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ABSTRACT 

Search engines record a large amount of metadata each time a user 

issues a query. While efficiently mining this data can be challeng-

ing, the results can be useful in multiple ways, including monitor-

ing search engine performance, improving search relevance, prior-

itizing research, and optimizing day-to-day operations. In this 

poster, we describe an approach for mining query log data for 

actionable insights – specific query segments (sets of queries) that 

require attention, and actions that need to be taken to improve the 

segments. Starting with a set of important metrics, we identify 

query segments that are “interesting” with respect to these metrics 

using a distributed frequent itemset mining algorithm. 
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1. INTRODUCTION 
Web search engines store large amounts of information for each 

user transaction, including the content of the query, the language 

and location of the user, the vertical used by the user, the results 

the user clicked on, if the user used spelling correction or related 

searches, etc. However, most of this information is discarded in 

practice or it is used only in computing superficial descriptive 

statistics. Mining available metadata beyond just the text of the 

queries can help measure and improve search quality.  

This poster focuses on mining query log metadata for actionable 

insights and it is motivated by the goal of better understanding the 

quality of search results. We segment queries into categories by 

using query log data and one or more metrics designed to evaluate 

search engine performance (e.g., [6]). We refer to the resulting 

categories as segments in the rest of the poster, not to be confused 

with the query segmentation line of research looking to uncover 

relationships between query terms [5]. A simple example of a 

segment is {Market: en-US,  IsNews: True, NumWords: 6, CTR: 

0.3} = 10,000, which can be read as: of all the queries in the da-

taset which were issued in English in the United States, have a 

news intent, and which contain 6 words, 10,000 of them have a 

click-through rate on the search engine result page (SERP) of 

0.3. These automatically-generated patterns can be used to answer 

questions on the behavior of a search engines, such as: What are 

the types of queries for which the search engine has good perfor-

mance, based on a certain metric? What are the categories of que-

ries where the search engine needs to improve? How does the 

search engine stack up against competition?  
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Mining for patterns in aggregate query logs poses significant chal-

lenges. First, such logs are often terabytes or petabytes in size, and  

grow daily. This means that the logs cannot be stored or processed 

on a single machine. Second, the number of patterns can be very 

large. In the log dataset used here, each query had approximately 

300 mostly-categorical attributes. Assuming 10 values per attrib-

ute, this means 10300 patterns. To mine this data in a timely man-

ner, we developed a distributed and scalable mining algorithm. 

2. DISTRIBUTED FP-GROWTH 
The Frequent Itemset Mining problem was introduced by Agrawal 

et al. [1]. Given a set of items I = {i1,…,in} and a set of transac-

tions D = {t1,…,tm} the algorithm finds all subsets X of I with 

support(X) > T, where support(X) = |ti containing X|/|D|. Starting 

from a table where each row represents a unique query, and the 

columns represent aggregate metadata for the query, our main 

problem is mining for interesting patterns using a scalable algo-

rithm. We cast the problem as frequent itemset mining by treating 

combinations of column names and values as items in a transac-

tion, where each row is one transaction. Figure 1 shows an exam-

ple of converting a table into transactions, then running a frequent 

itemset algorithm on the resulting set to generate patterns.  

Han et al. [3] introduced FP-Growth, an algorithm that computes 

the item sets in only two passes by using uses a prefix-tree struc-

ture to compress the data. Although the FP-Growth algorithm has 

both good space and time efficiency, the in-memory algorithm 

cannot handle arbitrarily large datasets. We implemented a dis-

tributed version of FP-Growth algorithm, building on a tag pre-

diction algorithm proposed by Li et al. [4], which in turn is based 

on the database projection method described in the original paper 

[2]. The prefix path property described in the original paper sug-

gests that work can be split into independent subtasks. To mine all 

frequent patterns with prefix ai we only need to work on all 

branches which contain ai. Furthermore, from these branches only 

the subpaths ending in ai are required. Consequently, the patterns 

ending in ai can be generated on one machine, independently of 

any other computation. The third column in Table 1 presents an 

example. For instance, to find the itemsets which end with m, we 

can distribute m: a c d and m: b d to one machine and continue 

the computation locally. 

Query Market isNavigational isMovies … CTR

msn en-US True False … 0.821

hotmail en-US True False … 0.843

star wars en-US False True … 0.679

[Market:en-US] [isNavigational:True] [isMovies:False] … [CTR:0.8]

[Market:en-US] [isNavigational:True] [isMovies:False] … [CTR:0.8]

[Market:en-US] [isNavigational:False] [isMovies:True] … [CTR:0.7]

Pattern Freq

[Market:en-US] [isNavigational:True] [isMovies:False] [CTR:0.8] 2
 

Figure 1. Example of  mining for patterns. 



Our implementation is built on the distributed SCOPE data pro-

cessing framework introduced in [2]. SCOPE runs on a distribut-

ed platform which is fault-tolerant and scales to thousands of 

commodity servers. Data are stored in a distributed storage system 

designed to reliably store extremely large sequential files. 

3. QUERY STREAM EXPERIMENTS 
We carried out an experiment on a large query log dataset which 

consists of a table with one row for each unique query issued on 

the Bing search engine in a one-week period ending on August 5 

2011. Each row consists of 300 metadata fields obtained by ag-

gregating data from all user sessions containing the query. The 

table contains information on a few hundred million unique que-

ries. The metadata is generated by aggregating internal data, such 

as server logs, as well as external traffic data from toolbars. 

Some of the available fields include the geographic location and 

language of the user, the length of  the query in number of tokens, 

the frequency of the query in the timeframe covered by the da-

taset, and the output of tens of binary text classifiers used to de-

termine the query intent of a user. The classifiers cover tens of 

categories, such as movies, technology, local search, auto, people 

search, news, navigational queries etc. Other fields include the 

vertical used to issue a query, the presence of specific features 

such as instant answers, advertisements, spelling correction, and 

related searches. Available click information includes the position 

of all the clicked results and answers, as well as the number of 

clicks on certain areas such as advertisements shown on the right-

rail of the SERP.  

The table also contains several metrics computed separately for 

each unique query. Click-through rate is the number of SERP 

visits with clicks divided by the total number of SERP visits. Suc-

cess-when-clicked ratio is the ratio obtained by dividing the num-

ber of SERP visits with success by the total number of SERP 

visits with clicks. A SERP visit is considered to be a success if the 

user clicked on one of the results and did not revisit a SERP for at 

least 30 seconds. Quick-back ratio is the number of SERP visits 

where the user clicked on a result and returned in less than 30 

seconds, divided by the total number of SERP visits with result 

clicks. PSkip, introduced in [6], estimates the probability that a 

user will skip the first results on the page and click on results 

which are further down the page. A query with lower pSkip is 

regarded as having better ranking quality. 

We ran our algorithm separately on each metric with a minimum 

support of 1,000. Depending on the load on the cluster and on the 

way in which SCOPE built the execution plan, the different steps 

of the algorithm ran on as few as 250 nodes and as many as 6,000 

machines or more, and finished in under an hour. Input/output 

bound intensive steps were usually scheduled on more machines. 

Table 3 shows four categories of queries for which the Bing 

search engine performs well, each for a different metric. For in-

stance, the last pattern matches all queries where the user intent is 

to search for show times for a particular movie in a particular 

location, and the quick back ratio is between 0 and 0.1. While the 

output of the algorithm also contains the frequency of each pat-

tern, we do not show those values here. 

[IsVideo:True] [NumWords:5] [CTR:[0.90-1.00]] 

[NumWords:3] [IsCommerce:True] [success:[0.90-1.00]] 

[IsUrlQuery:True] [NumWords:1] [pSkip:[0.00-0.10)] 

[MovieShowtimes:True] [MovieTheater:True] [MovieTitle:True]  
[quickBackRatio:[0.00-0.10)] 

Table 3. Frequent itemset patterns examples. 

A simple modification to the experiment helped compare Bing to 

other search engines. Using external data from toolbar logs, we 

added metrics from other search engines. An artificial example of 

a generated pattern is {[MovieShowtimes:True] [BingCTR:[0.90-

1.00]] [OtherEngineCTR:0.00-0.10]} = 10,000, which can be 

read as: the log contains 10,000 unique queries with a Movie-

Showtimes intent, where click-through rate for Bing is [0.9-1.0], 

and the click-through rate of the other search engine for the same 

queries is [0-0.1]. These types of patterns easily highlight the 

categories of queries where one engine outperforms another using 

any of the metrics, and demonstrate the value of our approach. 
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Transaction Sorted by freq Map outputs 

p c a n a c p n n: a c p 

p: a c 

c: a 

b b - 

b n d b d n n: b d 

d: b 

d m b b d m m: b d 

d: b 

p c a q a c p q q: a c p 

p: a c 

c: a 

m d a c a c d m m: a c d 

d: a c 

c: a 

b a a b b: a 

Table 1. Example transactions, transactions sorted by 

frequency, and distributing computation. 

Conditional databases Conditional FP-Trees 

b: {a} {} | b 

c:  {a / a / a} {a:3} | c 

d: {b / b / a c} {b:2} | d 

m: {b d / a c d} {d:2} | m 

n: {a c p / b d} {} | n 

p: {a c / a c} { a c: 2} | p 

q: {a c} {} | q 

Table 2. Conditional databases and conditional 

trees for example transactions. 


