
Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society, 611-616, 1991.

Language Evolution and Human-Computer Interaction

Jonathan Grudin

Department of Computer Science
Aarhus University

8000 Aarhus C Denmark

Donald A. Norman1

Department of Cognitive Science
University of California, San Diego

La Jolla, CA 92093

Abstract
Many of the issues that confront designers of interactive
computer systems also appear in natural language
evolution. Natural languages and human-computer
interfaces share as their primary mission the support of
extended “dialogues” between responsive entities.
Because in each case one participant is a human being,
some of the pressures operating on natural languages,
causing them to evolve in order to better support such
dialogue, also operate on human-computer “languages”
or interfaces. This does not necessarily push interfaces
in the direction of natural language—since one entity in
this dialogue is not a human, this is not to be expected.
Nonetheless, by discerning where the pressures that
guide natural language evolution also appear in human-
computer interaction, we can contribute to the design of
computer systems and obtain a new perspective on

natural languages.1

Introduction
A “dialogue” does not require natural language, or even
words. Animals engage in sustained interactions that can
be characterized as dialogues. A mime is engaged in
dialogues with real or imaginary objects and with the
audience. Two individuals who do not share a common
language can work out a means of communication,
perhaps as a step to developing a shared “pidgin
language.”

In this paper, we address extended human-computer
interactions that are “dialogues” in this general sense. We
include all forms of human-computer interaction, not just
“conversational” interfaces to computers. Consider, for
example, this sequence of events in discarding a document
on a Macintosh. As you move the mouse, the arrow or
pointer moves across the display. When the pointer is
above the icon that represents the document, you press and
hold down the button on the mouse. The icon switches to
“reverse video” (interchanging black and white),
signalling that you have succeeded in selecting it. You
move the mouse and an outline image of the icon moves,

1 Norman’s research was supported by grant NCC 2-591 to
Donald Norman and Edwin Hutchins from the NASA Ames
Research Center in the Aviation Safety/Automation Program.
Everett Palmer served as technical monitor. Additional support
was provided by funds from the Apple Computer Company and
the Digital Equipment Corporation to the Affiliates of Cognitive
Science at UCSD.

indicating your position and telling you that you remain in
control of the document. When the pointer and the outline
image reach the vicinity of an icon in the shape of a trash
can, that image spontaneously switches to reverse video,
signalling that when you release the mouse button, the
document icon will disappear and effectively be discarded.
You do so, and the sides of the trash can bulge slightly,
indicating that the document is inside. The bulging sides
signal that there are now documents in the trash can that
can be retrieved if desired. This entire sequence can be
considered to be a dialogue, although no words are used.
The system and you monitor one another; you
communicate by mouse movements and button presses,
the system communicates by moving objects, switching
them to reverse video, making them appear and disappear,
and changing their shape.

An interface designer is really a designer of interaction
languages. Computer systems are unique among artificial
devices in allowing for a substantive, intelligent interac-
tion between person and artifact. The development of in-
teraction techniques is still in its infancy. Certain design
guidelines are widely endorsed with little critical examina-
tion, such as “build consistent interfaces.” The inconsis-
tencies in natural languages—the naturally occurring,
continually evolving communication media used for
everyday interaction among people—have been analyzed,
revealing tradeoffs among competing pressures on dia-
logue. By contrasting the two domains, by finding where
analogues exist and where they do not, we may obtain
insight into the nature of computer system design and a
richer perspective on the constraints on natural languages.

Below, we examine the “design guidelines” proposed
by Slobin (1977) for this rich and complex natural
system—human language. Obviously, languages have not
been designed; they have evolved over thousands of years
subject to numerous competing pressures, including
political, cultural, and religious factors. Nonetheless, a
natural system such as language has much in common with
artificially designed computer systems. Many of the
requirements are similar. Each must act as a communica-
tion medium to transmit intentions, actions, and results
among the participants, each must be learnable by begin-
ners, yet efficient for skilled performers. The ability of
naturally evolving systems such as language to deal with
these conflicting pressures can be revealing for the design
of computer systems.

In this paper we examine the changes in both natural
and computer languages, the latter including high-level

interface languages, operating systems, and even
programming languages. We restrict ourselves to word
choice and form and syntactic structure. Thus, we do not
deal with speech acts or other subtleties of language.
Four Design Characteristics for Language
Slobin (1977) has analyzed what we might call the “design
characteristics” of language, aspects of the usability and
functionality of language that lead toward language
development and change and that affect the ease of
acquisition by children. He identifies four constraints on
language:

1. Language should be clear;
2. Language should be quick and easy;
3. Language should be expressive;
4. Language should be processible.

We examine the application of each of these rules both to
natural language and to human-computer interaction.

1. Language Should Be Clear

Natural language. Slobin defines clarity to be a
consistent “one-to-one mapping between underlying
semantic structures and surface forms.” Thus, Slobin’s
concept of clarity corresponds to consistency as it is gene-
rally applied in human-computer interaction. Consistency
in a language facilitates learning, both in children and
adults. Children not only learn more quickly where it is
found, but they enforce consistency by ignoring alternative
constructions (using “I will” or “I will not” where adults
would say “I’ll” or “I won’t”) or by using a consistent
form even where it is considered to be ungrammatical
(using “hitted” rather than “hit” for the past tense).

All natural languages have inconsistencies, the irregu-
larity of verbs being a well-known example. These irregu-
larities cause the language learner great difficulty, because
violations of consistency mean that a single rule no longer
applies to a wide class of instances, and instead, many
cases have to be learned individually. Although people
have created more consistent, artificial languages (e.g.,
Esperanto), it is significant that none of the thousands of
known naturally-forming languages is completely
consistent. If consistency were as primary a design rule as
some have argued, one might have expected to find a
greater appearance of consistency in natural languages.

Human-computer interaction. Computer systems can
accrue the same benefits as natural language systems from
a clear, consistent mapping between underlying semantic
structures (or actions) and surface forms (or commands
and system output). Here, too, consistency has been
shown to facilitate learning (e.g., Polson, 1988).

However, despite heavy rhetoric advocating consistent
design and its prominent place in the standard guidebooks,
consistency is often violated. This is not solely due to
oversight—in the best of systems, this violation can
improve performance (Grudin, 1989). A major point of

this paper is to show that some of the same pressures that
militate against consistency and an emphasis on clarity in
computer systems are found in natural language as well,
where they are clearly seen to serve important purposes.
2. Language Should Be Quick and Easy

Natural language. A language principle that often
conflicts with consistency and clarity is the desire to be
quick and easy. This tendency shows up in numerous
ways. Most common words are short and monosyllabic,
even in languages that relish long words, such as German.
Language is further simplified through abbreviation or
other shortening, obtaining efficiency at the expense of
learnability, regularity or even clarity. Irregular verbs and
plural nouns are generally shorter than their regular
counterpart would be—inconsistency is introduced in the
service of efficiency.2

Often, as a word increases in frequency of use, it is
given an abbreviated form: “automobile” becomes “auto,”
“television” becomes “TV,” “picture element” becomes
“pixel.” Pronouns shorten utterances, but at the cost of
introducing ambiguity, reducing clarity. Entire phrases
may be eliminated in the cause of efficiency. Although
such utterances can technically be ambiguous, usually,
when interpreted in context, they are not.

Note that irregular constructions that simplify and
shorten will work only if everyone is familiar with them.
Therefore, irregularity is most often found with frequently
occurring constructions—it is the most frequently
occurring verbs that tend to be irregular.

Irregularities cause difficulty during learning, but once
learned, they simplify the language process, making the
constructions quick and easy to use. As long as the
irregularities are frequently encountered, they stay learned.
Thus, the mature native speaker seldom has difficulties
with irregularities: It is only the learner or the novice user
who has trouble.

An interesting demonstration of the relationship
between irregular language forms and frequency of usage
occurs as language evolves and words change in their
frequency of usage. When the frequency of usage of an
irregular verb drops, the verb also drops its irregularities
and reverts to a regular form (Bybee, 1988). Thus,
speakers are not burdened with the task of keeping track
of language exceptions that rarely occur.

Human-computer interaction. Do we find the same
push toward non-standard, abbreviated structures in
computer interactions? Yes, a frequent user’s desire for
quick and easy means to carry out operations results in
simplification, abbreviation—and, therefore, inconsis-
tency. Many computer systems allow their users to create

2 For example, from a list of 173 irregular English verbs, the
irregular written form is shorter in 166 cases, the same length in
six, and only longer in one (“bought” is longer than “buyed”
would be, although equally “quick and easy” to pronounce).

short keystroke sequences as substitutes for longer
command sequences: Some systems even provide these
“shortcuts” as standard features: shell commands, aliases,
scripts, macros, dedicated function keys, option-key
equivalences, or “power-keys.” Much as the shorter
constructions in natural language tend to be those that are
used with higher frequency, shortcuts in computer systems
are used primarily for high-frequency operations.

In the Macintosh computer, users wanted a quick way
to eject a diskette from the drive and to free the memory
that the system had reserved for it. Initially, two opera-
tions were required: an “eject” command and the action of
moving its remaining, “greyed-out” icon into the trash can.
In a triumph of usage over consistency, an imaginative
programmer combined these into one operation, carried
out by moving the diskette icon to the trash can icon. The
operation violated many people’s notions of consistency
and confused first-time users, but due to its overwhelming
efficiency it became widely accepted.3

Computer users who create their own shortcuts often
produce namesets that are efficient, but so inconsistent
that they themselves subsequently forget the names that
they devised (Grudin & Barnard, 1985). They may
misjudge the frequency with which these terms will be
accessed. Other users, of course, are likely to find these
personal shortcuts to be incomprehensible. Natural
language handles the corresponding problem through
several mechanisms.

With a computer system, if a user invents a new
command name or other shortcut, this innovation is kept
relatively private: Only the user and the computer system
need know. Similarly, if a computer designer creates a
poor name or shortcut, a user may be able to fix it with an
alias, but again this remains a private adjustment.4 With
natural language, however, a neologism is only effective if
it is used with others. This shared social use provides for
a natural evolutionary process. Successful innovations are
those that are kept alive through usage within a language
community—we see examples in the way that some slang
terms maintain their existence through frequent usage,
whereas others die natural deaths. In language evolution,
one natural tendency is towards consistency, and only
frequently used constructions maintain an inconsistent
form. Today’s computer systems provide neither the
extensive shared social use of innovations nor an
equivalent evolutionary process that will rescue users from
poorly devised names or procedures.5

3 The inconsistency has always bothered the design team,
however, who plan to phase out this “slang” shortcut if a more
consistent but equally efficient solution is found.
4 A major use of customization features the “undoing” of
designer innovations in new releases (Mackay, 1990).
5 The best analogy between linguistic and computational
neologisms may be private abbreviations used in personal diaries
or notebooks. Here there are no social interactions, and here the

The “Law of Least Effort” in human performance.
The pressure to increase efficiency is observed in many
domains of human skill. Zipf (1949, 1965) postulated that
a general “law of least effort” applied to much of human
behavior. Zipf showed that a power law applies between
the length or size of an instance and its relative rank of
frequency occurrence.6 Ellis and Hitchcock (1986) have
found that experienced computer users create command
abbreviations (“aliases”) that follow Zipf’s Law, with
shorter terms used for higher-frequency commands. As
expertise develops, people modify the task, system,
language or method of operation in order to produce
smooth, effortless, and efficient performance (Agre &
Shrager, 1990; Newell & Rosenbloom, 1981).

3. Language Should Be Expressive

Natural language. Natural languages must have powerful
expressive capability “… to communicate effectively,
engagingly, appropriately, and so forth. The speaker must
be able to direct the listener’s attention, to take account of
his knowledge or expectations” (Slobin, 1977, p. 187).
The central point here is that language must function in a
wide range of contexts, requiring a versatility that often
comes into conflict with the other constraints. In order to
be both expressive and efficient, language must be
compressed—thereby sacrificing a clear, consistent
mapping between form and function. Slobin writes, “it is
the charge to be expressive which introduces much of the
complexity into language.”

Miller (1951) observed that “the social pressure for a
common vocabulary and the convenience of monosyllabic
words tend to restrict the variety of our responses, whereas
the attempt to differentiate between similar statements
expands the vocabulary and leads to the occasional use of
polysyllabic words” (p. 94). This captures the opposing
pressures of Slobin’s maxims “be expressive” and “be
quick and easy.” The various tensions push the solutions
in opposing ways.

Human-computer interaction. The range of expression
is narrower in computer interaction than in language, but
as applications mature the demands for a wider range of
expressiveness grow, and we find analogous sources of
inconsistency. Information retrieval systems provide a
wide range of search capabilities, whereas a simple string
search is sufficient for a word processor; a professional
typographer requires a degree of layout precision not

analogy holds well: Much as in the computer world, a diarist’s
clever abbreviations and phrases may prove undecipherable to
the writer turned reader.
6 This abbreviated description fails to do justice to Zipf’s
numerous observations of the relationship between ranking, size,
and relative frequency. His observations, largely forgotten, may
be worth reexamination as indicative of some general principles
of human action.

needed for most document preparation. The result is often
inconsistent interaction languages of varying complexity.
In general, large applications may have hundreds of
commands to satisfy the requirements of thousands of
different users, who oftentimes require very different
system performance. We expect this issue to be of
increasing importance as computer systems become richer
and more powerful.

4. Language Should Be Processible

Natural language. The rate at which the speaker and
listener can accurately encode and decode language
utterances must be comparable. If they proceeded at rates
that were too discrepant or led to too much error,
communication would suffer7. This is a particular
challenge in spoken language, because of the non-
persistence of sound—the listener has a limited ability to
review what has been spoken, and thus must process it in
“real time.”

Human-computer interaction. Computer
communication is persistent: The computer can preserve a
record of input and can provide persistent output by
means of a static visual display or by allowing ready
repetition of an otherwise transient auditory or visual
signal. Even so, a general constraint to be humanly
processible operates in the visual medium as well as the
acoustic. For example in the design of visual icons, the
relative size difference of a trash can and a document in
the real world is not mapped onto the interface (it would
make one icon too large or the other too small); similarly,
one may enhance the users’ ability to distinguish among
objects by exaggerating differences (Hollan Hutchins,
McCandless, Rosenstein, and Weitzman, 1987). Thus, if
it is crucial for the users of a system that controls an
industrial process to distinguish between 200-gallon and
220-gallon boilers, a designer might use icons that vary in
size by 50% rather than a precisely-mapped 10%. This
violates a clear mapping of semantic information onto
surface form, but provides greater human processibility.

7 The issue is not simply that the listener be able to keep up with
the speaker, but that the processing rates be comparable. If the
“speaker” were forced to handwrite instead of speak, the
mismatch of rates would disrupt communication: Normal
reading rates are about twenty times as fast as normal writing
rates. We handle this discrepancy by having most writing take
place “off-line,” asynchronously with reading. In normal spoken
conversation, the mismatch between speaking and listening rates
is not sufficiently great to affect communication, although
especially slow speakers can tax especially quick listeners.

Contextual Factors in Language Change
In addition to the design rules, Slobin (1977) discussed
four different means by which natural pressures can
change natural languages:

1. Gradual evolutionary processes;
2. Contact with other languages;
3. Creolization;
4. Individual development.

In this section we briefly examine these four avenues of
language change and the way similar factors influence
computer interaction design.

1. Gradual Evolutionary Processes
Broad shifts in a language occur that are independent of
specific external pressure on it. Slobin presents evidence
that these primarily improve how well language can be
processed: “At each point in its history the language has
apparently been strongly constrained by the charge to
conform to perceptual strategies.” He also discusses
constraints that facilitate production (speech).

These language changes correspond in a sense to broad
changes in computer interactions that also have moved
toward conformance with perceptual-motor abilities. One
step in this direction is the shift from simple “glass
teleteype” interactions—single line statements displayed
on terminals, and typewriter keyboard input— to full-
screen graphical interfaces with input through pointing and
gesture. Future computer systems promise to enhance the
perceptual mapping through increasing use of graphical
displays, including large screens, color, and three-
dimensions, and the use of motion and sound. Change in
production is manifested in the proliferation of input
mechanisms including pointing devices, gesture
recognition, and even voice recognition and eye-tracking.
Interestingly, Slobin notes that language shifts are
accompanied by an initial focus on increasing consistency,
a pattern also found in computer system design.

However, there is generally little evolutionary force
upon specific computer systems apart from slow pressures
of the market and innovation that lead to new releases.
These artificial systems are relatively immutable: Once
designed, one is unchanged until a new system takes its
place. A major exception is in the evolution of inherently
extensible computer language systems such as Lisp and
Unix, in which new constructions or commands that are
added by any user become relatively indistinguishable
from the original language primitives. But as noted
earlier, computer systems lack a feedback or “natural
selection” mechanism. The result of evolution for both
Lisp and Unix has been an amazing proliferation of
commands and structures, so that a new user faces
daunting sight of manuals and documentation whose size

is measured in meters. Instead of simplifying a user’s
task, this form of evolution has increased the learning
burden.

But signs of evolution are indeed there. Some of the
original constructs of Unix and Lisp are no longer taught
to newcomers and are replaced instead with more efficient
and useful evolutionary appendages. But we suspect that
computer systems suffer from the lack of social interaction
and communication. Children learn a language by existing
and interacting within a community, and what these new
learners acquire then determines what they will pass on to
their children. The related process in the acquisition of
computer languages and systems has a much different
character.

2. Contact with other Languages
When two societies that speak different languages come
into contact, the languages change, in part to make
communication between the language groups more
efficient. Over time, each language may import elements
of the other language: Individual words are the first to
cross over, but eventually whole syntactic structures can
be incorporated to allow quicker and easier speech
(Slobin, 1977). Part of the price of this merger of the two
languages and the overall improvement in communication
is the introduction of inconsistencies.

A clear analog is found in the computer domain.
Operating systems, applications, and application domains
can be thought of as independent language families.
Contact among these language groups takes place as users
move among them or when a single computer comes to
support several systems (e.g., as the stand-alone word
processor, personal computer, transaction processing, and
other worlds come together). Different names are
suddenly being used for the same thing or the same name
has different meanings in different contexts. This seems a
particularly promising topic for further exploration.

In computer programming languages, as with other
human-computer interfaces, the clash of different cultures
has meant changes to all languages. Thus, elements of
structured programming have come to even the least
structured languages of all: Basic and Fortran; and
algebraic languages have made their impact upon such
deviant structures as Lisp and Prolog, which in turn, have
led to changes in the algebraic languages.

3. Creolization
The term “Creolization” refers to the creation of a new
language by the expansion of a “pidgin” or barter
language. Pidgins are communicative systems developed
to make it possible for groups that use widely different
language systems to interact. These are used primarily for
bartering and they tend to be simple and not very
expressive. When children acquire the pidgin as a first
language, this starts its evolution into a full-fledged

language—a Creole. Children first make the language
more regular, then expand it to apply it to all situations,
adding vocabulary, verb tense, and so forth.

Erickson (1990) notes parallels between pidgin
languages and many of today’s simple computer
interaction languages. As functionality is added, a point is
reached where the language form cannot support the
desired functions: It is time for the pidgin to become a
full-fledged language. Erickson notes that the lack of
tense—our restricted ability to refer to past and future
events—is shared by pidgins and computer languages.
Such limitations are often most apparent to new users of a
system who may feel that the existing structures are
needlessly complex yet insufficiently expressive for their
needs. New users provide the pressure to develop a full-
fledged language—Creolization.

4. Individual Development
Slobin notes that the language learner is first most
concerned that language be consistent and processible.
Later, the language learner is willing to sacrifice
consistency for expressiveness and efficiency. Speakers
of natural languages share their knowledge of the language
by propagating their innovations to other speakers.

In the computer world, one finds similar processes.
Consistency is of most importance for learners, whereas
advanced computer users may welcome or develop
shortcuts, even at the expense of consistency. Advanced
users do tend to share their special knowledge with others,
trading macros, scripts, hints, and shortcuts (Mackay,
1990). Computer magazines usually have columns
devoted to hints for the use of specialized systems. And
informal tutoring networks develop.

Even so, there is far less sharing in computer usage
than in language, because most dialogues involve only one
person, and the computer does not learn from the
experience. Innovations in speech are immediately passed
on to the people with whom we speak, but innovations in
computer use only affects one computer system’s
interaction with the innovator. We have to make a special
effort and use a special forum to communicate this
innovation to others. To complete the analogy with
language, it is the computer that needs to change: As we
develop shortcuts, the computer system must make them
available to other users of similar computer systems.

Language Evolution
and the Design of Computer Systems

The analyses of natural languages and the design of
interactive computer systems reveal many of the same
pressures. In both communication media, these pressures
lead to innovations in the structure of the medium, incon-
sistencies, and a continual tension between expressiveness,
ease of use, ease of understanding, and ease of learning.

Computer systems lack the human ability to interpret
context and are thus unable to take full advantage of
mechanisms for promoting efficiency. Computer systems
and designers could make better use of contextual effects
to interpret people’s actions, allowing simplification of the
actions required of the user. A good example of the use of
context is in the specification of Unix files. The full name
of a file includes its compete “path” (the entire directory
hierarchy), but Unix allows for considerable abbreviation
by using the current location of a user in the file hierarchy
as the default context. There may be many files in the
computer system named “notes,” but a user who types just
the name “notes” is assumed to be referring only to files in
the current directory. Unfortunately, this nice use of
context is more the exception than the rule in current
system design.

Spoken human communication inevitably contains
errors. Listeners often do not even notice these errors
because the context makes the utterance interpretable even
when ambiguous or erroneous. When listeners do have
troubles, the speaker can often detect this through the
listener’s nonverbal and verbal reactions. Language is an
example of a system that seems designed for error—it
tolerates a good deal of imprecision and it provides error-
correcting mechanisms that are so effective that, after the
fact, sometimes neither listener nor speaker is aware of the
error. Computer systems’ general lack of sensitivity to
context means that developers must take the initiative by
building in safeguards and confirmation steps to prevent
catastrophic errors (Lewis and Norman, 1986)—which
can, of course, add complexity or inconsistency to the
dialogue.

Today, the proper analogy with computers is perhaps
not full-fledged natural languages, but rather pidgins.
Like pidgins, human-computer interaction deals with
exchanges between users and system that are restricted in
domain. Pidgins are restricted in expressive power. But
the “pidgin” used for human-computer interaction must
develop toward a Creole as greater range is sought, thus
bringing into play all the issues discussed in this paper.

Computer systems are still small and limited. Unlike
natural language systems, they do not last for multiple
generations of users, and they do not provide mechanisms
for the sharing of developments among the user
community. Unlike human listeners, they do not evaluate
innovations and propagate good ones. More important,
perhaps, is that there is none of the richness of natural
language that allows for heavy use of context, a relative
insensitivity to error, and efficient error correcting
mechanisms.

An understanding of how naturally evolving, intensely
social systems such as languages cope with conflicting
pressures can help the designers of artificial systems. But
if we are to adapt some of the lessons, we must move
beyond today’s systems which have relatively limited
capabilities and limited lifetimes and that are static and
unresponsive. Instead, we must learn to develop systems

that have long lifetimes of gradual evolution, and that are
adaptive, flexible, and robust.

Acknowledgment
We thank Karen Courtenay, Rod Owen, Larry Parsons,
and Steve Pinker for helpful discussions and literature
references on the role of language change and irregularity.
Tom Erickson, Don Gentner, John Paulin Hansen, Jim
Hollan, Phyllis Reisner, Hank Strub and John Sullivan
also provided helpful comments.

References
Agre, P. and Shrager, J. 1990. Routine evolution as the

microgenetic basis of skill acquisition. Proceedings of
the Conference of the Cognitive Science Society.
Hillsdale, NJ: Lawrence Erlbaum.

Bybee, J. 1988. Morphology as lexical organization. In
M. Hammond and M. Noonan (Eds.), Theoretical
morphology. New York: Academic.

Ellis, S.R. and Hitchcock, R.J. 1986. The emergence of
Zipf’s Law: Spontaneous encoding optimization by
users of a command language. Transactions on systems,
man, and cybernetics, 16, 3, 423-427.

Erickson, T. 1990. Interface and evolution of pidgins:
Creative design for the analytically inclined. In B.
Laurel (Ed.), The art of human-computer interface
design. Reading, MA: Addison-Wesley.

Grudin, J. 1989. The case against user interface
consistency. Communications ACM, 32, 1164-1173.

Grudin, J. and Barnard, P. 1985. When does an
abbreviation become a word? and related questions. In
Proceedings of CHI ’85. New York: ACM.

Hollan, J.D., Hutchins, E.L., McCandless, T.P.,
Rosenstein, M., and Weitzman, L. 1987. Graphic
interfaces for simulation. In W.B. Rouse (Ed.),
Advances in man-machine systems research, Vol. 3,
Greenwich, CT: JAI, 129-163.

Lewis, C. and Norman, D. A. 1986. Designing for error.
In D. A. Norman and S. W. Draper (Eds.), User
centered system design. Hillsdale, NJ: Lawrence
Erlbaum.

Mackay, W.E. 1990. Patterns of sharing customizable
software. Proceedings of CSCW ’90. NY: ACM.

Miller, G. A. 1951. Language and communication. New
York: McGraw-Hill.

Newell, A. and Rosenbloom, P. S. 1981. Mechanisms of
skill acquisition and the law of practice. In J. R.
Anderson (Ed.), Cognitive skills and their acquisition.
Hillsdale, NJ: Lawrence Erlbaum.

Polson, P. (1988). The consequences of consistent and
inconsistent user interfaces. In R. Guindon (Ed.),
Cognitive science and its applications for human-
computer interaction. Hillsdale, NJ: Lawrence
Erlbaum.

Slobin, D. I. 1977. Language change in childhood and
history. In J. Macnamara (Ed.), Language learning and
thought. NY: Academic, 185-214.

Zipf, G. K. 1949. Human behavior and the principle of
least effort; an introduction to human ecology.
Cambridge, MA: Addison-Wesley.

Zipf, G. K. 1965. The psycho-biology of language; an
introduction to dynamic philology. (Introduction by
George A. Miller.) Cambridge, MA: MIT.

