
Geo-Distribution of Actor-Based Services

January 24, 2017

Technical Report
MSR-TR-2017-3

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Important

This document is work in progress. Feel free to cite, but note that we will update the
contents without warning (pages are timestamped at the bottom right), and that we are
likely going to publish the content in some future venue, at which point we may update this
paragraph.

1 2017/1/24

Geo-Distribution of Actor-Based Services

Philip A. Bernstein
Sebastian Burckhardt

Alok Kumbhare
Jorgen Thelin

Microsoft Research
{philbe,sburckha,alokk,jthelin}@microsoft.com

Sergey Bykov
Muntasir Raihan Rahman

Microsoft
{sbykov,murahman}@microsoft.com

Natacha Crooks
University of Texas, Austin
ncrooks@cs.utexas.edu

Jose Faleiro
Yale University

jose.faleiro@yale.edu

Gabriel Kliot
Google

gkliot@google.com

Vivek Shah
University of Copenhagen

bonii@di.ku.dk

Adriana Szekeres
University of Washington
aaasz@cs.washington.edu

Abstract
Many service applications use actors as a programming
model for the middle tier, to simplify synchronization, fault-
tolerance, and scalability. However, efficient operation of
such actors in multiple, geographically distant datacenters
is challenging, due to the very high communication latency.

We present GEO, an open-source geo-distributed actor
system that improves performance by caching actor states
in one or more datacenters, yet guarantees the existence of
a single latest version by virtue of a distributed cache coher-
ence protocol. GEO supports both volatile and persistent ac-
tors, and supports updates with a choice of linearizable and
eventual consistency. Our evaluation on several workloads
shows substantial performance benefits, and confirms the
advantage of supporting both replicated and single-instance
coherence protocols as configuration choices. For example,
replication can provide fast, always-available reads and up-
dates globally, while batching of linearizable storage ac-
cesses at a single location can boost the throughput of an
order processing workload by 7x.

1. Introduction
Actors have emerged as a useful abstraction for the mid-
dle tier of scalable service applications that run on virtu-
alized cloud infrastructure in a datacenter [32, 33, 42]. In
such systems, each actor is a single-threaded object with a
user-defined meaning, identity, state, and operations. For ex-
ample, actors can represent user profiles, articles, game ses-
sions, devices, bank accounts, or chat rooms. Actors resem-

ble miniature servers: they do not share memory, but com-
municate asynchronously, and can fail and recover indepen-
dently. Actor systems scale horizontally by distributing the
actor instances across a cluster of servers.

In a traditional bare-bones actor system, the developer
remains responsible for the creation, placement, discovery,
recovery, and load-balancing of actors. A newer generation
of actor models [2, 32, 33], called virtual actor models,
automate all of these aspects. The developer specifies only
(1) a unique key for identifying each actor, and (2) how
to save and load the actor state to/from external storage, if
persistence is desired. As virtual actor systems can activate
and deactivate actors based on use, they strongly resemble
caches [26, 36, 38, 53] and provide similar performance
benefits.

Geo-Distribution Challenge. Todays cloud platforms make
it easy to operate a service in multiple datacenters, which
can improve latency and availability for clients around the
world. The virtual actor model is a promising candidate for
architecting such services. It is not clear, however, how to
make it perform acceptably across continents. Given the
high communication latency (e.g., about 150ms round-trip
between California and the Netherlands), a naive reuse of
existing APIs and protocols that were designed for single
datacenter clusters (with less than 2ms roundtrips between
servers) has a poor chance of success.

Our experience suggests that to perform within a range
that is appealing in practice, a geo-distributed virtual actor
system must exploit locality, if present. For example, if an

2 2017/1/24

Single-Instance Cache Multi-Instance Cache
V
o
la
ti
le

Pe
rs
is
te
n
t









Figure 1. The four actor configuration options. Squares are
clusters, Cylinders are the storage layer, circles are copies of
the actor state, and the star marks the latest version (primary
copy).

actor is accessed mostly from a single datacenter, those
accesses should not incur any geo-remote calls. On the other
hand, a solution should support replication where necessary.
For example, if an actor is frequently accessed by multiple
datacenters, accesses should utilize locally cached copies.
Our system, called GEO, solves these requirements using
new mechanisms and a new variant of the actor API.

GEOs implementation is structured hierarchically: a set of
clusters is federated into a loosely connected multi-cluster.
Each cluster maintains a local elastic actor directory that
maps actors to servers, using existing mechanisms in virtual
actor systems. To provide a simple, global view of the system
and stay true to the virtual actor model, GEO automatically
coordinates actor directories and actor states across all the
clusters via several distributed coherence protocols. These
protocols are non-trivial, as they must scale out, gracefully
handle node failures, network partitions, and live configura-
tion changes at the cluster and the multi-cluster level. They
do not exhibit a single point of failure or contention.

GEO introduces a novel versioned actor-state API that
gives the runtime more room for optimizations (such as
replication and batching) when reading or updating actor
state. Yet the application logic remains simple. The API
offers fast local reads (of approximate state based on local
cache) and fast local updates (via a background queue).
Importantly, the use of these locally consistent operations
is entirely optional: all actors support globally consistent,
linearizable reads and writes, which are guaranteed to read
or write the latest version.

1.1 Actor Configuration Options
To perform better across a wide range of requirements, GEO
supports several configuration options (Fig.1). Each actor
can be declared as either volatile (latest version resides in
memory and may be lost when servers fail) or persistent
(latest version resides in the storage layer). Furthermore,
the caching policy for each actor can be declared as single-

instance (state is cached in one cluster) or multi-instance
(state is cached in every cluster). These choices can greatly
affect performance. For example, caching multiple instances
can reduce the access latency for actors without locality; but
using a single instance can improve throughput for actors
with locality, and for actors with a high update rate. We
discuss these observations in the evaluation section.

1.2 Novelty and Relevance
Prior work on geo-distributed services has heavily focused
on the challenge of providing geo-replicated storage [9, 13,
21, 23, 39, 45], usually using quorum-based algorithms. A
distinguishing feature of our actor-based approach is that
it separates geo-distribution from durability. Our protocols
are not responsible for durability, because actors are ei-
ther declared volatile (developers expressly forfeit durabil-
ity) or persisted externally (developers want durability pro-
vided by a storage layer of their choice). Our protocols are
not quorum-based, but use efficient primary-copy replica-
tion; they resemble cache coherence protocols used in multi-
processors. The storage layer (which often uses quorum-
based algorithms internally) may be in a specific datacenter
or itself be geo-distributed. Our system is largely agnostic
of these details. Users can select any storage system, except
that our current implementation assumes the storage layer
supports strong consistency and conditional updates.

This separation of geo-distribution from durability is
highly relevant for actor-based services:

1. Providing durability for volatile actors is wasteful.
Volatile actors are pervasive in interactive or reactive ap-
plications, because the actor state is often a view of other
state (e.g. other actors, or external state), and can thus be
reconstructed or recomputed when lost. For example, if
an object tracks current participants of a game and the
current list of players is lost in a failure, it can quickly
be reestablished, because each participant sends periodic
heartbeats.

2. Developers want full control over where and how to store
data. Often, there are important non-technical reasons for
requiring that data be durably stored in a specific geo-
graphic location and/or a specific storage system and/or
a specific format, such as: cost, legacy support, tax laws,
data sovereignty, or security.

3. An un-bundling of functionality into independent com-
ponents accelerates innovation, because it fosters inde-
pendent competition for each aspect. This is clearly re-
flected in how cloud services are built these days, using a
plethora of components, many of which are open-source.

1.3 Contributions
Our main contributions are the programming model, the
system implementation, and the performance evaluation.

3 2017/1/24

• GEOs programming model provides an effective sep-
aration of concerns between developing geo-distributed
applications and the challenge of designing and imple-
menting robust, distributed protocols for managing actor
state. It is suitably abstract to allow plugging in and com-
bining various such protocols. Developing such protocols
is a subtle and complex task: hiding it beneath a simple
API puts geo-distributed applications within the reach of
mainstream developers.
• GEOs full-function implementation is open-source. A

pre-release is available on GitHub citegeo and is being
used in a commercial setting by an early adopter. It in-
cludes a new optimistic protocol for distributed datacen-
ters to ensure that the cache contains at most one instance
of an object worldwide. It also includes a new consis-
tency protocol for synchronizing the state of persistent
cache instances with each other and with storage, using
batching to improve throughput.
• Our evaluation of GEO compares the performance of

various consistency protocols and configuration options,
showing their latency and throughput benefits.

The paper is organized as follows. We describe the program-
ming model in §2, protocols to implement the model in §3,
experimental results in §4, related work in §5, and the con-
clusion in §6.

2. Programming Model
We start by describing GEO from the viewpoint of a develop-
er/operator who writes application code and operates the ser-
vice. We define a cluster to be a set of servers, called nodes,
connected by a high-speed net-work. Clusters are elastic and
robust: nodes can be added or removed depending on load,
and node failures are automatically detected and tolerated.
A datacenter may contain multiple clusters, e.g., to group
nodes into distinct failure zones that operate and fail inde-
pendently.

Multi-Cluster Configuration. When deploying a cluster, the
developer configures its cluster id, which must be unique.
At any time (except when a configuration change is already
underway), the operator can specify or modify the list of
cluster ids that comprise the current multi-cluster.

Actor Declarations. Our actor model is based on virtual ac-
tors as used by the Orleans [3, 8, 33], Orbit [32], and Service
Fabric Reliable Actors [42] frameworks. For each class of
actors, the developer defines actor identity, actor interface,
actor state, and code that implements the operations. The
identity of the actor is determined by the combination of its
class and a key, which is typically a string, integer, or GUID.
The developer also declares which of the four configuration
combinations in Fig. 1 to use. For persistent actors, the de-
veloper specifies how to save/restore the actor state to/from
storage.

Activation and Deactivation. As in other virtual actor sys-
tems, actor instances are not explicitly created or deleted.
Rather, they are automatically activated when used (i.e.,
when an operation specified in the actor interface is in-
voked), and deactivated when unused for some period of
time. Single-instance actors are activated only in the clus-
ter where they are first accessed, and multi-instance actors
are activated in all clusters.

Note that the single-instance policy can exploit locality
if all accesses are in the same datacenter, or if accesses
by different datacenters are separated in time. For example,
suppose a user Bob connects to a datacenter c, which causes
Bobs profile p to be loaded from storage and cached in
memory. Now Bob logs off and flies to another continent.
Since he is off-line for a while, the cached instance of p in
c is evicted. When Bob logs in to a local datacenter d at his
destination, p is loaded into memory at d.

Actor State. The state of an actor can be read and written
only from within its own operations (encapsulation). To do
so, we support two alternative APIs with different tradeoffs:

1. The basic state API is specialized for single-instance ac-
tors. Actors using this API can read and update their state
directly, but can execute only one operation at a time. The
big advantage of the basic API is its simplicity. It is a
perfect match for the volatile single-instance scenario (in
Figure 1), since synchronous reads and writes on main
memory run fast. However, it does not work for the multi-
instance case, and it can suffer from performance prob-
lems in the persistent case when writing frequently and
synchronously to storage.

2. The versioned state API is more involved, but also more
powerful, and it is compatible with multi-instance config-
urations. It adds a level of indirection when reading and
updating actor state, allows multiple reads and updates
to proceed at the same time, and supports both local and
global consistency. We describe it in more detail in the
next subsection.

2.1 Versioned State API
The Versioned State API manages actor state indirectly, us-
ing state objects and update objects. For a state object s and
update object u, the programmer must implement a deter-
ministic method s.apply(u) that defines the effect of the up-
date. For example, for an actor representing a counter that
supports add and reset operations, we may define state and
update objects as:

class CounterState {
int count = 0 ;
apply(Add x) { count += x.amount ; }
apply(Reset x) { count = 0 ; }
}
class Add { int amount ; }
class Reset { }

4 2017/1/24

v0
count=0

v7
count=5

Add 5

Latest Version

California Netherlands

v7
count=5 Reset

Add 1

Figure 2. Sample snapshot of the internal state of an actor
that uses the versioned state API and has two instances in
different datacenters.

Conceptually, the consistency protocol applies updates
one at a time to the latest version, thereby creating a se-
quence of numbered global versions. The initial state v0 is
defined by the default constructor of the state object. Every
time an update is applied, the version number is increased by
one. We visualize how the protocol manages states and up-
dates in a local and global context as shown in Fig. 2 using
state objects (black boxes) and update objects (white boxes)
of the same types as in the counter example. There are two
instances of the same actor, one in California, and one in the
Netherlands. Each stores (1) a local copy of the last known
version, and (2) a queue of unconfirmed updates (updates en-
ter at the top and drain at the bottom). The bottom rectangle
shows the latest version of the state.

Background Propagation. At all times, the consistency pro-
tocol runs in the background on each instance of an actor
to propagate updates. It applies each queues updates to the
latest version in order, interleaving them with updates from
other queues, and it propagates the latest version to all in-
stances. These tasks require communication. Thus, they may
be slow or stall temporarily (for example, if intercontinental
communication or storage are down). However, by design,
such stalls do not impact the availability of an actor: it can
always continue to be read and updated locally.

Where is the Latest Version? The location of the latest
version depends on the configuration and protocol. For our
current system, it is always located either in external storage
(for persistent actors) or in memory (for volatile actors),
as shown by the stars in Fig. 1. Importantly, regardless of
the configuration, the programmer can always rely on the
existence of a latest version, and can directly read and update
it. This provides unified semantics for many consistency
protocols without exposing configuration details such as the
number of replicas and the nature of quorum configurations.

Local Operations. In many situations, it is acceptable to
work with a somewhat stale actor state and to delay the
confirmation of updates [9, 18, 47]. For example, a website
may display a leaderboard, chat room discussion, or item
inventory using a stale state, or an unconfirmed tentative
state, instead of the latest version.

The Versioned API supports this in the form of queued
updates and cached reads. They are local operations that
complete quickly in memory, i.e., without waiting for any
I/O. For updates, the programmer calls the function

void enqueue(Update u)

It appends the update to the local queue and then returns. To
read the current state, the programmer can call

pair<State,int> read confirmed()

It returns the locally cached version of the state, which is
consistent but possibly stale, and its version number. For
example, in Fig. 2, in California it returns version v0 with
count=0, which is stale. In the Netherlands it returns version
v7 with count=5, which is up-to-date. We offer a second
local read variant:

State read tentative()

It takes the cached version and superimposes the uncon-
firmed updates in the queue. For example, in Fig. 2, in Cal-
ifornia it returns a state with count=5 (add 5 to 0) and in
the Netherlands, it returns a state with count=1 (reset 5 to
0, then add 1). A state returned by read tentative does not
have a version number because it is not part of the global
sequence. There is no guarantee that it matches any past or
future version.

Linearizable Operations. In some situations, we are will-
ing to trade off latency for stronger consistency guarantees.
For example, in the TPC-W benchmark [50], we guaran-
tee to never oversell inventory, which requires coordination.
To this end, GEO supports two synchronization primitives
confirm updates and refresh now.

The synchronization primitive confirm updates waits for
the queue of the given instance to drain. It can be used to
provide linearizable updates as follows, where await waits
for the asynchronous operation that follows it to return:

linearizable update(Update u) {
enqueue(u) ;
await confirm updates() ;
}

The synchronization primitive refresh now drains the queue
like confirm updates, but additionally, it also always fetches
the latest version. It can be used to provide linearizable reads
as follows:

linearizable read() {
await refresh now() ;
return read confirmed() ;
}

Note that the synchronization placement is asymmet-
ric: refresh now precedes the read, while the call to
confirm updates follows the update. This ensures lineariz-
ability [16]: the operation appears to commit at a point of
time after the function is called and before it returns.

5 2017/1/24

Consistency Discussion. The Versioned API presented here
is a variation of the global sequence protocol (GSP) opera-
tional consistency model [7, 25], applied on a per-actor ba-
sis. GSP uses an equivalent formulation based on totally-
ordered broadcast, but assumes a single database rather than
a set of independent actors, which limits scalability. GSP is
itself a variation of the total-store order (TSO) consistency
model for shared-memory multiprocessors. TSO has a dif-
ferent data abstraction level (read/write memory vs. read-
/update application data) and all participants always read the
latest version.

Our model preserves the local order of updates, and up-
dates do not become visible to other instances until they are
part of the latest version. Therefore, in the terminology of
[5, 47, 48], the model supports causality, read-your-writes,
monotonic reads, and consistent prefix of operations on the
same object.

There are no ordering or atomicity guarantees about ac-
cesses to different actors, as each actor runs its protocol inde-
pendently. This is important for horizontal scalability (which
is the principal advantage of actor systems). Though it may
complicate life for developers, it has not surfaced as a ma-
jor issue. For one, ordering can be enforced by using lin-
earizable operations (linearizability is compositional). Also,
actors can often be made coarse-grained enough to cover de-
sired invariants. For example, representing chat rooms rather
than chat messages ensures causality of the chat content. Fi-
nally, applications can use actors to track workflows when
coordinating updates across multiple actors (as in the order
processing mini-benchmark in §4.5.1).

3. Implementation
GEO [15] is implemented in C# as extensions to Orleans,
an open-source distributed actor framework available on
GitHub [33]. GEO connects several elastic Orleans clusters
over a wide-area network. The Orleans runtime uses consis-
tent hashing to maintain a distributed, fault-tolerant directory
that maps actor keys to instances [3]. It already handles con-
figuration changes and node failures within a cluster, fixing
the directory and re-activating failed instances where nec-
essary. However, Orleans does not provide mechanisms for
coordinating actor directories and actor state between clus-
ters. To this end, we designed several distributed protocols.

• Global Single Instance (GSI) protocol for the single-
instance caching policy. It coordinates actor directories
between clusters to enforce mutual exclusion strictly (in
pessimistic mode) or eventually (in optimistic mode).
• Batching Compare-and-Swap (BCAS) protocol for

persistent actors. It implements the Versioned API on per-
sistent storage that supports conditional updates.
• Volatile Leader-Based (VLB) protocol for volatile

multi-instance actors. It implements the versioned API,
storing the latest version in memory, at a fixed leader.

Volatile Persistent

Basic API GSI GSI (sync.)
Versioned API

Single-Instance Policy n/a GSI + BCAS
Multi-Instance Policy VLB BCAS

Table 1. Protocol selection for a given API and policy.

These protocols reside at different system layers: the GSI
protocol coordinates actor directories (it is an extension of
Orleans directory protocol), while the BCAS and VLB pro-
tocols coordinate actor state (communicating among actor
instances and with external storage).

Optimistic GSI and BCAS are robust: some actor in-
stance is always available even if a remote cluster or stor-
age is unreachable. This is important; datacenter failures are
sufficiently common that large-scale web-sites routinely en-
gineer for them [13, 29, 34, 35].

Live Multi-Cluster Configuration Changes are supported
by all protocols, with some limiting assumptions: a configu-
ration change must be processed by all nodes in all clusters
before the next configuration change is injected. Also, the
change may add or remove clusters, but not both at the same
time.

GEO is open for experimentation, and allows plugging
in different consistency protocols and variations beneath the
same API. This can be helpful to devise custom protocols for
specific settings (e.g. alternative forms of persistent storage,
such as persistent streams). Also, it facilitates research on
consistency protocols.

The protocol implementations match up with the chosen
API and configuration as shown in Table 1. The n/a indicates
an unsupported combination (not difficult to implement, but
has no performance benefits).

3.1 GSI Protocol
At its heart, the global single-instance protocol is simple.
When a cluster c receives an operation destined for some
actor (identified by a key k), it checks its directory entry for k
to see if an instance exists in c. If so, it forwards the operation
to that instance. If not, it sends a request message to all
other clusters to check whether they have an active instance.
If it receives an affirmative response from a remote cluster
c′, it then forwards the request to c′. Else, it creates a new
instance, registers it in its local directory, and processes the
operation. But there are several problems with this sketch:

1. Contacting all clusters for every access to a remote actor
instance is slow and wasteful.

2. When two clusters try to activate an instance at about the
same time, their communication may interleave such that
neither is aware of the other, and both end up activating a
new instance.

6 2017/1/24

3. If any of the remote clusters are slow to respond, or do
not respond at all, the protocol is stuck and the actor is
unavailable.

We solve these three problems as follows.

Cached Lookups. After determining that an instance exists
in a remote cluster, we cache this information in the local
directory. If the actor is accessed a second time, we forward
the operation directly to the destination.

Race arbitration. A cluster in a requesting phase sets its
directory state to Requested. Suppose clusters c and c′ con-
currently try to instantiate the same actor. When c responds
to a request from c′, if c detects that its directory state is
Requested, then c knows it has an active request. It uses a
global precedence order on clusters to determine which re-
quest should win (a more sophisticated solution like [10] is
not necessary because races are rare and fairness is not an
issue). If c < c′, then the remote request has precedence, so
c changes its local protocol state from Requested to Loser.
This effectively cancels the request originating from c. If
c > c′ then the local request has precedence, so c replies
Fail, which cancels the request originating from c′. A can-
celed request must start over.

Optimistic activation. If responses do not arrive timely,
we allow a cluster to create an instance optimistically. We
use a special directory state Doubtful to indicate that ex-
clusive ownership has not been established. For all Doubt-
ful directory entries, the runtime periodically retries the GSI
request sequence. Thus, it can detect duplicate activations
eventually, and deactivate one. Optimistic activation means
that duplicate instances can exist temporarily, which may
be observable by the application. It is an optional feature
(programmers can choose pessimistic mode instead), but we
found that it usually offers the right compromise between
availability and consistency: for volatile actors, the actor
state need not be durable, and eventual-single-instance is
usually sufficient. For persistent actors, the latest version re-
sides in storage anyway, not in memory, so having duplicate
instances in memory temporarily is fine as well.

3.1.1 Protocol Definition
Each cluster c maintains a distributed directory that maps
actor keys to directory states. For each actor k, the directory
assumes one of the following states:

• [Invalid] there is no entry for actor k in the directory.
• [Owned, n] c has exclusive ownership of actor k, and a

local instance on node n.
• [Doubtful, n] c has a local instance of k on node n but has

not obtained exclusive ownership.
• [Requested] c does not yet have a local instance of k but

is currently running the protocol to obtain ownership.
• [Loser] c does not have a local instance of k, and its

current attempt to establish ownership is being canceled.

• [Cached, c′ : n] c does not have a local instance of k, but
believes there is one in a remote cluster c′, on node n.

Request Sending. A node starts a GSI round by setting the
local directory state to Requested and sending requests to all
clusters.

Request Processing. A cluster c receiving a request from
cluster c′ replies based on its directory state:

• [Invalid] reply (Pass).
• [Owned, n] reply (Fail, c : n).
• [Doubtful, n] reply (Pass).
• [Requested] if c < c′, set directory state to Loser and

reply (Pass), else reply (Fail).
• [Cached, n] reply (Pass).
• [Loser] reply (Pass).

Reply Processing. A cluster c processes responses as fol-
lows (first applicable rule):

• If directory state is [Loser], cancel and start over.
• If one of the responses is (Fail, c′ : n), transition to
[Cached, c′ : n].
• If there is a (Fail) response, cancel and start over.
• If all responses are (Pass), create instance on local node

n and transition to [Owned, n].
• If some responses are missing (even after waiting a bit,

and resending the request), create an instance on local
node n and transition to [Doubtful, n].

There can be races on directory state transitions: for exam-
ple, the request processing may try to transition from Re-
quested to Loser at the same time as the reply processing
wants to transition from Requested to Owned. In our imple-
mentation, we ensure the atomicity of transitions by using
a compare-and-swap operation when changing the directory
state. In addition to the transitions defined above, (1) we pe-
riodically scan the directory for Doubtful entries and re-run
the request round for each of them, and (2) if we detect that
a [Cached, n] entry is stale (there is no instance at node n),
we start a new request round.

3.1.2 Correctness
The protocol satisfies two correctness guarantees, which we
prove in the appendix.

PROPOSITION 1. The protocol ensures that for a given actor
k at most one cluster can have a directory entry for k in the
Owned state, even if messages are lost.

PROPOSITION 2. If no messages are lost, the protocol en-
sures that for a given actor k at most one cluster can have a
directory entry for k in either the Owned or Doubtful state.

7 2017/1/24

3.1.3 Configuration Changes
In our framework, each node n locally stores the multi-
cluster configuration Cn, which is a list of clusters specified
by the administrator. During configuration changes, the ad-
ministrator changes the Cn non-atomically. We handle this
by adding the rule:

A node n must reply (Fail) to a request it receives
from a cluster that is not in Cn.

This is sufficient to maintain the guarantees stated in Propo-
sitions 2 and 1, provided that for any two different configu-
rations associated with active requests in the system, one of
them is always a superset of the other. This follows from the
guarantees and restrictions on configuration changes in §2.

3.2 BCAS Protocol
The batching compare-and-swap protocol implements the
versioned state API for persistent actors that are kept in stor-
age that supports some form of conditional update, such as
compare-and-swap (CAS). For our current implementation,
we use ETags [52].

Local read and write operations (§2.1) can be serviced di-
rectly from the cached copy and the queue of unconfirmed
updates. Those operations interleave with background tasks
that write pending updates to storage, read the latest version
from storage, notify other instances, and process notifica-
tions from other instances. All of these background tasks are
performed by a single asynchronous worker loop that starts
when there is work and keeps running in the background un-
til there is none. Such a loop ensures there is at most one
access to the primary storage pending at any time. This is
important to ensure correct semantics and enables batching:
while one storage access is underway, all other requests are
queued. Since a single storage access can service all queued
requests at once, we can mask storage throughput limita-
tions.

When an instance successfully updates storage, it sends
a notification to all other instances. This helps to reduce the
staleness of caches.

3.2.1 Protocol Description
Each instance stores three variables:

• confirmed is a tuple [version, state] representing the last
known version, initially [0, new State()].
• pending is a queue of unconfirmed updates, initially

empty.
• inbox is a set of notification messages containing

[version, state] tuples, initially empty.

In storage, we store a tuple [version, state] that represents the
latest version.

Worker Loop. The worker repeats the following steps:

1. If some tuple in inbox has higher version than confirmed,
then replace the latter with the former.

2. If we have not read from storage yet, or if there are
synchronize now requests and pending is empty, read the
latest version from storage now and update confirmed.

3. If pending is not empty, then make a deep copy of con-
firmed, apply all the updates in pending, and then try to
write the result back to storage conditionally.

(a) On success (version matches): update confirmed. Re-
move written updates from pending. Broadcast con-
firmed as a notification message.

(b) On failure (due to a version mismatch or any other
reason): re-read the current version from storage, up-
date confirmed, and restart step 3.

Idempotence. The above algorithm is incorrect if a storage
update request fails after updating storage, because a retry
will apply the update a second time. Our solution is to
add a bit-vector to the data stored in storage, with one bit
per cluster that flips each time that cluster writes. When
rereading after a failed write, the state of this bit tells whether
the previous write failed before or after updating storage.

3.3 VLB Protocol
The volatile leader-based protocol implements the versioned
state API for volatile actors. It runs a loop similar to the
BCAS protocol, except that (1) the primary state is stored
at one of the instances, the designated leader, and not in
storage, and (2) instead of updating the state using CAS,
participants send a list of updates to the leader.

Currently, we use a simple statically-determined leader,
either by a consistent hash or an explicit programmer spec-
ification. In the future, we may allow leader changes as in
viewstamped replication [30] or the Raft protocol [31, 37].

Orleans provides fault-tolerance of instances within a
cluster. If the node containing the leader or the leader direc-
tory entry fails, a new leader instance is created. In that case,
the latest version is lost, which is acceptable since durabil-
ity is not required for volatile actors. Still, we have a good
chance of recovering the latest version: on startup, the leader
can contact all instances and use the latest version found.

4. Evaluation
We now describe our experimental results. The goal is to
reveal how configuration choices and API choices influence
latency and throughput for varying workloads. In particular,
we are interested in the relevance of the effects provided by
the three protocols (single-instancing, batching, replication).

4.1 Experimental Setup
The experiments were run on Microsoft Azure in two dat-
acenters, located in California and the Netherlands respec-
tively (Fig. 3). In each datacenter, 30 front-end (FE) servers

8 2017/1/24

California Netherlands

Storage

Conductor

1ms

10ms

1ms

145ms

145ms Geo
System

FEFEFE FEFEFE

BEBEBE BEBEBE

Figure 3. Setup and approximate round-trip times.

generate workload which is processed by 5 back-end (BE)
servers that form an Orleans cluster. We vary the workload
by varying the number of robots (simulated clients) that are
evenly distributed over the FE from 400 to 60,000.

For the network, we use VNETs in Microsoft Azure con-
nected by gateways. The inter-cluster round-trip (IRT) time
is about 145ms. For storage, we use an Azure table stor-
age account located in California. An access averages about
10ms from California, and about 145ms from the Nether-
lands.

FEs are 4-core 1.6 GHz processors with 7 GB of RAM.
BEs and the conductor are 8-core 1.6 GHz pro-cessors with
14 GB of RAM. The number of front-ends is overprovi-
sioned to ensure it is not the bottleneck.

4.1.1 Workloads
The Byte-Array micro-benchmark models a very simple
workload where clients read and write passive actors. The
actor state is a byte-array of 512B. There are two types
of robots: reader/writer robots that read/update a byte se-
quence of 32B at a random offset. TPC-W-mini is a non-
transactional variation of the TPC-W benchmark [50] ex-
plained in §4.5.1.

4.2 Latency
Our first series of experiments validate that our geo-
distributed actor system can reduce access latencies by ex-
ploiting locality, for the byte-array workload.

We organize the results as shown in Fig. 4. The left and
right half are separate sections that contain latency num-
bers for volatile and persistent actors, respectively. The two
columns at the very left select the API and policy, which
together determine the protocol (see Table1). The third col-
umn tells where the instance is cached, which matters for the
single-instance policy.

4.2.1 Discussion of Volatile Section
The first row represents the single-instance protocol for a
volatile actor cached in California. [Columns 1-2] the first

access from California creates the single instance, which re-
quires creating an Orleans actor after not finding it in the lo-
cal directory (about 6ms) and running a round of the single-
instance protocol (about 147ms). [Columns 2-3] repeated
accesses from California hit the existing instance, and have
standard Orleans actor access latency (2-3ms). [Columns 3-
4] The first access from the Netherlands requires one round
of the GSI protocol to detect the already existing instance in
California, then another IRT to route the request to it. Ideally,
this case should occur rarely. [Columns 5-6] Repeated ac-
cesses are routed directly to the instance in California, since
its location has been cached, thus require only a single IRT.

The second row is symmetric to the first, with Califor-
nia and the Netherlands interchanged. The third, fourth,
sixth, and seventh rows are blank because we do not cur-
rently support this combination of API and policy (easy to
implement but has no benefits). The fifth row shows latency
for linearizable operations with the VLB protocol, with the
leader in California. As required by semantics, each opera-
tion incurs a round-trip to the leader (trivial from Califor-
nia, IRT from Netherlands). If the first access is a write; it
requires two leader round-trips since our current implemen-
tation does not submit updates until after the first read. The
eighth row shows latency for local operations (cached reads
and queued writes) with the VLB protocol. These can com-
plete without waiting for communication with a remote data-
center. Thus, latencies are roughly the same as Orleans actor
creation (for the first access) and actor access latency (for
repeated accesses).

4.2.2 Discussion of Persistent Section
The first row is largely the same as for the volatile case,
except that all update operations require a storage update
(+10ms to every second column). Additionally, the access
that first creates the instance requires a storage read (+10ms
to first two columns). The second row obeys the same logic
as the first except that a storage roundtrip is 145ms, not 10ms
(compared to volatile, +145ms to every second column, and
+145ms to columns 5 and 6). The third and fourth rows
represent the combination of GSI with linearizable opera-
tions. They are thus similar to the first and second row, but
because they use linearizable, all reads go to storage, which
can add up to another IRT. The sixth and seventh rows rep-
resent the combination of GSI with local operations. Thus
they are very similar to the first two rows of the volatile sec-
tion: latency is dominated by finding the instance, while the
access itself is local to the instance. The fifth row represents
the BCAS protocol using linearizable operations. It is simi-
lar to the volatile case, except that storage takes the role of
the leader, at about the same latency in the Netherlands, but
an extra 10-20ms in California. The eighth row again repre-
sents all-local operations, with latencies almost identical to
the volatile case. Note that even if the very first access that
creates an instance is a read, it does not have to wait for the

9 2017/1/24

inst.

at read upd. read upd. read upd. read upd. read upd. read upd. read upd. read upd.

Calif. 152.6 152.6 2.2 2.1 298.1 297.9 146.7 146.6 163.7 173.2 2.1 13.3 297.6 308.6 146.6 156.2

Neth. 297.5 297.7 146.5 146.4 152.5 152.5 2.2 2.2 298.1 450.3 146.5 298.8 307.5 467.1 2.2 154.1

Calif. 165.2 171.7 9.4 12.1 305.4 309.9 154.0 156.1

Versioned Neth. 447.0 450.6 295.5 312.1 302.4 457.0 150.9 154.4

l in. ops multi both 6.4 6.3 2.2 2.4 157.4 306.6 150.9 151.0 15.2 25.7 9.6 14.1 156.2 312.2 151.1 155.0

Calif. 152.9 152.9 2.2 2.7 298.2 298.5 146.6 147.1

Versioned Neth. 298.2 298.2 146.5 147.0 152.9 153.2 2.2 2.6

local ops multi both 6.2 6.0 2.1 2.3 6.3 6.1 2.2 2.4 6.3 6.4 2.2 2.6 6.1 6.1 2.2 2.6

Basic single

single

single

policy repeat

access from California access from Netherlands

first first repeat

persistent actors (storage in California)volatile actors

access from California access from Netherlands

first repeat first repeatAPI

Figure 4. Median Access Latency in milliseconds. Cell color indicates the number of inter-cluster roundtrips (IRTs). Bold
indicates the expected common case for the chosen policy (e.g. local hit for global single instance protocol).

first storage roundtrip because it can return version 0 (given
by the default constructor).

4.2.3 Conclusions
Our results show that as expected, the caching layer can
reduce latencies in many cases, when compared to accessing
storage directly. By how much, and under what conditions,
depends on the API as follows.

Single-Instance, Basic API. Both read and update la-
tency (for volatile actors) and at least read latency (for per-
sistent actors) are reduced to below 3ms if an actor is ac-
cessed repeatedly and at one datacenter only.

Versioned API, Linearizable Operations. Similar to the
basic API in the volatile case. For the persistent case, there
are no latency benefits since all operations have to access
storage no matter what (by definition).

Versioned API, Local Operations. All repeated ac-
cesses at all datacenters for both volatile and persistent ac-
tors are reduced to below 3ms. All first accesses are reduced
to less than 7ms. The cost of durability and synchronization
are effectively hidden.

4.2.4 Additional Discussion
Each reported number is the median, estimated using a sam-
ple of 2000-4000 requests. We do not report the mean, be-
cause we found it an unsuitable statistic for this distribution
(the long tail makes it difficult to estimate the mean with
reasonable precision). In most cases, the 3rd quartile is only
slightly higher than the median: less than an extra 10% for
medians over 15ms, and less than an extra .3ms for medians
below 3ms. But for medians between 6ms and 15ms, the 3rd
quartile was significantly (20-60%) higher than the median.

Load. All latencies are for very low load (400 requests per
second) over a period of 20s, including 5s-10s of warmup
that is excluded. As the load increases, latencies increase
steadily due to queueing delays. At that point, throughput

is of more interest than latency, and we examine it in the
next section.

4.3 Single-Actor Throughput
Our second series of experiments measure the throughput of
a single actor under heavy load using the byte-array micro-
benchmark. Since a well-tuned system avoids hot-spots, it is
not a typical workload. Still, it offers useful insights into the
behavior of our system.

4.4 Setup
To measure the peak throughput, our experiments run a se-
ries of increasing loads (by increasing the number of robots)
for 20 seconds each. As the load increases, throughput in-
creases steadily at first, then plateaus (as latency exceeds 1s,
robots issue fewer requests per second). To keep the numbers
meaningful and to obtain a measurable maximal through-
put, we count a request towards throughput only if it returns
within 1.5s. We observed a fair amount of fluctuation in peak
throughput, some of which may be attributable to running on
virtualized cloud infrastructure. Empirically, we can usually
reproduce peak throughput within about 10%. We report all
throughput numbers rounded to two significant digits.

4.4.1 Volatile Single-Actor Throughput
For the volatile case, we distinguish three configurations
(Fig. 5). The baseline configuration places all the load on a
single cluster containing the instance, while the single and
multi configurations spread the load evenly over the two
clusters. The single configuration caches a single actor in-
stance (using the GSI protocol), while the multi configura-
tion caches an instance in each cluster (using the VLB pro-
tocol). Peak throughputs for each configuration and protocol
are shown in Fig. 6. We make the following observations.

For the single configuration, we achieve a peak through-
put within 15% of the single-datacenter baseline. The
throughput is lower because the higher latency of requests

10 2017/1/24

California N.lands California N.lands

single multi

load load

California

load

baseline

Figure 5. Volatile configurations.

Figure 6. Volatile peak throughput.

from the Netherlands means more of them exceed the 1.5s
cutoff.

Using the multi configuration consistently improves
throughput compared to single:

• Even linearizable operations perform about 50% better
(despite the strong consistency guarantee and the global
serialization) because of the batching in VLB.
• Local operations have the best throughput, because reads

can be served from the local cache, reducing latency and
communication. We get about double the throughput of
the single-datacenter baseline, which is as good as we
can expect, considering that multi has exactly twice the
servers of baseline.

4.4.2 Persistent Single-Actor Throughput
For the persistent case, we distinguish configurations {close,
far, multi} which keep the latest version in external cloud
storage as shown in Fig. 7. All place load evenly on both
clusters. close and far use a single cached instance, which
is close or far from the storage, respectively. multi uses one
cached instance per cluster.

First, we examined throughput for the single-instance
Basic API, shown in Fig. 8. We see that throughput heavily
depends on the percentage of update operations.

For a workload of 100% update operations (top bar in
both series), the throughput is very low, about the reciprocal
of the storage latency. This is because with the Basic API,
the actor instance cannot process any operations while an
update to storage is in progress. If the workload contains
only reads and no updates, throughput is o.k. because reads
can be served quickly from the cache (bottom white bar in
both series).

The Versioned API achieves much better throughput in
the presence of updates because the BCAS protocol can
overlap and batch read and update operations. Its peak

California N.landsCalifornia N.lands California N.lands

close far multi

load load load

Figure 7. Persistent configurations.

Figure 8. Persistent peak throughput, Basic API.

Figure 9. Persistent peak throughput, Versioned API.

throughput numbers for a 10% update rate are shown in
Fig. 9.

Batching can improve peak throughput by two orders of
magnitude even for linearizable operations: consider the
single-instance in the far configuration. For the same con-
figuration, the versioned API achieves 11k, compared to 110
for the Basic API, because a single storage access can serve
many linearizable operations.

As expected, using local operations further improves the
throughput (bottom series), because reads can be served
at lower latency and with less communication. For single-
instance, the improvement is roughly 15%-75% (far does
better than close because the longer storage latency causes
larger batch sizes, which saves work). For multi-instance, the
performance is even better (32k). However, it does not quite
reach the performance of the volatile series (39k).

4.5 Order Processing Throughput
We now study a slightly more realistic workload, which dis-
tributes over many small actors. Our results demonstrate

11 2017/1/24

that the versioned API is very beneficial for the persistent
case, because batching can mask storage performance limi-
tations, and because it supports fine-grained consistency se-
lection. Moreover, we discover that in a load-balanced sys-
tem, single-instancing sometimes achieves better throughput
than replication.

4.5.1 TPC-W-mini Benchmark
This benchmark models online order processing using work-
flows. It is inspired by the TPC-W benchmark, but makes
simplifications to work around the lack of transactions and
models only a subset of the transactions.

We use two classes of actors: (1) an Item actor represent
a single item of inventory. It has a stock-quantity, a price,
and a list of reservations (each consisting of a cart id and a
multiplicity). (2) a Cart actor tracks the ordering progress of
a customer. It contains workflow status and a list of items in
the cart. There is one cart per robot.

Each robot goes through four workflow steps, corre-
sponding to operations on the cart actors:

1. create — create a new workflow, starting with an empty
user cart

2. add items — add a number of items to the cart, and vali-
date their existence by calling exists on the item actors

3. buy — for each item in the cart, reserve the requested
quantity by calling reserve(cart-id, quantity) on each
item, and add up the returned price for all items

4. buy-confirm — finalize the purchase by calling
confirm(cart-id) on each item.

Robots pause for a configurable thinking time between
steps. They issue at most one new workflow every 4 seconds,
which limits the request rate to an average of 1 request per
second per robot.

The reservations in step buy are allowed to be optimistic
(an item can be reserved without fully guaranteeing that
the stock-quantity is sufficient); but in step buy-confirm,
the reservation must be checked against the actual quan-
tity available. If either of these steps fails, the workflow is
aborted, and its reservations are undone.

Configuration Variations. Cart actors are always single-
instance and volatile. For the item actors, we implemented
two options (basic/versioned), using the basic and ver-
sioned API respectively, and we tried both options persis-
tent /volatile for each. For the versioned case, we have an
extra option (lin/mixed) where lin uses linearizable opera-
tions to read and update items (thus always working with
the very latest inventory), while mixed uses local operations
whenever possible without risking to oversell items, i.e. ev-
erywhere except in confirm(cart-id).

Setup. The load and servers are evenly distributed over the
two datacenters as in Fig. 3. We use the TPC-W scale setting
of 1000 items, with one item per order and a thinking time

Figure 10.

of 100ms. Throughput is the number of workflow steps that
complete in less than 1.5s, divided by the test duration (28s),
rounded to two significant digits.

4.5.2 Results
We show peak throughput results in Fig. 10, and make the
following observations:

Single-instance Batching. For the persistent case, the ba-
sic API again performs poorly (4.1k) because it can process
only one operation at a time. In comparison, with the Ver-
sioned API, batching all reads and updates at a single in-
stance improves throughput by a factor 7x, to 29k. This is
remarkable, especially considering that all operations remain
linearizable with respect to external storage.

Mixed Consistency. Using strong consistency only
where actually needed (i.e. during the confirm phase) pro-
vides an appreciable additional throughput improvement
(about 24-30%). This confirms the benefit of an API that
allows to adjust the consistency level not only per actor, but
per individual operation.

To replicate or not to replicate. An interesting (and
somewhat unexpected) result is that multi-instance exhibits
lower throughput than single-instance. The reason is that co-
ordinating the instances requires more overall work (noti-
fication messages, retries on conflicts) which reduces peak
system throughput. This is in stark contrast to the results for
single-actor throughput (Figs. 6,9), because for the latter, the
extra work is performed by otherwise idle nodes. However,
in a load balanced situation where all servers are highly uti-
lized, extra work directly reduces global throughput.

5. Related Work
We do not know of prior work on geo-distributed actor sys-
tems, and more generally, of work that strongly separates
the geo-distribution from durability. However, GEO’s mech-
anisms touch on many aspects of distributed computing,
which we summarize here: distributed objects, caching, geo-
distributed transactions, multi-master replication, replicated
data types, and consensus.

12 2017/1/24

Distributed object systems from the 1980s and 90s are
very similar to virtual actor systems, and share their ability to
scale-out [2, 11, 14]. However, hardly any focused on state-
ful applications, on geo-distribution, or consider situations
where the object state is persisted externally. One exception
is Thor [22], but it used a highly-customized object-server
with server-attached storage and thus lacked the flexibility
of GEO. Of course, at the time the now common and cheaply
available separation of compute and storage in the cloud did
not exist.

Group communication (e.g., Isis [4] and Horus [51]) and
distributed shared memory systems (e.g., Interweave [46])
offer protocols for coherent replication. However, they do
not offer the abstraction level of our virtual actor API, with
its choice of volatile, externally persisted, single-instance,
and multi-instance configurations, and with optimized co-
herence protocols for each case; nor do they provide a state
API that offers an easy choice between eventual consistency
and linearizability, and permits reasoning in terms of latest,
confirmed, and tentative versions.

Actors that are persisted can be thought of as an object-
oriented cache. Two popular cache managers for datacen-
ters are Redis and memcached. In Redis, writes are pro-
cessed by a primary cache server and can be replicated asyn-
chronously to read-only replicas [38]. In memcached, cache
entries are key-value pairs, which are spread over multiple
servers using a distributed hash table [26]. Neither system
is object-oriented and neither offers built-in support for geo-
distribution.

There has been a steady stream of papers in recent years
on systems to support transactions over geo-distributed stor-
age, using classical ACID semantics [1, 13], weaker isola-
tion for better performance [21, 24, 45], and optimized geo-
distributed commit protocols [19, 27, 28]. Unlike GEO, they
do not provide an actor model with user-defined operations,
nor do they separate geo-distribution from durability.

The same distinctions apply to multi-master replication,
which has a rich literature of algorithms and programming
models [17, 40, 47, 48]. Most of them focus on conflict
detection, typically using vector clocks. Vector clocks are
not needed by the BCAS and VLB protocols since they
serialize updates at a primary copy.

There are many approaches that, like GEO, distinguish
between fast, possibly-inconsistent operations vs. slow con-
sistent operations [12, 14, 18, 21, 41]. Bayou [49] was
among the first and is especially similar to GEO. In Bayou,
updates are procedures, though they are in a stylized format
having a conflict check and merge function. In both systems,
an object/actor state is its sequence of committed updates,
followed by the tentative ones. Unlike GEO, Bayou makes
tentative updates visible before they commit, and their or-
dering may change until they commit. Like GEO, Bayous
implementation uses a primary copy to determine which up-
dates have committed.

Some geo-replication mechanisms avoid agreement on a
global update sequence to improve performance and avail-
ability [6, 21, 43, 44]. However, these systems can be dif-
ficult to use for developers, because they do not guarantee
the existence of a latest version, and do not support arbitrary
user-defined operations on objects or actors. Rather, each ab-
stract data type requires a custom distributed algorithm as
in CRDTs [6, 43, 44], or commutativity annotations on op-
erations as in RedBlue consistency [21]. Also, linearizable
operations are usually not supported [21].

Some key-value stores offer some of GEO’s functionality,
but only for their custom storage and not for objects. For
example, PNUTS [12] supports linearizable operations on
a primary copy of each record, which can migrate between
datacenters. Its operations offer consistency-speed tradeoffs.

Cassandra offers eventually consistent, highly-scalable
geo-distributed storage using quorum consensus for both
reads and writes [9]. Updates are timestamped writes or
deletes and are applied to all replicas. They replace the cur-
rent state unconditionally. Thus, clients cannot atomically
read-modify-write object state as in GEO or Bayou.

Cassandra programmers can configure how many repli-
cas to maintain where, and indicate how many replicas to
read or update on any given operation, which lets them con-
trol tradeoffs similar to our configuration choices. However,
it is difficult to extract high-level semantic consistency guar-
antees (as in our versioned state API) from these low-level
numeric parameters; there is no concept of a primary copy
or global version numbers, or support for linearizable oper-
ations.

As a workaround, recent versions of Cassandra offer
lightweight transactions which run a multi-phase Paxos [20]
protocol. By contrast, consensus in GEO is either fast or del-
egated: For volatile objects, GEO runs a simple single-phase
leader-based consensus. The leader is determined by a mu-
tual exclusion protocol (GSI) for the single-instance case, or
statically for the multi-instance case (VLB). For persistent
objects, the BCAS protocol sequences and batches updates
at one or more instances, and when committing the batches,
delegates the final consensus to the storage layer.

6. Conclusion
This paper introduced GEO, an actor system for implement-
ing geo-distributed services in the cloud. Its virtual actor
model separates geo-distribution from durability, and sup-
ports both volatile and externally persisted actors. It can ex-
ploit locality where present (single-instance configuration),
and supports replication where necessary (multi-instance
configuration). The complexity of protocols to support these
options is hidden underneath GEOs simple linearizable API,
which puts geo-distributed applications within the reach
of mainstream developers. GEOs implementation includes
three such protocols for distributed coherence that tolerate
failures and configuration changes. Our evaluation of latency

13 2017/1/24

and throughput demonstrates that the model permits some
very effective optimizations at the protocol layer, such as
replication (for reducing global latency) and batching (for
hiding performance limitations of the storage layer).

Availability. The GEO project is open-source and a pre-
release is publicly available on GitHub [19]. It is already
being used in a commercial setting by an early adopter, a
company operating a service with clusters in several conti-
nents.

Future Work. We would like to investigate more protocols
and protocol variations, for example to support storage sys-
tems with different synchronization primitives. This may re-
quire factoring out duplicate functionality in each layer. A
design framework could be developed to help choose among
such storage systems for a given workload. Another interest-
ing challenge is the design and implementation of a mecha-
nism for geo-distributed transactions on actors. Finally, one
could develop adaptive protocols that switch between con-
figurations automatically.

References
[1] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Lar-

son, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megas-
tore: Providing scalable, highly available storage for interac-
tive services. In Conference on Innovative Data System Re-
search (CIDR), pages 223–234, 2011.

[2] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca:
a language for parallel programming of distributed systems.
IEEE Transactions on Software Engineering, 18(3):190–205,
Mar 1992.

[3] P. Bernstein, S. Bykov, A. Geller, G. Kliot, and J. Thelin.
Orleans: Distributed virtual actors for programmability and
scalability. Technical Report MSR-TR-2014-41, Microsoft
Research, March 2014.

[4] K. P. Birman and R. V. Renesse. Reliable Distributed Com-
puting with the ISIS Toolkit. IEEE Computer Society Press,
1993.

[5] S. Burckhardt. Principles of eventual consistency. Found.
Trends Program. Lang., 1(1-2):1–150, Oct. 2014.

[6] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Repli-
cated data types: Specification, verification, optimality. In
Principles of Programming Languages (POPL), 2014.

[7] S. Burckhardt, D. Leijen, J. Protzenko, and M. Fähndrich.
Global sequence protocol: A robust abstraction for replicated
shared state. In European Conference on Object-Oriented
Programming (ECOOP), 2015.

[8] S. Bykov, A. Geller, G. Kliot, J. Larus, R. Pandya, and J. The-
lin. Orleans: Cloud computing for everyone. In Symposium
on Cloud Computing (SoCC), pages 16:1–16:14, 2011.

[9] The Apache Cassandra Project. http://cassandra.

apache.org.

[10] K. M. Chandy and J. Misra. The drinking philosophers prob-
lem. ACM Trans. Program. Lang. Syst., 6(4):632–646, Oct.
1984.

[11] J. Chase, F. Amador, E. Lazowska, H. Levy, and R. Little-
field. The amber system: Parallel programming on a network
of multiprocessors. In Symposium on Operating Systems Prin-
ciples (SOSP), pages 147–158, 1989.

[12] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yer-
neni. Pnuts: Yahoo!’s hosted data serving platform. Proc.
VLDB Endow., 1(2):1277–1288, Aug. 2008.

[13] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Span-
ner: Google’s globally distributed database. ACM Trans. Com-
put. Syst., 31(3):8:1–8:22, Aug. 2013.

[14] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and A. Shvarts-
man. Eventually-serializable data services. In Principles of
Distributed Computing (PODC), pages 300–309, 1996.

[15] GEO system prototype. Available as a branch forked from
the Orleans github project, at https://github.com/

sebastianburckhardt/orleans/tree/geo-samples,
2016.

[16] M. P. Herlihy and J. M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM TOPLAS, 12, 1990.

[17] B. Kemme, R. Jiménez-Peris, and M. Patiño-Martı́nez.
Database Replication. Synthesis lectures on data manage-
ment. Morgan & Claypool Publishers, 2010.

[18] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann. Con-
sistency rationing in the cloud: Pay only when it matters. Proc.
VLDB Endow., 2(1):253–264, Aug. 2009.

[19] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete.
Mdcc: Multi-data center consistency. In European Conference
on Computer Systems (EuroSys), pages 113–126, 2013.

[20] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16:133–169, 1998.

[21] C. Li, D. Porto, A. Clement, R. Rodrigues, N. Preguiça, and
J. Gehrke. Making geo-replicated systems fast if possible,
consistent when necessary. In Operating Systems Design and
Implementation (OSDI), 2012.

[22] B. Liskov, M. Castro, L. Shrira, and A. Adya. Providing per-
sistent objects in distributed systems. In European Conference
on Object-Oriented Programming (ECOOP), pages 230–257,
1999.

[23] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Don’t settle for eventual: scalable causal consistency for wide-
area storage with COPS. In Symposium on Operating Systems
Principles (SOSP), 2011.

[24] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Stronger Semantics for Low-Latency Geo-Replicated Storage.
In Networked Systems Design and Implementation (NSDI),
2013.

[25] H. Melgratti and C. Roldán. A formal analysis of the global
sequence protocol. In COORDINATION 2016, pages 175–
191. Springer, 2016.

14 2017/1/24

http://cassandra.apache.org
http://cassandra.apache.org
https://github.com/sebastianburckhardt/orleans/tree/geo-samples
https://github.com/sebastianburckhardt/orleans/tree/geo-samples

[26] Memcached. Available under BSD 3-clause license. https:
//github.com/memcached/memcached, 2016.

[27] F. Nawab, D. Agrawal, and A. E. Abbadi. Message futures:
Fast commitment of transactions in multi-datacenter environ-
ments. In Conference on Innovative Data System Research
(CIDR), 2013.

[28] F. Nawab, V. Arora, D. Agrawal, and A. El Abbadi. Mini-
mizing commit latency of transactions in geo-replicated data
stores. In International Conference on Management of Data
(SIGMOD), pages 1279–1294, 2015.

[29] The netflix simian army. http://techblog.netflix.com/
2011/07/netflix-simian-army.html, Sept. 2011.

[30] B. M. Oki and B. H. Liskov. Viewstamped replication: A new
primary copy method to support highly-available distributed
systems. In Principles of Distributed Computing (PODC),
pages 8–17, 1988.

[31] D. Ongaro and J. Ousterhout. In search of an understandable
consensus algorithm. In USENIX ATC’14: USENIX Annual
Technical Conference, pages 305–320, 2014.

[32] Orbit - virtual actors for the jvm. BSD 3-clause license.
https://github.com/orbit/orbit, 2016.

[33] MIT license. https://github.com/dotnet/orleans,
2016.

[34] The year in downtime: The top 10 outages of 2013.
http://www.datacenterknowledge.com/archives/

2013/12/16/year-downtime-top-10-outages-2013/.

[35] Ponemon institute: 2013 study on data center outages. http:
//www.emersonnetworkpower.com/documentation/

en-us/brands/liebert/documents/white%20papers/

2013_emerson_data_center_outages_sl-24679.pdf.

[36] R. Power and J. Li. Piccolo: Building fast, distributed pro-
grams with partitioned tables. In Operating Systems Design
and Implementation (OSDI), pages 293–306. USENIX Asso-
ciation, 2010.

[37] The raft consensus algorithm. https://raft.github.io/,
2016.

[38] Redis. http://redis.io/documentation/, 2016.

[39] J. B. Rothnie and N. Goodman. A survey of research and
development in distributed database management. In Interna-
tional Conference on Very Large Data Bases (VLDB), pages
48–62, 1977.

[40] Y. Saito and M. Shapiro. Optimistic replication. ACM Com-
puting Surveys, 37:42–81, 2005.

[41] M. Serafini, D. Dobre, M. Majuntke, P. Bokor, and N. Suri.
Eventually linearizable shared objects. In Principles of Dis-
tributed Computing (PODC), pages 95–104, 2010.

[42] Service fabric reliable actors. Available for the
Windows Azure platform, see https://azure.

microsoft.com/en-us/documentation/articles/

service-fabric-reliable-actors-get-started/,
2016.

[43] M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski. A
comprehensive study of convergent and commutative repli-
cated data types. Technical Report Rapport de recherche 7506,
INRIA, 2011.

[44] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In 13th Int. Symp. on Sta-
bilization, Safety, and Security of Distributed Systems (SSS),
Grenoble, France, Oct. 2011.

[45] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In Symposium on Operat-
ing Systems Principles (SOSP), 2011.

[46] C. Tang, D. Chen, S. Dwarkadas, and M. L. Scott. Efficient
distributed shared state for heterogeneous machine architec-
tures. In International Conference on Distributed Computing
Systems (ICDCS), pages 560–, 2003.

[47] D. Terry. Replicated data consistency explained through base-
ball. Commun. ACM, 56(12):82–89, Dec. 2013.

[48] D. B. Terry. Replicated Data Management for Mobile Com-
puting. Synthesis Lectures on Mobile and Pervasive Comput-
ing. Morgan & Claypool, May 2008.

[49] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in
Bayou, a weakly connected replicated storage system. In
Symposium on Operating Systems Principles (SOSP), 1995.

[50] Tpc-w. http://www.tpc.org/tpcw/tpc-w_wh.pdf.

[51] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexi-
ble group communication system. Commun. ACM, 39(4):76–
83, Apr. 1996.

[52] W3C. http://www.w3.org/1999/04/Editing/.

[53] Windows azure cache. http://www.windowsazure.com/

en-us/documentation/services/cache, 2016.

15 2017/1/24

https://github.com/memcached/memcached
https://github.com/memcached/memcached
http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html
https://github.com/orbit/orbit
https://github.com/dotnet/orleans
http://www.datacenterknowledge.com/archives/2013/12/16/year-downtime-top-10-outages-2013/
http://www.datacenterknowledge.com/archives/2013/12/16/year-downtime-top-10-outages-2013/
http://www.emersonnetworkpower.com/documentation/en-us/brands/liebert/documents/ white%20papers/2013_emerson_data_center_outages_sl-24679.pdf
http://www.emersonnetworkpower.com/documentation/en-us/brands/liebert/documents/ white%20papers/2013_emerson_data_center_outages_sl-24679.pdf
http://www.emersonnetworkpower.com/documentation/en-us/brands/liebert/documents/ white%20papers/2013_emerson_data_center_outages_sl-24679.pdf
http://www.emersonnetworkpower.com/documentation/en-us/brands/liebert/documents/ white%20papers/2013_emerson_data_center_outages_sl-24679.pdf
https://raft.github.io/
http://redis.io/documentation/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-reliable-actors-get-started/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-reliable-actors-get-started/
https://azure.microsoft.com/en-us/documentation/articles/service-fabric-reliable-actors-get-started/
http://www.tpc.org/tpcw/tpc-w_wh.pdf
http://www.w3.org/1999/04/Editing/
http://www.windowsazure.com/en-us/documentation/services/cache
http://www.windowsazure.com/en-us/documentation/services/cache

A. GSI Correctness Proof
The goal of the GSI protocol, as defined in §3.1.1, is to disal-
low two instantiations of the same actor. We prove this in two
failure models. In the first model, we assume that messages
can be lost. Thus, if a cluster c does not receive a message
that it expects from a sender d within a timeout period, then c
must assume that d is simply slow or unable to communicate
with c (but may be able to communicate with other clusters).
In the second model, there are no communication failures.

A.1 With lost messages
PROPOSITION 1. The protocol ensures that for a given actor
k at most one cluster can have a directory entry for k in the
Owned state, even if messages are lost.

PROOF. Suppose two clusters, c and d, have such a direc-
tory entry. To arrive in that state, each of them must have
executed the GSI request sequence at some point and moved
to the Owned state in the final step, when processing the
responses. We want to show that this is impossible, which
proves the proposition.

We do not know exactly how the steps of the two com-
peting requests interleaved; however, we can reason our way
through several distinct cases and eventually derive a con-
tradiction, which proves the proposition. First, consider the
following table which labels the steps of the protocol in each
cluster:

Cluster c Cluster d

c1. Send Request d1. Send Request
c2. Wait for Replies d2. Wait for Replies
c3. Process all replies and d3. Process all replies and

update state to Owned update state to Owned

We will now show that this table is not consistent with
any ordering of the events, via a case analysis. The four cases
are based on when and whether d received the request sent
by step c1.

1. Suppose d received the request from c1 before d1. There
are three sub-cases, depending on when and whether c
received ds request from d1.
• Suppose c received ds request from d1 after c3. Then
c replied (Fail, c) to d, and d does not move to state
Owned in step d3 (because it either saw this response,
or no response at all), which contradicts our assump-
tion.
• Suppose c received ds request from d1 before c3. This

must have happened after c1 (because we assumed
that c1 happened before d1). Therefore, c was in state
[Requested]. If c < d, then c updated its state to
[Loser]. Therefore, when c processed replies to its
request in c3, it would not set its state to Owned,
contradicting our assumption. If c > d, then it replied

(Fail) to d, in which case d in step d3 would not
set its state to Owned (because it would either see
that response or no response at all), contradicting our
assumption.
• Suppose c did not receive ds request from d1 at all.

Then it would not move to state Owned in c3, contra-
dicting our assumption.

2. Suppose d received the request from c1 after d1 but be-
fore d3. Thus, d was in state [Requested] when it received
that request. There are two sub-cases:
• If c < d, then d replied to c with (Fail), in which

case c does not move to state Owned in c3 (because
it either saw this response, or no response at all),
contradicting our assumption.
• If c > d, then d replied (Pass) and set its state to
[Loser]. Therefore, d does not move to state Owned
in step d3, contradicting our assumption.

3. Suppose d received the request from c1 after d3. Since d
was in the Owned state at that point it must have replied
(Fail) to c’s request. Therefore, c does not move to state
Owned in step c3 (because it either saw this response, or
no response at all), contradicting our assumption.

4. Finally, suppose d did not receive the request from c1.
Then it cannot have replied, and c does not move to state
Owned in step c3, contradicting our assumption.

This concludes the proof of Proposition 1. �

A.2 Without lost messages
If communication failures do not occur, the protocol makes
the stronger guarantee that at most one cluster is in Owned
or Doubtful state, which means at most one cluster has an
instance active.

PROPOSITION 2. If no messages are lost, the protocol en-
sures that for a given actor k at most one cluster can have a
directory entry for k in either the Owned or Doubtful state.

PROOF. with no lost messages, the reply processing never
moves a directory entry to the Doubtful state. Thus, the
claim follows directly from Proposition 1. �

16 2017/1/24

	Introduction
	Actor Configuration Options
	Novelty and Relevance
	Contributions

	Programming Model
	Versioned State API

	Implementation
	GSI Protocol
	Protocol Definition
	Correctness
	Configuration Changes

	BCAS Protocol
	Protocol Description

	VLB Protocol

	Evaluation
	Experimental Setup
	Workloads

	Latency
	Discussion of Volatile Section
	Discussion of Persistent Section
	Conclusions
	Additional Discussion

	Single-Actor Throughput
	Setup
	Volatile Single-Actor Throughput
	Persistent Single-Actor Throughput

	Order Processing Throughput
	TPC-W-mini Benchmark
	Results

	Related Work
	Conclusion
	GSI Correctness Proof
	With lost messages
	Without lost messages

