
Mining for Insights in the Search Engine Query Stream

Ovidiu Dan
Lehigh University

Bethlehem, PA 18015 USA

ovd209@cse.lehigh.edu

Pavel Dmitriev
Microsoft Bing

Bellevue, WA 98004 USA

padmitri@microsoft.com

Ryen W. White
Microsoft Research

Redmond, WA 98052 USA

ryenw@microsoft.com

ABSTRACT

Search engines record a large amount of metadata each time a user

issues a query. While efficiently mining this data can be challeng-

ing, the results can be useful in multiple ways, including monitor-

ing search engine performance, improving search relevance, prior-

itizing research, and optimizing day-to-day operations. In this

poster, we describe an approach for mining query log data for

actionable insights – specific query segments (sets of queries) that

require attention, and actions that need to be taken to improve the

segments. Starting with a set of important metrics, we identify

query segments that are “interesting” with respect to these metrics

using a distributed frequent itemset mining algorithm.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Search and Retrieval

General Terms

Algorithms, Experimentation

Keywords

Query log analysis; frequent itemset mining; FP-growth.

1. INTRODUCTION
Web search engines store large amounts of information for each

user transaction, including the content of the query, the language

and location of the user, the vertical used by the user, the results

the user clicked on, if the user used spelling correction or related

searches, etc. However, most of this information is discarded in

practice or it is used only in computing superficial descriptive

statistics. Mining available metadata beyond just the text of the

queries can help measure and improve search quality.

This poster focuses on mining query log metadata for actionable

insights and it is motivated by the goal of better understanding the

quality of search results. We segment queries into categories by

using query log data and one or more metrics designed to evaluate

search engine performance (e.g., [6]). We refer to the resulting

categories as segments in the rest of the poster, not to be confused

with the query segmentation line of research looking to uncover

relationships between query terms [5]. A simple example of a

segment is {Market: en-US, IsNews: True, NumWords: 6, CTR:

0.3} = 10,000, which can be read as: of all the queries in the da-

taset which were issued in English in the United States, have a

news intent, and which contain 6 words, 10,000 of them have a

click-through rate on the search engine result page (SERP) of

0.3. These automatically-generated patterns can be used to answer

questions on the behavior of a search engines, such as: What are

the types of queries for which the search engine has good perfor-

mance, based on a certain metric? What are the categories of que-

ries where the search engine needs to improve? How does the

search engine stack up against competition?

Copyright is held by the author/owner(s).

WWW 2012 Companion, April 16–20, 2012, Lyon, France.

ACM 978-1-4503-1230-1/12/04.

Mining for patterns in aggregate query logs poses significant chal-

lenges. First, such logs are often terabytes or petabytes in size, and

grow daily. This means that the logs cannot be stored or processed

on a single machine. Second, the number of patterns can be very

large. In the log dataset used here, each query had approximately

300 mostly-categorical attributes. Assuming 10 values per attrib-

ute, this means 10300 patterns. To mine this data in a timely man-

ner, we developed a distributed and scalable mining algorithm.

2. DISTRIBUTED FP-GROWTH
The Frequent Itemset Mining problem was introduced by Agrawal

et al. [1]. Given a set of items I = {i1,…,in} and a set of transac-

tions D = {t1,…,tm} the algorithm finds all subsets X of I with

support(X) > T, where support(X) = |ti containing X|/|D|. Starting

from a table where each row represents a unique query, and the

columns represent aggregate metadata for the query, our main

problem is mining for interesting patterns using a scalable algo-

rithm. We cast the problem as frequent itemset mining by treating

combinations of column names and values as items in a transac-

tion, where each row is one transaction. Figure 1 shows an exam-

ple of converting a table into transactions, then running a frequent

itemset algorithm on the resulting set to generate patterns.

Han et al. [3] introduced FP-Growth, an algorithm that computes

the item sets in only two passes by using uses a prefix-tree struc-

ture to compress the data. Although the FP-Growth algorithm has

both good space and time efficiency, the in-memory algorithm

cannot handle arbitrarily large datasets. We implemented a dis-

tributed version of FP-Growth algorithm, building on a tag pre-

diction algorithm proposed by Li et al. [4], which in turn is based

on the database projection method described in the original paper

[2]. The prefix path property described in the original paper sug-

gests that work can be split into independent subtasks. To mine all

frequent patterns with prefix ai we only need to work on all

branches which contain ai. Furthermore, from these branches only

the subpaths ending in ai are required. Consequently, the patterns

ending in ai can be generated on one machine, independently of

any other computation. The third column in Table 1 presents an

example. For instance, to find the itemsets which end with m, we

can distribute m: a c d and m: b d to one machine and continue

the computation locally.

Query Market isNavigational isMovies … CTR

msn en-US True False … 0.821

hotmail en-US True False … 0.843

star wars en-US False True … 0.679

[Market:en-US] [isNavigational:True] [isMovies:False] … [CTR:0.8]

[Market:en-US] [isNavigational:True] [isMovies:False] … [CTR:0.8]

[Market:en-US] [isNavigational:False] [isMovies:True] … [CTR:0.7]

Pattern Freq

[Market:en-US] [isNavigational:True] [isMovies:False] [CTR:0.8] 2

Figure 1. Example of mining for patterns.

Our implementation is built on the distributed SCOPE data pro-

cessing framework introduced in [2]. SCOPE runs on a distribut-

ed platform which is fault-tolerant and scales to thousands of

commodity servers. Data are stored in a distributed storage system

designed to reliably store extremely large sequential files.

3. QUERY STREAM EXPERIMENTS
We carried out an experiment on a large query log dataset which

consists of a table with one row for each unique query issued on

the Bing search engine in a one-week period ending on August 5

2011. Each row consists of 300 metadata fields obtained by ag-

gregating data from all user sessions containing the query. The

table contains information on a few hundred million unique que-

ries. The metadata is generated by aggregating internal data, such

as server logs, as well as external traffic data from toolbars.

Some of the available fields include the geographic location and

language of the user, the length of the query in number of tokens,

the frequency of the query in the timeframe covered by the da-

taset, and the output of tens of binary text classifiers used to de-

termine the query intent of a user. The classifiers cover tens of

categories, such as movies, technology, local search, auto, people

search, news, navigational queries etc. Other fields include the

vertical used to issue a query, the presence of specific features

such as instant answers, advertisements, spelling correction, and

related searches. Available click information includes the position

of all the clicked results and answers, as well as the number of

clicks on certain areas such as advertisements shown on the right-

rail of the SERP.

The table also contains several metrics computed separately for

each unique query. Click-through rate is the number of SERP

visits with clicks divided by the total number of SERP visits. Suc-

cess-when-clicked ratio is the ratio obtained by dividing the num-

ber of SERP visits with success by the total number of SERP

visits with clicks. A SERP visit is considered to be a success if the

user clicked on one of the results and did not revisit a SERP for at

least 30 seconds. Quick-back ratio is the number of SERP visits

where the user clicked on a result and returned in less than 30

seconds, divided by the total number of SERP visits with result

clicks. PSkip, introduced in [6], estimates the probability that a

user will skip the first results on the page and click on results

which are further down the page. A query with lower pSkip is

regarded as having better ranking quality.

We ran our algorithm separately on each metric with a minimum

support of 1,000. Depending on the load on the cluster and on the

way in which SCOPE built the execution plan, the different steps

of the algorithm ran on as few as 250 nodes and as many as 6,000

machines or more, and finished in under an hour. Input/output

bound intensive steps were usually scheduled on more machines.

Table 3 shows four categories of queries for which the Bing

search engine performs well, each for a different metric. For in-

stance, the last pattern matches all queries where the user intent is

to search for show times for a particular movie in a particular

location, and the quick back ratio is between 0 and 0.1. While the

output of the algorithm also contains the frequency of each pat-

tern, we do not show those values here.

[IsVideo:True] [NumWords:5] [CTR:[0.90-1.00]]

[NumWords:3] [IsCommerce:True] [success:[0.90-1.00]]

[IsUrlQuery:True] [NumWords:1] [pSkip:[0.00-0.10)]

[MovieShowtimes:True] [MovieTheater:True] [MovieTitle:True]
[quickBackRatio:[0.00-0.10)]

Table 3. Frequent itemset patterns examples.

A simple modification to the experiment helped compare Bing to

other search engines. Using external data from toolbar logs, we

added metrics from other search engines. An artificial example of

a generated pattern is {[MovieShowtimes:True] [BingCTR:[0.90-

1.00]] [OtherEngineCTR:0.00-0.10]} = 10,000, which can be

read as: the log contains 10,000 unique queries with a Movie-

Showtimes intent, where click-through rate for Bing is [0.9-1.0],

and the click-through rate of the other search engine for the same

queries is [0-0.1]. These types of patterns easily highlight the

categories of queries where one engine outperforms another using

any of the metrics, and demonstrate the value of our approach.

4. REFERENCES
[1] Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining

association rules between sets of items in large databases.

Proc. SIGMOD, 207–216.

[2] Chaiken, R., Jenkins, B., Larson, P.-R., Ramsey, B., Shakib,

D., Weaver, S., and Zhou, J. (2008). SCOPE: easy and effi-

cient parallel processing of massive data sets. Proc. VLDB

Endow., 1(2): 1265–1276.

[3] Han, J., Pei, J., Yin, Y. and Mao, R. (2004). Mining frequent

patterns without candidate generation: a frequent-pattern tree

approach. Data Mining and Knowledge Disc., 8(1): 53–87.

[4] Li, H., Wang, Y., Zhang, D., Zhang, M., and Chang, E.Y.

(2008), PFP: parallel FP-growth for query recommendation.

Proc. RecSys, 107–114.

[5] Tan, B. and Peng, F. (2008). Unsupervised query segmenta-

tion using generative language models and wikipedia. Proc.

WWW, 347–356.

[6] Wang, K., Walker, T., and Zheng, Z. (2008). PSkip: estimat-

ing relevance ranking quality from web search clickthrough

data. Proc. SIGKDD, 1355–1364

Transaction Sorted by freq Map outputs

p c a n a c p n n: a c p

p: a c

c: a

b b -

b n d b d n n: b d

d: b

d m b b d m m: b d

d: b

p c a q a c p q q: a c p

p: a c

c: a

m d a c a c d m m: a c d

d: a c

c: a

b a a b b: a

Table 1. Example transactions, transactions sorted by

frequency, and distributing computation.

Conditional databases Conditional FP-Trees

b: {a} {} | b

c: {a / a / a} {a:3} | c

d: {b / b / a c} {b:2} | d

m: {b d / a c d} {d:2} | m

n: {a c p / b d} {} | n

p: {a c / a c} { a c: 2} | p

q: {a c} {} | q

Table 2. Conditional databases and conditional

trees for example transactions.

