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ABSTRACT

In this study, we explore the possibility of recognizing hand

gestures using ultrasonic depth imaging. The ultrasonic de-

vice consists of a single piezoelectric transducer and an 8 - el-

ement microphone array. Using carefully designed transmit

pulse, and a combination of beamforming, matched filtering,

and cross-correlation methods, we construct ultrasound im-

ages with depth and intensity pixels. Thereafter, we use a

combined Convolutional (CNN) and Long Short-Term Mem-

ory (LSTM) network to recognize gestures from the ultra-

sound images. We report gesture recognition accuracies in

the range 64.5-96.9%, based on the number of gestures to be

recognized, and show that ultrasound sensors have the po-

tential to become low power, low computation, and low cost

alternatives to existing optical sensors.

Index Terms— gesture recognition, ultrasound depth

imaging, beamforming, convolutional neural networks, long

short-term memory

1. INTRODUCTION

Mobile, interactive devices are emerging as the next-frontier

of personalized computing. Providing effective input-output

(IO) modalities - gestures, touch, voice, etc. - is a key chal-

lenge for such devices [1], [2]. Today, hand-gesture based

IO devices are broadly enabled by optical sensing [3]. They

rely on estimating distances to target objects by measuring

the time-of-flight (ToF) in air. ToF is the duration between

the time a probe signal is transmitted to the target object and

the time the reflected version of the probe signal is received. It

is measured as 2d
c

, where d is the distance of the target object

and c = 343 m/s is the speed of sound in air. Unfortunately,

optical sensors face high-energy costs because of illumination

overhead and processing complexities (capture, synchroniza-

tion and analysis). This limits their use in mobile, interactive

devices like head-mounted-displays (HMD) and wearables,

where energy costs carry a big premium. For instance, con-

sider an HMD running on a 1500 mAH (3.8 V) battery with

an IO energy-budget of 20% (i.e., 4104 J). Assuming that an

optical sensor consumes 2.5 W of power, the HMD can barely

support a total of 500 gestures with each gesture lasting 3 sec-

onds (IO budget/energy-per-gesture = 4104 J/7.5 J). Power
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limitations like these thus raise the need for alternative tech-

nologies that can be utilized to recognize gestures with low

energy. One such alternative that we explore in this paper is

ultrasound imaging. Our choice is motivated by the fact that

ultrasound sensors require only a fraction of the power con-

sumed by optical sensors. Going back to our example of the

HMD, if we were to use an ultrasonic sensor (≤15 mW) in-

stead of an optical sensor, the device would be able to support

nearly 100k gestures within the same energy budget; a com-

pelling 200 fold increase.

2. PRIOR WORK

Several interesting approaches exist in optical sensing and to

a limited degree in ultrasonic sensing. For instance, in [4], the

authors capture depth images of static hand poses and classify

them using a 3D nearest-neighbor classifier; and in [5], the

authors use depth images in conjunction with a probabilistic

state-space temporal model to track fast-moving objects.

In [6], the authors use doppler spectra of ultrasound sig-

nals together with a GMM-based classifier to distinguish hu-

main gait. In a follow-up work, they extend this idea to rec-

ognize static hand gestures [7]. In [8], the authors augment

the acoustic signals with ultrasound doppler signals for mul-

timodal speech recognition. They note that ultrasound signals

can potentially add valuable information to the acoustic sig-

nals, especially in noisy environments. In [9], the authors use

an 8-element loudspeaker array and sound-source localization

(SSL) to create acoustic depth maps of static poses positioned

3 m away. Our proposed system is related to [9] but applies

to a different setting (recognize dynamic hand-gestures up to

1 m away), which precludes the use of complex SSL algo-

rithms like MUSIC (multiple signal classification). Thus, our

work extends [9] in the following ways:
A. To insonify images, we use only one loudspeaker instead

of 8 (7× power savings).
B. We use one-shot acquisition to capture the entire image.

This allows us to achieve real-time sensing (rates up to

170 frames-per-second (fps)) necessary to recognize fast

moving gestures. This is in contrast to [9], where one shot

per transducer was needed (limiting sensing rate in similar

scenarios to 20 fps).
C. We propose a new dual-input CNN-LSTM network that

outputs a single hand gesture for a given sequence of ul-

trasonic images as input.



Fig. 1: Left: Hardware Set-Up; Right: Ultrasonic piezoelec-

tric transducer at the center and an 8-element microphone ar-

ray around it in a circular configuration.
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Fig. 2: Block Diagram of the proposed approach.

The rest of the paper is organized as follows. In the next sec-

tion, we describe the proposed system including the various

sub-components involved. In Section 4, we provide measure-

ment results and conclude in Section 5.

3. SYSTEM APPROACH

Fig. 1 shows our hardware setup. It consists of one piezoelec-

tric transducer placed at the center of an 8-element circular

array of MEMS microphones, an audio interface (digital-to-

analog and analog-to-digital converter), and a laptop for con-

trolling the signals. The transducer emits ultrasound pulses in

the 36-44 kHz range. A block diagram of the system is shown

in Fig. 2. Next, we describe various components shown in the

block diagram: pulse design, beamforming, matched filtering,

feature extraction, and recognition using CNN-LSTM.

3.1. Pulse Design

The transmit pulse requirements are as follows: (a) its auto-

correlation should have one sharp peak for easier detection

of echoes using the cross-correlation method, (b) since the

piezoelectric transducer resonates around 40 kHz, the trans-

mit pulse should be band limited to 36-44 kHz, (c) the pulse

is also time limited since the width of the pulse TP should be

smaller than the minimal time-of-flight (ToFmin); for dmin =

30 cm, ToFmin = 1.7 ms. To meet these constraints, we

use a linear frequency modulated (LFM) chirp of duration

TP = 1.5 ms and bandlimited to 36-44 kHz. The amount

of spectral leakage of the LFM chirp is inversely proportional

to the duration of the chirp. We therefore apply a rectangular

filter in the frequency domain in the desired frequency range

(36-44 kHz) followed by a Hamming window in the time do-

main to reduce the spreading (correlations) in the autocorre-

lation function.

3.2. Beamforming and Matched Filtering

The ultrasonic signals, sampled at 192 kHz, are received by

an M element microphone array (here M = 8) and combined

to form a single received signal. We use the Minimum Vari-

ance Distortionless Response (MVDR) beamformer (BF) [10]

following the overall beamformer architecture as described

in [11]. Let S ( f , ψ) be the target source located in some di-

rection ψ = (φ, θ) (where φ = azimuth, θ = elevation) and

emitting frequency f . Let D( f , ψ) be the M×1 capture vector

of the microphone array in the look direction ψ. Let N( f ) be

the M × 1 noise vector of the microphone array at frequency

f . The BF applies M weights to the received signal to form a

composite signal Y( f ) where,

Y( f ) =WT ( f , ψ)D( f , ψ)S ( f , ψ) +WT ( f , ψ)N( f ). (1)

The objective of MVDR BF is to design the weights W( f , ψ)

such that the noise power is minimized while keeping the tar-

get signal undistorted. Solving this constrained optimization

problem results in the optimal weights given by,

W( f , ψ) =
DH( f , ψ)C−1

NN

DH( f , ψ)C−1
NND( f , ψ)

, (2)

where C−1
NN is the M×M inverse noise covariance matrix of the

microphone array. The elements of C−1
NN were computed apri-

ori in a room similar to the operating environment. Since C−1
NN

is not updated, our beamformer is time-invariant and can be

designed offline with [12]. During real-time operation, only

an inner-product of the weight vector with the received signal

is required to compute the BF signal.

The field of view (FoV) was limited to the range±40◦ hor-

izontally (azimuth) and vertically (elevation). Based on the

beamwidth, we set the beams every 5◦. This yields 17 × 17

beams, and thus, the total number of look directions (pixels)

to construct a single image is 17 × 17 = 289. All angles

were measured with respect to a reference point located at

(φ0, θ0) = (0◦, 0◦). The location of the piezoelectric trans-

ducer, which is also the center of the microphone array, was

considered as the reference point (φ0, θ0).

After BF, we do matched filtering (MF) on the output of

the BF since it is optimal in the sense that it maximizes the

SNR of the received signal when corrupted by white noise. If

y(n) is the output of BF and s(n) is the transmit pulse from

Section 3.1, then the output of the MF is x(n) = y(n) ∗ s(−n).

3.3. Feature Extraction

We use two kinds of features: depth and intensity features.

The depth (d⋆) is extracted by finding the peaks in the cross-

correlation method as follows:

RXS (τ) = FFT−1[X( f )S ⋆( f )]

τ⋆ = arg max
τ∈[ToFmin,ToFmax]

RXS (τ)

d⋆ =
cτ⋆

2
(3)
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Fig. 3: CNN-LSTM architecture for gesture recognition

The intensity (I⋆) is simply the L2 norm of the signal around

τ⋆, i.e., I⋆ =
∫ τ⋆+ TP

2

τ⋆−
TP
2

|x(t)|2dt.

3.4. Recognition

The recognition stage is a sequence learning problem, where

for an arbitrary length input sequence 〈x1, x2, · · · , xT 〉 (the

value of T depends on the length of the sequence), the ob-

jective is to produce a single label (or gesture) y summarizing

the input sequence. In other words, the learning problem is to

estimate the function f where f : 〈x1, x2, · · · , xT 〉 7→ y.

We use a combination of CNN and LSTM, since this is

the state-of-the-art classifier and has shown to be useful for

activity-recognition tasks [13] which evolve both in space and

time. This is illustrated in Fig. 3(a). The input features to

the CNN consists of either depth or intensity images. In this

study, a single layer of CNN, which is referred to as con-

volution layer (CL), consists of three operations - convolu-

tion, rectification, and max pooling. First, the input image

over a small region is convolved with a kernel (or convolution

weights) to produce an activation local to that small region.

By repeating the convolution operation using the same ker-

nel over different local regions of the input image, it is pos-

sible to detect patterns captured by the kernels regardless of

the absolute position of the pattern in the input image. Next,

the activations undergo a non-linear transformation through a

rectified linear unit (ReLU). Finally, dimension reduction of

the activations is achieved by carrying out max pooling over

non-overlapping regions. Our CNN architecture consists of

two such CLs followed by a fully connected (FC) layer. The

resulting high-level features generated by the CNN are better

at preserving local invariance properties than the raw input

(a) Tap (b) Bloom (c) Poke (d) Attention

(e) Ultrasonic Tap (f) Ultrasonic Bloom

(g) Ultrasonic Poke (h) Ultrasonic Attention

Fig. 4: Optical and ultrasonic images of different gestures

features [14].

Although the CNN features capture depth in space, they

do not capture depth in time. Since gestures evolve both

in space and time, additional information about temporal

dynamics can be captured by incorporating temporal recur-

rence connections using recurrent neural networks (RNNs).

RNNs have been proven to be successful in speech recogni-

tion [15], speech enhancement [16, 17] and language mod-

eling tasks [18]. However, they are difficult to train due to

the vanishing/exploding gradients problem over long time

steps [19]. LSTMs overcome this problem by incorporating

memory cells that allow the network to learn to selectively

update or forget previous hidden states given new inputs. The

unidirectional left-to-right LSTM of [20] was used in this

study. The high-level features of the CNN were input to the

LSTM to capture the temporal structure of the gesture. Thus,

temporal connections occur only at the LSTM block. For the

final classification stage, the outputs of the LSTM were input

to a softmax layer. All weights in the CNN-LSTM network

are trained using supervised cross-entropy training. During

testing, for every input image xt at time step t, the CNN-

LSTM network generates a posterior probability for gesture

c, i.e., p(ŷt = c|xt), c ∈ C where C is the set of gestures. Since

the objective is to generate a single gesture for the entire

sequence from t = 1 to t = T , we simply do a mean pooling

of the posteriors of all the gestures and pick the gesture with

the highest mean posterior. To improve the accuracy further,

we make use of both depth and intensity features since they

can provide useful complementary information when used in

conjunction. Thus, we propose the dual input CNN-LSTM

architecture as shown in Fig. 3(b). The left CNN processes

the depth features whereas the right CNN processes the in-



tensity features simultaneously. The outputs of the two CNNs

are stacked together and fed as inputs to the LSTM.

4. EXPERIMENTS AND RESULTS

We selected five types of gestures in this study, viz. tap,

bloom, poke, attention, and random gesture. The first four

gestures have well-defined hand or finger movements. The

fifth gesture (random) is any arbitrary gesture which is not

similar to the other four well-defined gestures. These five ges-

tures are grouped into six categories as follows:

• CAT 5: Tap, Bloom, Poke, Attention, Random

• CAT 4a: Tap, Bloom, Poke, Attention
• CAT 4b: Tap, Bloom, Attention, Random

• CAT 3a: Tap, Poke, Attention

• CAT 3b: Tap, Bloom, Attention

• CAT 2: Tap, Attention

A total of 40 subjects of ages between 20-60 years were asked

to perform gestures within the FoV of the ultrasonic camera

and within a distance of 30-100 cm from the device. Each

subject was asked to perform the five gestures while repeating

each type 20 times. Consequently, for 40 subjects, a total of

4000 gestures were collected. Out of these, gestures from 5

subjects were used as development set, and 4 others as test

set. The remaining gestures were used for training. Each

gesture was about 3-4 seconds long and captured at a rate of

∼ 50 fps. Samples of 17×17 ultrasonic images of the gestures

are shown in Figs. 4(e)-(h). Also shown are representative

optical images for comparison in Figs. 4(a)-(d) (though not

of the same instance as the ultrasonic gesture). The bright

and dark regions of the ultrasonic images are indicative of

the presence and absence of objects respectively. Fig. 4(e)

shows an ultrasonic image of the tap gesture. A bent index

finger on the upper half of the image and a partial thumb in the

lower right corner is clearly visible. The three fingers and the

spaces between them represent a bloom gesture in Fig. 4(f).

Most of the cues about the poke gesture is present in the bright

horizontal line in the upper half of Fig. 4(g). Similarly, the

vertical bright line represents the vertical index finger of the

attention gesture in Fig. 4(h).

Next, we present the results for the CNN-LSTM network

of Fig. 3(a). The network was trained using CNTK [21]. Two

different kinds of features were used for the CNN-LSTM -

depth and intensity. For both features, the 2D kernel size was

2 × 2. The stride lengths for both the horizontal and vertical

strides were 1. Zero-padding was used at the image edges.

These settings were used for both the convolutional layers,

CL1 and CL2. Max pooling was performed over small re-

gions of size 2× 2 with non-overlapping horizontal and verti-

cal strides of lengths 2. The difference between the depth and

intensity CNN-LSTMs is in the number of kernels in CL1

and CL2. We found that 16 and 32 kernels for CL1 and CL2

respectively were suitable for depth features. For intensity

features, we found 16 kernels suitable for both CL1 and CL2.

Additionally, we used a dropout factor of 0.2 to improve gen-

eralization. The output dimension of the FC layer was 128.

Feature CAT 5 CAT 4a CAT 4b CAT 3a CAT 3b CAT 2

D 49.75 63.13 53.75 77.50 74.17 96.88

I 52.25 60.94 50.31 77.08 68.75 89.38

D+Ctx 52.25 67.81 60.00 74.58 76.25 96.88

I+Ctx 59.75 67.50 64.38 84.17 88.75 97.50

D+I+Ctx 64.50 73.44 75.00 77.92 89.17 96.88

Table 1: Classification Accuracies of CNN-LSTM across var-

ious categories (columns) and features (rows). (D = Depth

feature, I = Intensity feature, Ctx = Context included)

For each feature type (depth or intensity), we evaluated

the gesture recognition accuracy of CNN-LSTM based on the

six categories of gestures from CAT 5 to CAT 2. The accu-

racies are listed for each category in the first two rows of Ta-

ble 1. The accuracies range from 49.8%(CAT 5)-96.9%(CAT

2). Most of the inter-class confusions occur between (a) taps,

blooms, and random gestures and (b) pokes and attentions.

We then included context information at each time step by

stacking neighboring frames along the channel. For depth

features, we used a context window of size 5 (i.e., from t −

2, · · · , t + 2). Thus, at each time step, the input raw image

with context was a tensor of dimension 17 × 17 × 5 instead

of a 17 × 17 × 1 tensor without context. Similarly, for in-

tensity features, we used a context window of size 7. The

third and fourth rows in Table 1 list the accuracies when con-

text was included. On an average, the increase in accuracy

due to context was 2.1% for depth and 10.6% for intensity.

The increase in accuracy for intensity was mostly due to the

blooms getting classified correctly. Finally, the last row in Ta-

ble 1 represents the accuracies of the dual-input CNN-LSTM

of Fig. 3(b) with context included. The accuracies are in the

range 64.5%(CAT 5) - 96.9% (CAT 2). The average increase

in accuracy was 10.3% when compared with depth without

context. The increase for intensity features with context over

without context was 13%. Finally, it is useful to note the per-

formance of some contemporary systems which use optical

sensors and deep neural nets. We point to the results reported

in [4, DeepPrior in Figs. 7, 8] to predict static hand poses. The

frame accuracies reported are 85% and 96% for the ICL and

NYU test sets respectively. Although the results are based on

static hand poses instead of dynamic and on different datasets,

they still allude to potential scope for improvement of our pro-

posed ultrasound system.

5. CONCLUSIONS

We presented a system for end-to-end ultrasound based ges-

ture recognition using a single piezoelectric transducer and an

8-element microphone array. First, we insonified the entire

image in one shot, allowing us to achieve high frame rates,

enough to capture dynamic gestures in real-time. Next, we

obtained ultrasonic images using depth and intensity features.

Finally, we recognized gestures using CNN-LSTM networks

trained on these ultrasonic images. We reported accuracies in

the range 64.5-96.9%, which point to the possible use of the

proposed ultrasound system as a low-energy hand-gesture IO

interface in mobile and interactive devices.
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