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ABSTRACT
Search result examination is an important part of search-
ing. High page load latency for landing pages (clicked re-
sults) can reduce the efficiency of the search process. Proac-
tively prefetching landing pages in advance of clickthrough
can save searchers valuable time. However, prefetching con-
sumes resources that are wasted unless the prefetched results
are requested by searchers. Balancing the costs in prefetch-
ing particular results against the benefits in reduced latency
to searchers represents the search result prefetching chal-
lenge. We present methods that leverage searchers’ cursor
movements on search result pages in real time to dynami-
cally estimate the result that searchers will request next. We
demonstrate through large-scale log analysis that our ap-
proach significantly outperforms three strong baselines that
prefetch results based on (i) the search engine result rank-
ing, (ii) past clicks from all searchers for the query, or (iii)
past clicks from the current searcher for the query. Our
promising findings have implications for the design of search
support that makes the search process more efficient.

1. INTRODUCTION
Search result selection is a core part of the Web search ex-

perience. Following the generation of a search engine result
page (SERP) comprised of candidate results, searchers must
select results of interest and wait for them to load. While
the latency in SERP generation has been well studied and
shown to impact measures of the search experience (e.g.,
higher SERP generation latency leads to higher dissatisfac-
tion and reduced SERP engagement) [2, 38], the relationship
between latency and the loading of landing pages is less well
understood. Despite a lack of research on this topic in the
Web search community, general research on latencies in in-
teractions with computer systems [39] and interactions with
Web pages in particular [32] suggests that it has a significant
impact on the overall experience. Methods to proactively
fetch the content of particular search results before they are
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Figure 1: Example of cursor-based prefetching. The model
estimate of whether the searcher will select one of the top
three results over time (at 50ms, 100ms, 150ms) is shown
alongside each link (as Score). These estimates change as
a function of the searcher’s cursor movements. The cursor
trail and the trajectory towards the second result are high-
lighted in the figure with solid and dashed lines respectively.
When the model score for a result reaches a certain threshold
(0.8 for Search Result 2), that result is prefetched.

selected could benefit searchers, while balancing the costs
involved in downloading content that is never viewed; we
define this as the search result prefetching challenge.

To address this challenge, the prefetching system needs
to predict which result the user will select next. In previ-
ous research, such predictions are usually made via static
estimates learned from historic usage data [13, 14, 22, 26,
45]. For example, search engines prefetch the top result for
queries where there is little variation in intent (primarily
navigational queries [1]). However, these methods are only
applied for small sets of queries where the dominant intent
is clearly defined and observable via prior click patterns.

In contrast, we propose to address this challenge by dy-
namically updating the estimates of likelihood of each result
being selected during interaction with a SERP; when the
system is confident that a link will be selected, the page is
prefetched (Figure 1). Our method leverages the mouse cur-
sor movements on the SERP (which can now be collected in
a scalable manner [8, 20]), contextualized by the query, the
results, and the searcher’s historic activity to make real-time
predictions. If we can correctly prefetch early enough, we
can save people significant time–this is especially important
for those accessing the Web on low-bandwidth connections,



who may need to be more selective about the results that
they view. Indeed, on average, our methods save searchers
650ms per query for the 65% of queries where we correctly
prefetch the clicked result.

We make the following contributions with our research:

• Introduce the search result prefetching challenge and es-
timate the scope of its potential impact on searchers and
their search experience (in terms of the fraction of query
volume and average time savings per query of our method);

• Develop machine-learned models that leverage a rich array
of features to prefetch search results pre-click;

• Experiment with large-scale logs and demonstrate gains
over strong baselines, including variations for different
query types. We also identify the important feature classes
in the learned models via ablation experiments, and;

• Present implications of result prefetching for search sys-
tem design and for society (e.g., enabling more rapid in-
formation access for those on slower Internet connections).

The remainder of this paper is structured as follows. Sec-
tion 2 describes related work in areas such as prefetching,
the impact of response latency on user engagement, and
mouse cursor monitoring. Section 3 motivates our research
by demonstrating the potential impact of our prefetching
system. Section 4 presents a formal description of the search
result prefetching challenge. Section 5 describes the pre-
fetching approach, including the data used, the features gen-
erated, and the models that result. In Section 6, we describe
our experimental setup, including datasets and evaluation.
In Section 7, we present the results of our experiments,
demonstrating the effectiveness of our method compared to
baselines. Section 8 discusses our findings, their limitations
given the data and the problem setting, and their impli-
cations for the design of search systems. We conclude in
Section 9 and present opportunities for future work.

2. RELATED WORK
The following areas are relevant: (a) latency effects in

human-computer interaction and SERP generation, (b) meth-
ods to reduce latency during search, and (c) using cursor
movements collected in laboratory settings and at scale.

2.1 Latency Effects
Since the early days of human computer interaction, re-

searchers have studied the influence of system response time
on the success, speed, and satisfaction of interactions [31,
Chapter 5]. These studies have found that rapid responses
(i.e., less than a second) are preferred and can increase user
productivity [31]. Shneiderman [39] reviewed the literature
on computer response time and recommended that comput-
ers should respond immediately, in part based on limitations
in human short-term memory [27]. Web page download time
is affected by factors such as browser performance, Internet
connection speed, local network traffic, load on the remote
host, and the structure and format of requested content.
Download speeds are an important aspect of the user ex-
perience [32]. Studies have examined the interplay between
page load time and the user experience, including tolerable
wait times [30] and their psychological impact [36].

Intensive research and engineering efforts have been de-
voted to achieving low latency in large, complex computing
systems such as search engines [10]. Modern Web search

engines deliver results rapidly because fast results are per-
ceived as being of higher quality and searchers engage more
with them. For example, Google conducted online experi-
ments where they intentionally injected server-side delays,
ranging from 100 to 400 milliseconds, into the search results
to observe changes to people’s behavior. They found that
increasing the load time of the SERP by as little as 100
milliseconds decreased the number of searches per person.
These differences increased over time and persisted even af-
ter the experiment ended [38]. In similar experiments, Bing
added server delays ranging from 50 to 2000 milliseconds.
They observed decreases in queries and clicks, and an in-
crease in time to click, with larger effects with more delay
[38]. Arapakis et al. employed user studies and large-scale
log analysis, and showed that response latencies of 500ms
were noticeable by searchers [2]. Recognizing the impor-
tance of speed to searchers, Google added site speed (i.e.,
how quickly a Website responds to requests) as a relevance
signal in search ranking [40]. Recent work on slow search
discusses the cost-benefit tradeoffs in retrieving search re-
sults quickly, and what could be accomplished given more
time [41]. Beyond just making search faster (or slower),
there are other reasons why page load latency matters, e.g.,
to address network bandwidth constraints [14].

2.2 Reducing Latency
To address latency in query responses, researchers have

designed caches to rapidly serve results [5], including ways to
leverage historic search behavior [13, 22, 26]. These methods
limit the set of documents searched in response to queries,
incurring increased infrastructure costs. Search engines al-
ready try to reduce time to click by promoting popular re-
sults [1]. Since repeat visits to the same result is common
[43], search engines have promoted results that are likely to
be selected; reducing the time for searchers to locate these
results on SERPs. The Bing search engine already uses new
browser capabilities to prefetch results that are highly likely
to be selected [35]. This can enhance the search experience
by reducing latency beyond SERP creation.

Moving beyond search engine support for latency reduc-
tion, Padbanabham and Mogul [33] use N-hop Markov mod-
els based on surfing patterns for improving pre-fetching strate-
gies for Web caches. Fan et al. [14] leverage a user’s his-
toric surfing activity and a Markov predictor tree to pre-
dict future page accesses. Yang et al. [45] mined frequent
sequences from Website access logs and employed them to
derive association rules that could be used in prefetching de-
cisions. More recently, White et al. [44] used recent search
interactions and other contextual signals (e.g., incoming hy-
perlinks) to predict searchers’ future topical interests given a
Web page. Research on continual computation [18] proposed
decision-theoretic methods for the ideal use of idle time for
computational problem solving. These methods have been
applied for selective (utility-directed) content prefetching,
including the partial prefetching of specific Web page ele-
ments, while balancing associated costs and benefits.

To be successful, all of these methods rely on popularity
data and/or the sequence of visited Web pages. This may
be reasonable for popular queries/pages or active users, but
less applicable for other scenarios with less data (e.g., tail
queries). The methods that leverage browsing data relies on
being able to track sequences of Web page visits, which can
require significant infrastructure, especially at scale across



many Websites. It is also not clear the extent to which such
an approach applies in search scenarios, where the results
returned for a query are dynamically generated and the set
of prefetching candidates may change over time [6].

2.3 Leveraging Cursor Movements
We are focused on dynamically prefetching search result

content once a query has been issued. Retrieving the top
result for all queries or all results for all queries incurs a
high cost in terms of resource consumption (primarily net-
work bandwidth but also battery power on mobile devices).
We hypothesize that by monitoring searcher attention in
real-time on SERPs we can perform better prefetching than
these crude methods. Lee et al. [25] performed prefetching
of video materials via models learned from eye-gaze and cur-
sor movements. They did so in a laboratory setting with ac-
cess to gaze tracking technology. Recent research has shown
that there is a strong association between gaze and cursor
position [16, 20], especially around the time of a click [19].
This can be used to predict attention and intentions from
cursor movement data [16, 19] in laboratory environments.
Beyond controlled settings, recent work has shown that such
methods can be deployed at scale online [8, 20]. This facil-
itates a better understanding of search behavior [8], and
enables predictions of SERP examination activity [11], im-
proved relevance estimation [19], and ranking [23] based on
common patterns in cursor signals. From this data we learn
models to predict which results will be clicked in real time,
and evaluate our models in a natural setting.

Human-computer interaction (HCI) researchers have pre-
dicted aspects of cursor movement termination, focusing on
endpoint prediction (i.e., predicting the terminal location
of the cursor) and target prediction (i.e., deciding between
multiple targets). Within HCI, these have traditionally been
used in applications to expedite the acquisition of targets.

Simple versions of target prediction leverages distance from
the mouse cursor [24] or consider angles between the move-
ment vector and vectors for the target positions [29]. More
sophisticated methods build probabilistic models based on
previous clicks [46], or using kinematic template matching
[34]. Although there are similarities between this work and
ours, experiments in this area are generally conducted in
carefully-controlled, artificial environments. On SERPs, there
are many results to choose from, there are many aspects of
the page competing for searcher attention in addition to the
results (e.g., advertisements, related searches), and there are
preconceived biases that affect where people click in the re-
sult list, irrespective of content (e.g., positional biases [21]).
All of these factors make the task of real-time click pre-
diction on SERPs quite challenging, especially if searchers’
clicks disagree with the query’s aggregate click distribution.

2.4 Contributions Over Previous Work
Our research extends previous work in a number of ways.

First, we focus on prefetching in dynamic environments where
the list of targets can change over time, even for the same
query. Most prefetching methods rely on static predictions
and transition probabilities learned from historic data. Sec-
ond, many of the studies of end-point prediction focus on
carefully controlled studies in laboratory settings. In con-
trast, we operate in a non-controlled environment with cur-
sor movements with multiple targets, potential distractions,
and biases that can affect behaviors irrespective of the rel-
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Figure 2: Cumulative distribution function of landing page
load times for result clicks on SERPs.

evance of the results retrieved by the search engine. Third,
by leveraging cursor movements and other features our ap-
proach can better adapt to the current search situation and
less common informational queries. Many current prefetch-
ing methods within Websites and search engines focus only
on providing this support for popular pages. Finally, since
we propose a model that is learned offline from many searchers’
behavior, there is no need for searchers to calibrate the
model to accommodate their search activity before the first
use (as is the case in other models, e.g., [4]).

3. MOTIVATION
Before proceeding, it is important to quantify the poten-

tial gains from prefetching in a Web search setting. If all
landing pages were to load instantly then there would be
no benefit from prefetching. Obviously this is not the case
given the computational differences in the machines serv-
ing and accessing online content, and the network transport
pipeline. To better understand the potential of prefetching
in Web search settings we analyzed six months of search-click
logs from millions of consenting users of Internet Explorer in
2013. From these data, we obtained a distribution of page
load times for hyperlink clicks on SERPs from a popular
Web search engine. The mean and median landing page load
times (PLTs) were 1282ms and 672ms respectively. The em-
pirical cumulative distribution of PLTs from 200ms to five
seconds or more is shown in Figure 2. Given that searchers
start to notice PLT delays at 500ms [2] (or even earlier [3]),
the figure suggests that, if we could make an accurate pre-
diction about which results to prefetch, we could noticeably
improve the search experience for at least 64% of SERP
clicks (as highlighted in red in Figure 2). These findings
serve as a strong motivation for developing the prefetching
model introduced and evaluated in this paper.

4. PROBLEM DEFINITION
Let U be a set of algorithmic results. Each result is asso-

ciated with a specific SERP region or area of interest (AOI),
comprising the region spanning the result title, snippet, and
URL. Given that the SERP was presented to the searcher at
time 0 and the searcher clicks on u∗ ∈ U at time T, we would
like to fetch u∗ at some point before T. Decision-making is
online: starting at time 0, the system observes a sequence
of interactions (cursor movements in our case) which might



inform its decision-making. Once a decision to fetch has
been made, the system may not fetch another page until the
searcher clicks on u∗. This budget represents a conservative
estimate of the cost, in terms of time and bandwidth, of
prefetching the result, and considers all clicks equally, e.g.,
for simplicity the size of the page is not considered in the
evaluation, even though prefetching a large/media-rich doc-
ument costs more than prefetching a smaller resource.

5. ALGORITHMS
We regard the search result prefetching challenge as a

ranking problem. We model probability of clicking on a
result as a function of static features of the result (e.g., po-
sition) as well as dynamic features of the result (e.g., proxim-
ity of the cursor to the result AOI). Our model computes this
relevance score throughout the searcher’s interaction with
the SERP. If the score exceeds a threshold τ , then the land-
ing page content is fetched. In this section, we will describe
the features and model that we developed for this challenge.

5.1 Features
Our features can be divided into static and dynamic based

on whether they are the same across all cursor movements
for a query impression (static) or change as the searcher
moves the cursor (dynamic). Each group can be further di-
vided into global and local. Global features of the SERP are
the same over all AOIs (e.g., SERP includes an advertise-
ment). Local features refer to properties unique to each re-
sult AOI (e.g., Euclidean distance between cursor and AOI).
Features are computed every time the cursor positon is sam-
pled (i.e., after 250ms have passed or the cursor has moved
at least eight pixels) for each of the result AOIs, since the
goal is to predict the result AOI that will be selected.

Previous research has shown that modeling differences
with the normative behavior for each searcher can help bet-
ter estimate document relevance [17]. As such, we include
the normalized version for each feature for each searcher us-
ing the deviations from average for the 〈searcher, feature〉
pair. User deviation is defined as the difference between the
feature value at the current cursor position and the the av-
erage feature value for that searcher computed over all their
historic actions. User deviation variants are included for
Dynamic Global and Dynamic Local features (Table 1).

5.1.1 Static Global Features
Query Features comprise query frequency and query click

entropy (as defined in [12]). Searchers may interact differ-
ently for different query classes, e.g., navigational queries vs.
informational queries, as shown previously [9].

SERP Features capture the presence of non-target ele-
ments such as advertisements and related searches, which
may influence the click behavior on the target organic search
results. Binary features for SERP has advertisements and
SERP has related searches are included.

5.1.2 Dynamic Global Features
Global Cursor Features capture the dynamics of cursor

movements up to the cursor sample in question. Features
include velocity, acceleration, jerk (i.e., rate of acceleration
change) and changes from previous cursor sample. These
also include features that capture where the cursor was lo-
cated on the SERP, such as its horizontal and vertical co-
ordinates, the maximum vertical coordinate reached by the

Table 1: Features used in prefetching model. Coordinates
are relative to upper-left corner of the SERP. Distances, co-
ordinates, and areas measured in pixels. Features with max-
ima or totals (denoted *) are computed since SERP load.

Feature name Description
Static Global
Query frequency Frequency of the query
Query click entropy Result click entropy of the

query (as in [12])
SERP has advertisements SERP has advertisement(s)?

(binary)
SERP has related searches SERP has related searches?

(binary)
Dynamic Global
Cursor xcoord X-coordinate of cursor
Cursor ycoord Y-coordinate of cursor
Cursor delta Distance cursor moved since it

was last sampled
Num non hyperlink clicks Number of cursor clicks on

SERP that are not on
hyperlinks, e.g., for text
selections

Cursor is reading Reading behavior (i.e.,
following text with cursor [37])

Cursor max ycoord* Max y coordinate of cursor
Cursor max AOI rank* Max AOI rank of cursor
Cursor total distance* Total cursor move distance
Cursor total time* Total time moved
Cursor time delta Time since cursor position was

last sampled
Static Local
AOI area Area of result AOI
AOI width Width of result AOI
AOI height Height of result AOI
AOI rank Rank position of result AOI
AOI xcoord X-coordinate of result AOI
AOI ycoord Y-coordinate of result AOI
AOI has card AOI has special image (e.g., a

brand logo) and/or additional
result information such as
deep links? (binary)

AOI has answer AOI has answer? (binary)
Dynamic Local
AOI is visible AOI in viewport? (binary)
AOICursor hover Cursor over AOI? (binary)
AOICursor distance Euclidean distance from the

cursor position to the center
of the AOI

AOICursor angle Angle between direction
vector center of result AOI.
AOI with least deviation
receives 1, otherwise 0

AOICursor proximity Proximity changes of cursor
with respect to AOI. 2 =
moving away from AOI, 1 =
moving toward AOI, 0 = same
distance from AOI

AOICursor speed Speed of cursor movement
toward AOI

AOICursor acceleration Acceleration toward AOI
AOICursor jerk Rate of cursor acceleration

change toward AOI
AOICursor on target On track to visit AOI. Project

least squares line through last
five cursor movements.
Return 1 if it intersects the
AOI, otherwise 0

AOICursor xdistance Horizontal distance between
cursor and AOI

AOICursor ydistance Vertical distance between
cursor and AOI

AOICursor dwell Cursor dwell time in AOI
AOICursor title dwell Cursor dwell time in result

title of AOI



cursor and maximum AOI rank that the cursor is observed
passing over, and the number of non-hyperlink clicks the im-
pression has received up to the cursor sample. The rationale
for these features is to capture the different stages of the cur-
sor movements. A directed, rapid movement may mean that
the searcher has found content of potential value; slow, undi-
rected movements may suggest that they are still searching.
Determining the maximum vertical position of the cursor
offers insight into the number of search results considered.
Finally, to explicitly model reading behavior using cursor as
an aid [37] (which could be an indicator of interest in a land-
ing page), a binary feature captures whether two consecutive
left-right cursor movements are observed.

5.1.3 Static Local Features
AOI Features characterize rhe target AOIs (in our case,

each search result). For each AOI, specific features include
the rank position of the AOI, horizontal and vertical co-
ordinates, width, height, area of the AOI, and the type of
the AOI (e.g., whether AOI is an aggregated result). The
rationale here is that behavior is highly influenced by the
presentation of the AOIs, for example, higher ranked AOIs
may be more likely to receive clicks while bigger AOIs and
AOIs with cards (e.g., brand logos) may be more likely to
attract searcher attention and result in clicks [11].

5.1.4 Dynamic Local Features
Local Cursor Features capture the interaction between

cursor movements and each AOI, in particular, to capture if
the cursor is moving towards the AOI for a potential click.
Features include the overall, vertical, horizontal distances,
between the AOI and the cursor, the angle between the mov-
ing direction of the cursor and the AOI, and, in turn, the
proximity between the two (2 = moving away from AOI, 1 =
moving toward AOI, 0 = same distance from AOI), as well
as whether the AOI is on target per the cursor trajectory
(i.e., draw a least squares line through last five cursor move-
ments and return true/false on whether it intersects each
AOI). We also compute the dwell time the cursor hover on
the AOI and the title of the AOI, respectively, as they may
be strong indicators of a potential click on the AOI.

View Features capture whether the AOI is visible in the
viewport. Invisible AOIs cannot be selected by searchers.

5.2 Model
We train a regression model to predict which result will

be clicked. The training procedure builds an ensemble of
decision trees based on gradient boosting [7]. This technique
has been shown to provide state-of-the-art performance for
various applications. In the context of learning to rank,
we treat each cursor sample as a query and each u as a
document. The objective of the model is to predict u∗. At
test time, for each cursor sample, we featurize and score
each u ∈ U . If the score of one or more results is above τ ,
we fetch u with the highest score.

6. METHODS
We now define the methods employed in training and eval-

uating our prefetching models, starting with the log data.

6.1 Data
To record searcher interactions with the Bing SERP at

scale without the need to install any browser plugins, we

used an efficient and scalable approach [8]. JavaScript-based
logging functions were embedded into the HTML source
code of the SERP. To obtain a detailed understanding of
user interactions with the SERP, we recorded information
on mouse cursor movements, clicks, scrolling, text selection
events, focus gain and loss events of the browser window, as
well as bounding boxes of several AOIs on the SERP and the
browser’s viewport size. We optimize our implementation
and run large-scale live experiments to ensure no significant
delay in PLT for SERPs with this logging enabled.

The JavaScript function for logging mouse cursor posi-
tions checked the cursor’s horizontal and vertical coordi-
nates relative to the top-left corner of the SERP every 250
milliseconds. Whenever the cursor moved more than eight
pixels away from its previously logged position, its new co-
ordinates were sent to the remote Web server. Eight pixels
correspond to approximately the height of half a line of text
on the SERP. We used this approach rather than recording
every cursor movement since we wanted to minimize the data
gathered and transmitted so as to not adversely affect the
user experience with delays associated with log data capture
and data uploads to the remote server. Since cursor tracking
was relative to the document, we captured cursor alignment
to SERP content regardless of how the user reached that
position (e.g., by scrolling or keyboard).

Mouse clicks were recorded using the JavaScript onMouse-
Down event handling method. The backend server received
log entries with location coordinates for every mouse click,
including clicks that occurred on a hyperlink as well as those
that occurred elsewhere on the SERP (even on white space
containing no content). To identify clicks on hyperlinks and
differentiate them from clicks on inactive page elements, we
logged unique hyperlink identifiers embedded in the SERP.

The width and height of the browser viewport in pixels
at SERP load time were also logged. This told us which
AOIs were visible. Browser window resizing during SERP
interaction was not accounted for. We also recorded the
current scroll position, i.e., the vertical coordinate of the
uppermost visible pixel of the SERP in the browser view-
port. This coordinate was checked three times per second
and was recorded whenever it had changed by more than 40
pixels compared to the last logged scrolling position. This
corresponds to approximately the height of two lines of text.

Simply logging the text of what was displayed on the
SERP is insufficient for reconstructing its layout since SERPs
vary per query (depending on whether vertical results are
shown, etc.), font sizes, and other browser preferences.

To reconstruct the exact SERP layout as it was rendered
in the user’s browser, we recorded the positions and sizes of
AOIs. We use the method from [8] to identify and record
the exact position of AOIs on SERP loading. The specific
AOIs recorded were: (i) top and bottom search boxes, (ii)
left rail and its contained related searches, search history,
and query refinement areas, (iii) mainline results area and
its contained result entries, including advertisements and an-
swers, and (iv) right rail. Some of these AOIs are visualized
in Figure 3. For each AOI bounding box, we determined
and logged the coordinates of its upper left corner as well
as its width and height in pixels. Using this information,
we map cursor positions and clicks to AOIs. Although we
record the position all AOIs shown in Figure 3, we focus
only on predicting clicks on one of the ten result AOIs.

The final, processed dataset consists of batches of instances



Figure 3: Segmentation of a search engine results page
(SERP) by areas of interest (AOI). Each of the 10 search
result captions (title, snippet, URL) is regarded as its own
AOI. These 10 result AOIs are our click prediction targets.

of the form: 〈σ, t, u, φ, y〉 where σ is a unique identifier for
this impression, encoding information about the user and
query, t denotes the timestamp (relative to 0) of the mea-
surement, u is a unique identifier for the AOI, φ represents
all of the feature values computed as discussed in Section
5.1, and y is a boolean variable indicating whether u was
clicked during the session σ. We focus on impressions with
exactly one detected click 1 and at least five detected cursor
positions (73.8% of all query impressions). Running exper-
iments with a smaller number of minimum cursor positions
resulted in no performance differences relative to our base-
lines. This is because when cursor data is missing (<10% of
all query impressions), our model effectively fall back to the
strongest baseline of original search result ranking (as it is
part of our model), and our gains over the baseline would
just be slightly diluted by including this small fraction of
traffic but findings and conclusions would remain the same.

We recorded the SERP interactions from the Microsoft
Bing Web search engine. Log data were gathered from
searchers in the control groups (i.e., with no experimental
treatments on frontend or backend) of multiple experiments
on the search engine in the U.S. English geographic locale,
run between May 2011 and June 2012, during external ex-
periments on small fractions of user traffic. For the duration
of the experiments, all queries from searchers in the control
groups (which is a representative sample of the overall search
traffic) are recorded along with their cursor movements.

6.2 Training
We selected a random set of 100K users (and their 1M

queries) from our dataset. We split the set by searcher
and time with 80% for training and 20% for testing. That
is, all tuples belonging to the same searcher–and therefore

1The comparison on impressions without a click is not very
relevant since they do not impact the user experience.

impression–were in the same split. The prediction targets
are set to 4 for clicked hyperlinks and 0 for hyperlinks that
were not clicked. Our model outputs a score for each hy-
perlink at each cursor movement, stopping and prefetching
a link when its score exceeds a threshold τ . Instead of op-
timizing for a fixed τ , we present precision-recall curves to
demonstrate performance at different operating points.

6.3 Evaluation
We focus evaluation on prefetching algorithmic search re-

sults. As discussed in Section 3, the page load time can vary
dramatically. We therefore want to test our algorithm un-
der various regimes. For a given score τ , we evaluate our
algorithm when given at least ` milliseconds to fetch a page
before the click. So, for example, if ` is 500 ms and the user
took 2000 ms to investigate the page before clicking, then
we can observe the user’s behavior for 1500 ms before losing
our chance to get any benefit from prefetching. We com-
pute precision and recall for ` ∈ {500, 5000} to demonstrate
regimes of normal and severely-limited bandwidth. For a
given `, the true positive (TP ) is defined as the prefetch-
ing decision made for the link that was actually clicked at
least ` time later. A negative (TN) occurs when the system
accurately predicts that no clicks on any links occurred dur-
ing the impression. The prefetching on an unclicked target
link is considered false positive (FP ) while prefetching made
with lead time shorter than ` is considered as late positive
(LP ). A false negative (FN) is an impression where the
model did not select any link, even though the user eventu-
ally clicked one. We evaluate the performance of our models
(and the baselines described in the next subsection) using
precision and recall. With the above definitions, the preci-
sion is then defined as TP/(TP +FP ) while recall is defined
as TP/(TP +LP +FN). Notice that a random prefetching
system will achieve precision of 1

|U| .

6.4 Baselines
We employed three strong baselines: (i) the original search

engine ranking, (ii) historic clicks from all searchers for the
query, and (iii) historic clicks from the current searcher for
the query. These baselines, in particular the latter two, are
similar to prefetching methods proposed in prior research,
in which, prefetching is determined by static estimates of
likelihood of future content access from historic usage data
[1, 13, 22, 26]. The baselines are defined as:

Search engine ranking: This baseline always prefetches
the top-ranked result for the query as returned by the Bing
search engine at the time the logs were collected. Note that
this baseline is expected to be very strong since commercial
search engines rank results by leveraging a variety of sources
of evidence, including content and historic usage data, and
the top-ranked search result often receives most clicks.

Historic clicks (all users) (denoted p(clickall)): Selects
the most popular clicked URL for the query. Multi-year
click logs from a separate data source (same search engine,
but not the cursor-tracking flights) were used to compute
the probability of selecting a particular URL given the cur-
rent query. The separate dataset was much larger than the
set of data collected during the online cursor tracking ex-
periments. This enabled broader query coverage and more
reliable click predictions. The result that is most likely to
be clicked based on this historic data was prefetched if it
appeared in the current result ranking. To improve cover-



age, all URLs were normalized to remove trailing slashes,
lowercase, and collapse https and http protocols.

Historic clicks (current user) (denoted p(clickuser)): Ap-
plies the personal navigation algorithm [43] to prefetch the
result that was visited by the current searcher historically
for the current query. Specifically, if the searcher has visited
the same result for the previous two instances of the query,
then that result will be prefetched for the current (third) in-
stance of the query if it appears in the result ranking. URLs
were normalized as with the previous baseline.

7. RESULTS
We now present our experimental results, starting with

the descriptive statistics of the cursor movement data.

7.1 Descriptive Statistics
In this section, we characterize the features proposed in

the previous subsection for building the prefetching models.
Since our goal is to prefetch clicked results, we wanted to
understand whether certain features could indicate future
clicks. We report analysis across 41.6 million cursor sam-
ples from 186k unique query impressions used for training
our model. The results are summarized in Table 2 and the
discussions are organized by the feature group. We focus
on the two classes of cursor samples with clicked AOI and
unclicked AOI to understand the changes of feature values
across the two groups. Features in the two global groups
are impacting at the impression-level, i.e., features that im-
pact overall clickthrough for the entire impression would, in
turn, impact clickthrough for individual AOIs on the SERP.
In contrast, the features in the two local groups impact di-
rectly regarding the AOI in question.

Static Global : All the features in this group are signif-
icantly different among the two groups. Interestingly, the
queries with less clicks have higher frequencies, which may
be due to the more likely presence of answer results – this
hypothesis is further supported by the averaged higher value
of the has answer feature in the StaticLocal group.

Dynamic Global : Almost all the features in this group are
significantly different among the two groups except for cur-
sor ycoord and cursor total time. The total cursor distance
of cursor for the unclicked impressions is higher, as is the
number of non-hyperlink clicks (often associated with text
selections) and evidence of reading behavior, which suggest
that people are exploring and more deeply engaged with ex-
amining the SERP (rather than clicking).

Static Local : All the features in this group are significantly
different among the two classes. As we can see, certain types
of AOIs are indeed more likely to attract more clicks. For
example, the clicked class has larger AOI area, which makes
sense, as larger AOI may be more likely to attract user at-
tention. Other examples include the rate of AOI having the
card attribute (e.g., additional information such as brand
logo and/or deep links) which may increase both user confi-
dence in document quality as well as attractiveness, resulting
in more chance of clickthrough. In contrast, having answer
directly in the AOI, as discussed earlier, reduces the chance
of the AOI being clicked due to “good abandonment” [20].
Also, as expected, the clicked AOI tends to have lower rank
(demonstrated by both lower AOI rank and AOI ycoord).

Dynamic Local : There are interesting differences in this
group’s features. Cursor hovers on the AOI are a significant
indicator of an impending click, as is dwell time on the AOI

Table 2: Descriptive statistics of the proposed features for
the two classes of cursor sample with clicked AOI and un-
clicked AOI. The differences between the two classes are
statistically significant for the majority of the features based
on Welch’s t-test (p < 0.05) except for features that are
noted with *. (s) denotes seconds, (px) denotes pixels.

Feature name
Mean (Standard deviation)

Unclicked Clicked
Static Global
Query frequency 79K (408K) 74K (389K)
Query click entropy 1.697 (1.218) 1.630 (1.186)
SERP has advertisements 0.330 (0.470) 0.322 (0.467)
SERP has related searches 0.739 (0.439) 0.795 (0.403)
Dynamic Global
Cursor xcoord (px) 457 (277) 468 (272)
Cursor ycoord (px)* 334 (224) 334 (228)
Cursor delta (px) 89 (123) 87 (121)
Num non hyperlink clicks 0.122 (0.010) 0.103 (0.010)
Cursor is reading 0.081 (0.273) 0.074 (0.261)
Cursor max ycoord (px) 396 (246) 397 (253)
Cursor max AOI rank 3.10 (2.25) 3.21 (2.10)
Cursor total distance (px) 773 (918) 765 (918)
Cursor total time (s)* 47 (54) 47 (55)
Cursor time delta (s) 6.17 (15.70) 5.93 (13.70)
Static Local
AOI area (px2) 58510 (35340) 75177 (51117)
AOI width (px) 682 (195) 632 (86)
AOI height (px) 89 (56) 120 (81)
AOI rank 5.75 (2.72) 2.57 (2.27)
AOI xcoord (px) 148 (75) 177 (39)
AOI ycoord (px) 515 (414) 354 (261)
AOI has card 0.002 (0.043) 0.192 (0.394)
AOI has answer 0.375 (0.484) 0.136 (0.343)
Dynamic Local
AOI is visible 0.527 (0.499) 0.755 (0.430)
AOICursor hover 0.002 (0.107) 0.319 (0.466)
AOICursor distance (px) 558 (331) 367 (283)
AOICursor angle 4.21 (65.41) 16.39 (11.23)
AOICursor proximity 1.28 (0.84) 1.23 (0.61)
AOICursor speed 4.77 (36.47) 7.03 (39.04)
AOICursor acceleration -0.104 (96.88) 0.667 (98.62)
AOICursor jerk* 2.45 (1010.79) 3.42 (977.76)
AOICursor ontarget 0.110 (0.372) 0.136 (0.455)
AOICursor xdistance (px) 316 (270) 299 (265)
AOICursor ydistance (px) 389 (312) 155 (176)
AOICursor dwell (s) 0.08 (0.64) 1.03 (2.50)
AOICursor title dwell (s) 0.03 (0.37) 0.34 (1.46)

(which is much higher when a click is observed). The speed
and acceleration toward the AOI suggests that the searcher
is performing a focused movement before the click. This is
also supported by the higher value of AOICursor ontarget.

7.2 Prefetching Experiments
We present the results of our prefetching experiments for

different lead times in the precision-recall curves in Figure
4. As we can see from these curves, for comparable recall
levels, we achieve substantial improvements over prefetch-
ing based on all cursor-agnostic methods. Although per-
formance drops when we require a conservative five second
leadtime, our algorithm still outperforms baselines by a sig-
nificant margin. We present the results of significance tests
in Table 3 for a high precision model (with a high value of
τ) and a high recall model (with a low value of τ).

7.2.1 Effect of Query Type
One might suspect that pre-fetching decisions for naviga-



Table 3: Comparison with baselines. Superscripts denote
statistically significant improvements over a competing run
using a Student’s t-test (p < 0.05) with respect to rank (r),
p(clickall) (a), p(clickuser) (u), high precision model (P), or
high recall model (R).

Model Precision Recall

rank 0.605a 0.602auP

p(clickall) 0.399 0.326u

p(clickuser) 0.697ar 0.032
high recall 0.723aur 0.670aurP

high precision 0.877aurR 0.567au

Table 4: The effectiveness of prefetching models trained
suppressing the specified feature groups against the full
model trained with all features the score threshold τ of 3
and a leadtime ` of 500 ms. * represents statistically sig-
nificant decreases in performance with respect to using all
features using a Student’s t-test (p < 0.05).

Suppressed Precision Recall
- 0.877 0.567

Static Global 0.865* 0.566
Static Local 0.875 0.531*

All Static 0.819* 0.547*

Dynamic Global 0.877 0.563
Dynamic Local 0.876 0.464*

All Dynamic 0.831* 0.432*

User Deviation 0.880 0.563

tional queries, because they have a single target result, can
be made without cursor information. To test this, we exam-
ined the performance of our algorithm on queries defined as
navigational (i.e., with a click entropy less than or equal to
one, as in [42]). Figure 4b demonstrates the higher perfor-
mance of all methods, including baselines. The differences
in performance are statistically significant (p < 0.05). We
similarly investigated the performance of our model when
evaluating only on informational queries (i.e., queries with a
click entropy of two or more (again, as in [42]). These queries
involve more thorough examination of the ranked list. This
behavior can result from either multiple intents, poor re-
trieval performance, or higher recall intent. Because of the
diversity of the click patterns, we suspect that our baselines
will perform less well on these queries. The results (Figure
4c) demonstrate the lower performance of all runs, including
our model. Nevertheless, the model-based approach signifi-
cantly improves over the baselines (p < 0.05).

7.2.2 Feature Ablation
We present the feature ablation experiments in Table 4,

where we remove one feature group at a time to examine
the effectiveness of each of them in the presence of other
feature groups. To do this, we use the high precision model,
whose overall results are reported in Table 3. Static fea-
tures, taken as a whole, contribute substantially (removing
them results in a 6.6% drop in precision and a 3.5% drop
in recall). This reflects the importance of visual layout and
attractiveness in successful prefetching. Importantly, the
degradation is not observed when suppressing global or lo-

Table 5: Feature importance. Five most and least impor-
tant features and weights. Weights are normalized to be
in unit range with respect to the most important feature
(AOICursor hover from the Dynamic Local class).

Feature name Importance
AOICursor hover 1.000000
AOI has card 0.443321
AOI rank 0.373836
Cursor max AOI rank 0.228811
Query frequency 0.077288
...

...
USERDEV AOICursor acceleration 0.000066
AOICursor jerk 0.000062
USERDEV AOICursor jerk 0.000062
AOICursor on target 0.000061
Cursor is reading 0.000000

cal features alone, suggesting that static features perform
best when using conjunctions of local and global features.
Dynamic features, taken as a whole, also provide significant
information (removing them results in a 5.2% drop in pre-
cision and a 23.8% drop in recall). The majority of this
contribution comes from local features, suggesting that in-
formation about the AOI with respect to the cursor are crit-
ical to high performance. The local features are important
in recall since they provide signals about each of the AOIs
that may be missed in general SERP-level analysis. For the
high precision model, user deviation features appear to add
no value over the other features, in combination.

7.2.3 Feature Importance
Finally, we wanted to understand feature importance. We

present the most and least informative features in Table 5.
Unsurprisingly, hovering over an AOI is a strong signal that
a click is imminent. Other Dynamic Local features, such
as AOICursor ydistance, are also important but are not in
the top five. While features such as the rank position of
the result AOI and the distance between the cursor and
the AOI might seem obvious, others are less so. The pres-
ence of a card suggests that the visual attractiveness of an
AOI may result in a higher clickthrough rate. Variations
in searcher attention as a function of caption attractiveness
have been noted in previous studies (e.g., [11]). Conversely,
query click entropy appears to help the model distinguish be-
tween more predictable behavior connected to navigational
intentions and less predictable behaviors for informational
intent. The less informative features involve more granular
cursor movements (e.g., jerk, acceleration), suggesting that
in order to perform effectively our prefetching model only
requires a coarse model of search interaction behavior.

8. DISCUSSION AND IMPLICATIONS
We have introduced the search result prefetching challenge

and real-time prefetching methods to address it based pri-
marily on cursor movements. Our approach significantly
outperforms three strong baselines leveraging result rank-
ings and historic clicks to prefetch search results. Analysis
of the differences between the prefetch time and click time
reveals that on average, our method could save searchers
around 650ms per query for the 65% of queries where our
model correctly prefetches the clicked result. The average
prefetch lead time is 6-7 seconds (depending on τ), but we



0.0 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1.0

recall

pr
ec
is
io
n

(0.33,0.4)

(0.61,0.61)

(0.03,0.7)

(a) All

0.0 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1.0

recall

pr
ec
is
io
n

(0.5,0.54)

(0.69,0.69)

(0.04,0.79)

(b) Navigational

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8

1.0

recall

pr
ec
is
io
n

(0.22,0.28)

(0.49,0.49)

(0.02,0.73)

(c) Informational

Figure 4: Click precision and recall. The solid line indicates performance as a function of the score threshold τ for a leadtime
` of 500ms. The dashed line indicates the performance for a leadtime ` of 5s. The points indicate the performance of baselines
prefetching based on rank position (N), the probability of click (all users) (�), and probability of click (current user) ( ).

cap our time savings to the median landing page load time
from earlier (672ms). 650ms in time savings per accurate
prediction is a sizable efficiency increase, especially at Web
scale, where prefetching could benefit millions of searchers.

Our findings showed that we can achieve strong prediction
accuracy. As with other studies [8, 9] we noted evidence
of task effects (e.g., our models do better for navigational
queries, where search behavior is more predictable). We
break out our findings by query type, but not by searcher
type. Variability in interactions between searchers is high
[8] and differences in model performance per individual or
cohort should be considered. This could inform decisions
about the selective application of cursor-based prefetching.

There are some limitations in this study. First, we con-
sider prefetching only one result per SERP. In the future, we
plan to extend our method to handle prefetching of multiple
results during SERP examination. Second, in our evalua-
tion we represent cost as the action of prefetching a result.
In practice, cost is more nuanced: there is a variable cost
associated with prefetching, depending on the nature of the
prefetched page (e.g., size, content types). Third, we have
not fully explored the trade-off between client-side code opti-
mization and its impact on prefetching performance. In the
current implementation, we optimize our client-side code to
ensure no significant delay on PLT for SERPs with the log-
ging enabled. This includes lazy loading of the logging code,
enforcing mouse sampling (i.e., every 250ms or 8px of move-
ment), and optimizing our prediction latency in both feature
extraction (i.e., constant time in the number of cursor sam-
ples) and model execution (i.e., using decision trees, which
can be turned into heavily optimized binaries). However, we
do not know whether these optimizations are truly optimal
and plan to further explore this in future work. Finally, we
focused on desktop devices (e.g., PCs) in this study. We will
extend our methods to mobile devices (e.g., smartphones,
tablets), where multi-touch interactions and viewport dy-
namics would replace the mouse cursor. Bandwidth may be
more limited in mobile settings and result prefetching could
prove to be more valuable therein.

Looking ahead, the ability to prefetch visited resources

has a number of implications. People on slow network con-
nections (e.g., in developing countries or remote locations
in developed countries) can benefit from faster landing page
loading, as would those engaged in time-critical tasks [28].
Accurately prefetching clicked results also allows search en-
gines to offer enhanced interaction capabilities such as aug-
menting landing pages to better support transitions from
SERPs (e.g., clickable snippets [15]). More broadly, our
prefetching methods could help reduce latency in any Web-
site, especially those with low traffic or large amounts of
dynamically-generated content; both of which can hinder
the use of historic activity in prefetching decisions.

9. CONCLUSIONS AND FUTURE WORK
We presented a dynamic framework for prefetching Web

pages in response to SERP interaction behavior. Previous
models have focused on static prediction using historic data.
We show that incorporating aspects of the SERP visual lay-
out and dynamic on-SERP behavior, such as cursor move-
ment, can substantially improve the accuracy of real-time
prefetching decisions and may improve searcher efficiency.
In future work, we will experiment with more sophisticated
models to better capture the temporal dynamics and per-
sonal nature of cursor movements. While our technique gen-
eralizes beyond SERPs, optimal performance may require
task-specific models. We will extend our analysis to a di-
verse range of non-SERP Web pages. Finally, we will adapt
our models to mobile devices where viewport and touch in-
teractions can be leveraged in place of cursor movements.
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