8.6 16.2 8.5 16.3 8.9

8-14% relative improvement on SWB

 Denominator LM graph has 52k states and 215k transitions
* GPU-side alpha-beta computation is 0.18xRT exclusive of NN evaluation




Cognitive Toolkit (CNTK) Training

B" The Microsoft Cognitive T... X =

* Flexibl
ex' e € 9 OU @  https//www.microsoft.com/en-us/research/product/cognitive-toolkit/ EJ ¢ Q. microsoft cognitive toolkit s v B 9 3 A

M u |t i _G P U =. Microsoft Store - Products -~ Support O signin

Research Research areas - Products & Downloads Programs & Events - People Careers About

 Multi-Server
e 1-bit SGD
All AM

t raini ng A free, easy-to-use, open-source, commercial-grade toolkit that trains deep learning
algorithms to learn like the human brain.

it A
training

The Microsoft Cognitive Toolkit ®
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Language Models

e 15t Pass n-gram:
* SRI-LM, 30k vocab, 16M n-grams

* Rescoring n-gram:
* SRI-LM, 145M n-grams
* RNN LM

* CUED Toolkit, two 1000 unit layers
* Relu activations, NCE training

* LSTM LM

by Jim Unger

PR A A N ERRE T NEN

e Cognitive Toolkit (CNTK), three 1000 unit layers

* Letter trigram input, no NCE

23



LM Training Trick: Self-stabilization

* Learn an overall scaling function for each layer

y=WX becomes:

y = (B W)X Applied to the LSTM networks, between layers.

Self-Stabil
Training CE
~N & x
|

20 25
Epoch

[Ghahremani & Droppo, 2016] 2



Language Model Perplexities

Language model PPL
Ngram: 4gram baseline (145M ngrams) 75.5
RNN: 2 layers + word input 59.8
LSTM: word input in forward direction 54.4
LSTM: word input in backward direction 53.4
LSTM: letter trigram input in forward direction 52.1
LSTM: letter trigram input in backward direction | 52.0

Perplexities on the 1997 eval set

LSTM beats RNN

Letter trigram input slightly
better than word input

Note both forward and
backward running models
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Overall Process

ResNet

Lattice Generation:

LACE

Lattice Generation:

A 4

N-gram Rescoring
500-best Generation

BLSTM

Lattice Generation:

A 4

N-gram Rescoring
500-best Generation

A 4

Rescoring:
RNNs, LSTMs,
Pron Probs

A 4

N-gram Rescoring
500-best Generation

A 4

Rescoring:
RNNs, LSTMs,
Pron Probs

Confusion Network
Combination &
Select Best

\ 4

Rescoring:
RNNs, LSTMs,
Pron Probs




Greedy System Combination

* Make confusion network from best single system

* Repeat:
 Compute error rate on development data for each possible system addition
* Add the system

the 0.8 cat 0.6 *delete* 0.9 sat 1.0



Rescoring Performance

Language model PPL | WER
4-¢ram LM (baseline) 75.5 8.6
+ RNN-LM 59.8 7.4
+ LSTM-LLM 514 6.9
+ 2-LSTM-LM interpolation | 50.5 [ 6.8
+ 2FW & 2 BW - 6.6

ResNet CNN Acoustic Model (no combination)

One LSTM ~ 0.5%

% better than one RNN.

Multiple LSTMs
provide further 0.3%



Outline

* Acoustic Modeling

* Language Modeling

* Decoding, Rescoring & System Combination
* Measuring Human Performance

* Results

* Counterpoint — Letter based CTC

* Conclusions



A First Try

e The 4% rumor

[Lippman, 1997]

- SWITCHBOARD (Spontaneous Speech)

N 43%

% ERROR
N
o
I

4%
EEmmETTE |

MACHINE HUMAN

Fig. 7. Word error rates for humans and a high-performance
HMM recognizer on phrases extracted from spontaneous tele-
phone conversations in the Switchboard speech corpus (Liu et al.,
1996; Martin, 1996).

1996. Speech recognition on Mandarin Call Home: A large-
vocabulary, conversational, and telephone speech corpus. Proc.
IEEE Internat. Conf. Acoust. Speech Signal Process., pp.
157-160.

A. Martin, 1996. Personal communication.

Miller, G.A., 1962. Decision units in the perception of speech.
Institute of Radio Engineers Transactions on Information The-
ory 8, 81-83.
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Another Attempt

Careful Quick (Rich)
Language | Genre Transcription | Transcription
WDR WDR
o 9.63%
CTS @4.5 % 5 pairs)>
Meeting - 6.23%
(4 pairs)
. . 3.84%
English Interview n/a (22 pairs)
o 3.5%
BN 1.3% (6 pairs)
BC n/a 6.3%

(6 pairs)

[Glenn et al., 2010]

Significant variability.

Note the bulk of the
training data was
“quick transcribed.”



Getting a Positive ID on Actual Test Data

e Skype Translator has a weekly
transcription contract

* Quality control, training, etc.

* Transcription followed by a
second checking pass

* One week, we added eval 2000
to the pile...

33



The Results

e Switchoard: 5.9% error rate
e Call[Home: 11.3% error rate

* SWB in the 4.1% - 9.6% range
expected

* CH is difficult for both people
and machines

* High ASR error not just because
of mismatched conditions

Careful Quick (Rich)
Language | Genre Transcription | Transcription
WDR WDR
o 9.63%
CTS 4.1-4.5% (5 pairs)
: 6.23%
Meeting (4 pairs)
: : 3.84%
English Interview | n/a (22 pairs)
o 3.5%
BN 1.3% (6 pairs)
6.3%
BC n/a (6 pairs)
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The Bottom Line & Comparisons

Model N-gram LM RNN-LM LSTM-LLM
CH SWB | Ch SWEB | CH SWEB Single CNN does
w w w / remarkably well
ResNet 14.8 | 8.6 13.2 | 6.9 12.5 | 6.6
LACE 14.8 | 8.3 13.5 | 7.1 12.7 | 6.7
BLSTM (27k, spatial smoothing) | 14.9 | 8.3 13.7 | 7.0 13.0 | 6.7 Parity with
Final ASR System 133 | 7.4 12.0 | 6.2 11.1 | 5.9 > orofessional
Human Perf()l'mance - - - - 1 13 5 9 transcribers
N-gram LM NN LM
Model CH | SWB | CH | SWB
Saon et al. [51] LSTM 15.1 | 9.0 - -
Povey et al. [54] LSTM 153 | 8.5 - - Best previous number
Saon et al. [51] Combination | 13.7 | 7.6 12.2 176.6

36



Runtimes

DNN | BLSTM | ResNet | LACE

AM Training, GPU | 0.012 0.022 0.60 0.23

AM eval, GPU 0.0064 | 0.0081 0.15 0.081
AM eval, CPU 0.052 NA 11.7 8.47
Decoding, GPU 1.04 1.40 1.19 1.38

(Multiples of real-time, smaller is better)

AM Training: Forward, Backward + Update computations

AM eval: Forward probability computation only

Decoding: Mixed GPU/CPU, complete decoding time with open beams
Titan X GPU & Intel Xeon E5-2620 v3 @2.4GhZ, 12 cores

All times are xRT (fraction of real-time required) on Titan X GPU

GPU 10 to 100x
faster than CPU



Error Analysis

Substitutions (~21k words in each test set)

CH

SWB

ASR

Human

ASR

Human

45: (%hesitation) / %bcack

12: a/the

29: (%hesitation) / %bcack

12: (%ohesitation) / hmm

12: was/1s

10: (%hesitation) / a

9: (%hesitation) / oh

10: (%hesitation) / oh

9: (Y%hesitation) / a

10: was/1s

0: was/ 1s

0: was /1s

8: (%hesitation) / oh 7: (Y%hesitation) / hmm 8: and / 1n 8: (Yohesitation) / a

8: a/the 7: bentsy / bensi 6: (%hesitation) / 1 5:1n/and

7: and / 1n 7: 18 / was 6: 1n/ and 4: (9ohesitation) / %bcack
7: 1t / that 6: could / can 5: (%hesitation) / a 4: and / 1n

6: in/ and 6: well / oh 3: (Y%hesitation) / yeah 4:1s / was

“ums” and “uh-hums” most frequent mistakes

— but most errors are in the long tail




Error Analysis

Deletions
CH SWB

ASR Human ASR Human
44: 1 73: 1 31: 1t 34: 1
33: 1t 59: and 26: 1 30: and
29: a 48: 1t 19: a 29: 1t
29: and | 47: 1s 17: that 22: a
25: 1s 45: the 15: you | 22: that
19: he 41: %bcack || 13: and 22: you
18: are 37:a 12: have | 17: the
17: oh 33: you 12: oh 17: to

Insertions
CH SWB

ASR Human || ASR Human
15: a 10: 1 19: 1 12: 1
15: 1s 9: and 9: and 11: and
11:1 8: a 7: of 9: you
11: the 8: that 6: do 8: 1S
11: you | 8: the 6: 1s 6: they
0: 1t 7: have 5: but 5: do
7: oh S: you 5: yeah | 5: have
6: and 4: are 4: air S:1t

Both people and machines insert “I” and “and” a lot.
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Two Ways to move up field
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The CTC Alternative

 Wouldn’t it be nice if we could just

»look at the frame-level labels,
»de-dup,
»and read-off the transcription?

* For example, with a character model,

S—-UU-PPPEE--RGG--00-DD
Super Good

* CTC [Graves et al. 2006] can train a model so you can do this!



Objective Function and Gradient:

Obj.function: A = ZP(qlﬂ)= Z Hp;(ﬁ(t»

realignments realignments  t

Pt

=@ - neural net output at time t for symbol q(7z(t))

t

Gradient before softmax : 2 = Ve — Pq
a q



Defining the Symbols

 Characters:
e Generalize to new words
* No problem with infrequent words

* Couple of issues:

e Double-letters (e.g. “hello”) don’t work with de-duping
 Where to insert spaces to form words (e.g. “darkroom” vs “dark room”)

e Solution:

 introduce double-letter units (ll, oo, etc.) Explicit space character
* Introduce word-initial letters (capital letters) aligns acoustics to nothing.



CUDNN RNN
Implementation

Process full minibatch per

CUDNN call

32 utterances per minibatch

o3 computation on CPU
e 8-way parallelization / OMP

Best Configuration:
9 Relu-RNN layers

Bidirectional
1024 wide

0.0058 xRT (!)

cudnnStatus t

cudnnRNNForwardTraining ( cudnnHandle t handle,
const cudnnRNNDescriptor t rnnDesc,

cudnnStatus_t
cudnnRNNBackwardData (

const int seqglength,

const cudnnTensorDescriptor t *xDesc,

const void * x,

const cudnnTensorDescriptor_t hxDesc,

const void * hx,

const cudnnTensorDescriptor_t cxDesc,

const void * cx,

const cudnnFilterDescriptor t wDesc,

const void * w,

const cudnnTensorDescriptor t *yDesc,

void * y,

const cudnnTensorDescriptor t hyDesc,

void * hy,

const cudnnTensorDescriptor t cyDesc,

void * cy,
void * workspace,

size t workSpaceSizelInBytes,

vold * reserveSpace,

size t reserveSpaceSizelnBytes)

cudnnHandle t handle,

const cudnnﬁNNDeSCLipLOL_L rnnDesc,

const int seglength,

const cudnnTensorDescriptor t
const void * vy,

const cudnnTensorDescriptor t
const void * dy,

const cudnnTensorDescriptor t
const void * dhy,

const cudnnTensorDescriptor t
const void * dcy,

const cudnnFilterDescriptor t
const void * w,

const cudnnTetsorDescriptor_t
const void * hx,

const cudnnTensorDescriptor t
const void * cx, -

const cudnnTensorDescriptor t
void * dx,

const cudnnTensorDescriptor t
void * dhx, a

const cudnnTensorDescriptor t
void * dex,

void * workspace,

size t workSpaceSizelnBytes,

const void * reserveSpace,

* yDesc,
* dyDesc,
dhyDesc,
dcyDesc,
wDesc,
hxDesc,
cxDesc,

* dxDesc,
dhxDesc,

dcxDesc,

45

size t reserveSpaceSizeInBytes )



Results: 2000 Hour Training

Lexicon | LM CH SW
N N 26.4 | 17.2
N Char NG 21.8 | 13.8
Y Word NG 19.3 | 12.6
Y Word NG 18.7 | 11.3
Y Word RNN | 17.7 | 10.2

Best previous result — ensemble from

/ Hannun et al. 2014

i

New record for CTC
on Switchboard

Conclusion: Much simpler systems can produce good performance

[Zweig et al., 2016]
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Summary: Human Parity after Twenty Years

WORD ERROR RATE

DARPA Speech Recognition Benchmark Tests
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Resource

anagement

Courtesy NIST 1999 DARPA
HUB-4 Report, Pallett et al.
& new updates from DARPA

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

*

5.9% Human
performance:
Microsoft,
October, 2016
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Concluding Remarks

* Parity — Are we done?

* Cocktail party problem
* Farfield
* Robustness

Cocktail Party Problem
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Concluding Remarks

* Parity — Are we done?

* Cocktail party problem
e Farfield
 Robustness

 What is interesting?
* New network structures
* Process Simplification e.g. CTC

Simplicity
is the ultimate
sophistication.

-LCOT\ARdO
da Vinci
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Concluding Remarks

* Parity — Are we done?

* Cocktail party problem
* Farfield
* Robustness

 What is interesting?
* New network structures
* Process Simplification e.g. CTC

 Are we stuck?
e CNNs! LSTMs! Attention & More.
e The future is bright
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Thank You!



