
Active Exploration in Networks: Using Probabilistic
Relationships for Learning and Inference

Joseph J. Pfeiffer III1, Jennifer Neville1, Paul N. Bennett2
1Purdue University, 2Microsoft Research

{jpfeiffer,neville}@purdue.edu, paul.n.bennett@microsoft.com

ABSTRACT
Many interesting domains in machine learning can be viewed
as networks, with relationships (e.g., friendships) connecting
items (e.g., individuals). The Active Exploration (AE) task
is to identify all items in a network with a desired trait
(i.e., positive labels) given only partial information about
the network. The AE process iteratively queries for labels
or network structure within a limited budget; thus, accurate
predictions prior to making each query is critical to maximiz-
ing the number of positives gathered. However, the targeted
AE query process produces partially observed networks that
can create difficulties for predictive modeling. In particular,
we demonstrate that these partial networks can exhibit ex-
treme label correlation bias, which makes it difficult for con-
ventional relational learning methods to accurately estimate
relational parameters. To overcome this issue, we model the
joint distribution of possible edges and labels to improve
learning and inference. Our proposed method, Probabilistic
Relational Expectation Maximization (PR-EM), is the first
AE approach to accurately learn the complex dependencies
between attributes, labels, and structure to improve predic-
tions. PR-EM utilizes collective inference over the missing
relationships in the partial network to jointly infer unknown
item traits. Further, we develop a linear inference algorithm
to facilitate efficient use of PR-EM in large networks. We
test our approach on four real world networks, showing that
AE with PR-EM gathers significantly more positive items
compared to state-of-the-art methods.

Categories: H.2.8 [Database Management]: Database Ap-

plications - Data Mining

Keywords: Statistical Relational Learning; Active Exploration;

Probabilistic Networks; Label Correlation Bias

1 Introduction
Many interesting applications in machine learning involve
data that can be viewed as networks, with relationships (e.g.,
friendships, hyperlinks) connecting items (e.g., individuals,
webpages). The existence of a relationship often implies

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’14, November 3–7, 2014, Shanghai, China.
Copyright 2014 ACM 978-1-4503-2598-1/14/11 ...$15.00.
http://dx.doi.org/10.1145/2661829.2662072.

an association between the traits of the connected items,
and these dependencies can be used to improve predictions.
The Active Exploration (AE) task is to iteratively identify
all items in a network with a particular trait (i.e., items
with positive labels) when network information is partially
observed [11, 12, 3]. Applications of AE include probing
securities traders’ communication networks for individuals
involved in fraud, or crawling the Web to gather pages with
relevant content via hyperlinks. In these domains resource
constraints only allow for the investigation of a limited num-
ber of items, and the goal is to maximize identification of
items with the target trait within the available budget.

AE is an iterative task in network domains where querying
the labels and relationships from the network has an associ-
ated cost. The goal of AE is to gather as many items with
a particular label (i.e., trait) as possible, within a querying
budget. As a result, predictions about what to query in a
given iteration can only use the previously queried labels,
attributes and relational information.

Every AE process involves three high-level steps: query-
ing, learning, and prediction. Querying actions gather ad-
ditional information about the network, such as item la-
bels (e.g., fraudulent or not) and relational structure (e.g.,
links from phone records). To decide what to query, AE
algorithms use predictive models. These models first learn
parameters using the currently available network informa-
tion and are then applied for prediction to infer the un-
known items’ labels. Given the limited querying budget,
it is critical that the models accurately identify items likely
to have the target label (to minimize queries). Prior work
on AE methods has focused on estimating label probabil-
ities through weighted random walks in the network (i.e.,
predictions are comprised of weighted averages of nearby la-
bel values) [11, 12, 3]. However, in some cases estimates that
condition directly on the items’ attributes can be more ac-
curate than estimates based only on relational information.
Relational Machine Learning (RML) (see e.g., [5]) methods
can learn the relative importance of dependencies among
labels, attributes, and network structure. As such, in this
work we propose the first AE method to incorporate RML
learning in order to fully leverage all available information.

In [11], the authors introduced a version of the AE task
where each query returns an item’s label and local relational
structure (see Section 5 for discussion of other variants).
These queries result in a partially observed view of the un-
derlying network each iteration, which the algorithm must
use to learn a model and predict the items (among the set
of unlabeled instances) that are likely to be positive. We

1

1

vc

va

vb

?

?

. . .

. . .

. . .

. . .

. . .

. . .

(a) Iteration 1

1

1

0

va

vb

vd

ve

. . .

. . .

. . .

. . .

. . .

. . .

(b) Iteration 2

1

1

0

1

1 0

0
. . .

. . .

. . .

. . .

. . .

. . .

(c) Hidden Labels

Figure 1: Active exploration introduces label correlation bias into the labeled partially observed networks.

illustrate the process in Figure 1 with a simplified example.
In Iteration 1, the algorithm uses the observed labels, rela-
tional structure, and attributes to estimate the label proba-
bilities for the border items (va, vb, vc) and queries the node
with highest probability of value 1 (e.g., vc). This reveals
additional structure in Iteration 2, namely, the revealed la-
bel for vc and additional links to vd and ve. The resulting
partially observed network (1.b) has biased relational simi-
larities compared to the full network (1.c) because only the
positive neighbors of vc are observed. More generally, this
overrepresentation of positive neighbors is a typical case for
any effective AE algorithm as AE aims to only acquire pos-
itive nodes. In the example, a conventional RML method
(using only the observed network) will learn biased parame-
ters that result in poor performance on subsequent iterations
(e.g., by selecting vd or ve). An effective use of RML for AE
must address the sampling bias in the partially observed net-
work to learn parameters that reflect the true dependencies.

In this paper, we demonstrate how the simple label corre-
lation bias illustrated in Figure 1 generalizes to the partially
observed networks produced by the AE process. In particu-
lar, we show that the AE sampling process commonly pro-
duces partially observed networks with negatively correlated
labels across the edges, in contrast to the positively corre-
lated full graph. Since conventional RML models assume a
fully observed network is available to learn the parameters,
when presented with a highly biased network sample these
models struggle.

To address this we develop a semi-supervised learning ap-
proach based on expectation maximization (EM). Specifi-
cally, we propose to incorporate inferred values of the unob-
served labels and edges into the learning step to improve the
parameter estimates. With respect to Figure 1.a, this means
we will first infer the labels of va, vb and vc, then use the in-
ferences to relearn the model. Furthermore, since the rela-
tionships between the border vertices are also hidden (e.g.,
the link (va, vb)) we incorporate probabilistic relationships
into our formulation. We refer to our method as Probabilis-
tic Relational EM, or PR-EM. The space of combinations
of possible edges and labels is exponential in the number of
items, so we develop a Variational Mean Field (VMF; [6])
approach for approximate inference. Conventional VMF for
PR-EM would be quadratic in the number of border nodes,
which is computationally prohibitive in an iterative process
such as AE. To overcome this, we introduce a linear time
approximation to perform PR-EM inference. The contribu-
tions of this work can be summarized as:

• The first approach to AE that learns a model of the
complex attribute and relational dependencies from a
partially observed network.

• Identification of a label correlation bias during the AE
process. This bias prevents direct application of cur-
rent RML approaches to learn a model.

• Proposal of the PR-EM method to perform learning
and inference in probabilistic networks to adjust for
the label correlation bias exhibited by AE.

• Introduction of an efficient linear PR-EM inference al-
gorithm, allowing implementation on large networks.

2 Problem Description
Current approaches to AE use predictive models to decide
which items to query [11, 12, 3]. At each iteration, an AE
algorithm selects one (or more) items to label from the set
of unlabeled items. When an item is labeled, relationships
to other items (unlabeled and labeled) are also acquired.
Thus the set of unlabeled items consists of the labeled items’
relational neighbors. These items are the border instances,
which can be selected for labeling in subsequent iterations.
Prior to selection, an AE algorithm utilizes a model to infer
the instances that are likely to have the desired class label
value. The choice of model is key to success on the AE
task: if it returns accurate predictions for the border labels,
the algorithm can find larger numbers of instances with the
desired label before the budget runs out.

2.1 Notation
Let G = 〈V,E,X,Y〉 define a graph, where V is a set of
vertices and E ⊆ V×V is a set of edges, or relationships, be-
tween the vertices where (vi, vj) ∈ E indicates a relationship.
Every vertex vi ∈ V has a corresponding W -dimensional
vector of attributes xi ∈ X that is observed, as well as a
label yi ∈ Y, where yi ∈ Y is the space of possible labels.
Through this work we utilize Y = {0, 1} as our labels. The
instances labeled yi = 1 are the target instances to locate
(such as fraudulent traders), and 0 otherwise1.

AE requires the specification of three subgraphs of G: GL,
GO and GS (Figure 2 illustrates each subgraph). First, let
the subgraph GL = 〈VL,EL,XL,YL〉 consist of the labeled
vertices VL ⊆ V (the 1/0 vertices in Figure 2) and the
edges between labeled vertices EL ⊆ E (Figure 2.b). The
corresponding set of known labels and attributes is YL and
XL. Next, let VB be the border vertices (blue vb vertices in
Figure 2.a). The border vertices are unlabeled but through
their relationship with a labeled vertex are known to the
active explorer:

VB = {vi|vi /∈ VL and (∃ vj ∈ VL and (vi, vj) ∈ E)}

Similarly, define the true (actually existing but hidden)
set of edges between the border instances EB ⊆ VB ×VB .
Unlike the border vertices VB , the border edges EB are un-
observed during the AE process. Let the subgraph GO =
〈VO,EO,XO,YL〉 be the subgraph which contains the la-
beled subgraph, the border vertices VB , as well as the ob-
served edges between the VB and VL (Figure 2.c). Further,

1The representations are applicable to all discrete labels, but
associated applications are beyond the scope of this work

1

1 0

vb1

vb2

vb3

vb4?

?

?

?

?

...

...

...

...

...

GS
GL

(a)

1

1 0

(b) GL

1

1 0

vb1

vb2

vb3

vb4

(c) GO

1

1 0

vb1

vb2

vb3

vb4

(d) GS

1

1 0

vb1

vb2

vb3

vb4

(e) P (G′S |GO)

Figure 2: (a) The graph G. (b) The labeled subgraph, (c) observed subgraph (d) full subgraph, and (e) a
probability distribution over the unknown border edges.

Algorithm 1 ActiveExploration(GO, C)
1: # Search until the budget is exhausted
2: while |VL| < Budget do
3: # Apply prediction model
4: Θ̂C = Learn(GO, C) #(Possibly) learn classifier

5: P(YB) =Inference(GO, C, Θ̂C) #Infer labels
6: # Select instances to label and find related instances
7: V′L = Select(P(YB),BatchSize)

8: Y′L = Label(V′L)

9: E′O = AcquireEdges(V′L)

10: V′B = AcquireNeighbors(V′L,E
′
O)

11: # Update our sets
12: VL = VL ∪V′L
13: VO = VL ∪V′B
14: YL = YL ∪Y′L
15: EO = EO ∪ E′O
16: return GO

XO = XL∪XB . The set of edges EO of GO does not contain
the unobserved EB (dashed lines in Figure 2.a):

EO = {(vi, vj)|(vi, vj) ∈ E and (vi ∈ VL or vj ∈ VL)}

In contrast, the subgraph GS = 〈VS ,ES ,XO,YL〉 en-
compasses all labeled and border vertices (VS = VL ∪VB)
as well as all the true edges between them ES = EO ∪ EB

(Figure 2.d).
Let E′B ⊆ VB × VB be a possible set of border edges

(but not necessarily the true set EB), and EB be all pos-
sible combinations of border edges. Our work will require
the estimation of the probability of a set E′B , P (E′B |EO),
being the true border edges EB . Similarly, GS denotes all
combinations of full subgraphs, with G′ ∈ GS being a par-
ticular combination (Figure 2.e). For (vi, vj) ∈ VB ×VB ,
P (Ejk = 1|EO) refers to the probability of (vi, vj) ∈ EB ;
that is, the probability that two vertices have an edge be-
tween them in the true subgraph GS .

We define three structural characteristics which will be
utilized in the upcoming sections. First, let G∗ indicate
a particular subgraph (such as G,GL, GO, GS). We define
N∗(vi) to be the set of neighbors of a vertex vi: N∗(vi) =
{vj |(vi, vj) ∈ E∗}. Second, as a notational extension, let
YN∗(vi) indicate the corresponding set of labels for the neigh-
bors of a vertex vi. Third, d∗(vi) indicates the degree of the
vertex vi in the subgraph G∗, where d∗(vi) = |N∗(vi)|.

2.2 Active Exploration
AE algorithms aim to identify positive instances in a graph
G in an iterative fashion. During each iteration, the algo-
rithm uses the observed subgraph GO to infer the positive
probabilities of the unlabeled border labels YB . The AE
algorithm then chooses a small set of border items to label,
acquires any new edges and border vertices, and repeats un-
til the budget is exhausted.

Algorithm 1 presents pseudocode for a generic AE algo-
rithm. It begins with an initial observed graph GO and a
classifier C, and proceeds to iteratively sample labels and
structure until the query budget runs out. Each iteration
of the algorithm begins by modeling the labels of the bor-
der items. The algorithm may choose to learn parameters
of the model (Line 4), but most current methods skip this
step. Then the model is applied for prediction of YB (Line
5). Instances are selected, or queried, on Line 7, with the
goal of maximizing the number of positives identified2. The
items are then labeled on Line 8, while Lines 9 and 10 iden-
tify new border vertices and edges. Lines 12-15 update the
observed network with the newly acquired labels, edges and
border instances3.

The primary task in AE is to infer the border probabili-
ties P (YB) on Line 5 using only the observed subgraph GO
(which are then used for selection on line 7). Prior work
infers unknown labels (i.e., yB ∈ YB) by averaging the la-
bels of the neighbors [11], with variants including weighting
the neighbors by their attributes [3] or their random walk
distances across the network [12]. In contrast, in this paper
we learn a model that directly conditions on the attributes
and neighboring labels using relational machine learning, so
inferences are no longer solely comprised of nearby labels.

3 The Impact of Subgraph Information on
AE Learning and Inference

AE algorithms explicitly target positive instances to label.
If the algorithms are successful, they gather larger num-
bers of positive samples into the labeled set than negatives,
but may make occasional mistakes and gather negatives as
well. This is illustrated through the example in Figure 1.a:
the algorithm may choose to label vc as it has two positive
neighbors. As vc was negative (Figure 1.b), our learning
algorithm should take into account the observed mistake,
adjust its parameters to incorporate the new information,
and use the new estimates to make better predictions on fu-
ture samples. However, if the learning algorithm uses just
the observed labels in this example network it would ap-
pear that negatives only link with positives. In contrast, the
full subgraph is positively correlated (Figure 1.c). Thus, a
model which learns from the limited GL would assign higher
positive probability to neighbors of the negative instances,
rather than the neighbors of the positive instances.

We will next demonstrate that throughout the AE pro-
cess different subgraphs exhibit different amounts of label
correlation bias in comparison to the true graph G; in par-
ticular, the labeled subgraph GL is considerably more biased
than subgraphs that incorporate the missing border labels

2In this work, we select the most probable examples.
3For brevity we omit X, which is updated with V.

0 2000 4000 6000 8000 10000
Number of Labels

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15
Y
∗

C
or

re
la

tio
n

GL

G+
O

G+
S

G

(a) Music

0 2000 4000 6000 8000 10000
Number of Labels

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

Y
∗

C
or

re
la

tio
n

(b) DVD

Figure 3: The correlations of the three subgraphs,
GL, G

+
O and G+

S , along with the full graph correlation
G, when using Oracle for AE.

YB . First, let G+
O = 〈VO,EO,XO,YL ∪YB〉 be the ob-

served subgraph augmented with the true YB labels, and
let G+

S = 〈VS ,ES ,XS ,YL ∪YB〉, or the full subgraph GS
augmented with YB . Next, we will define a classifier to use
in the AE algorithm to actively explore the network, choos-
ing the most probable instances to explore as predicted by
the classifier. As the AE process unfolds, we will measure
the label correlations across the links of the GL, G

+
O and G+

S

subgraphs against the true graph G, showing that GL ex-
hibits the most bias. The classifier that we construct is a
hypothetical “Oracle” since it will be allowed to cheat and
observe the full subgraph G+

S for learning (Line 4, Algorithm
1). After learning, the Oracle then infers the unlabeled bor-
der vertices (Line 5, Algorithm 1) using the full subgraph
GS rather than the observed GO.

We use our Oracle to actively explore two of our datasets
(Music and DVD co-purchases – dataset details in Section
6.2). In Figure 3, we plot the Pearson correlations of the
subgraphs GL, G+

O and G+
S , as well as the correlation of the

full graph G, for each dataset as AE explores utilizing the
Oracle for prediction4. The GL subgraphs produced by AE
when exploring the Music dataset are negatively correlated
as we acquire more labels. The Music dataset produces the
most striking contrast, but the bias is also observed in the
DVD dataset. Note that G+

S best models the label correla-
tion found in the true graph G, making GS the best option
for learning and inference. In contrast, learning from GL or
GO would result in more biased parameter estimates.

3.1 How to Model Subgraph Information
Given an observed graph GO, there are a variety of mod-
els that can be employed to learn the parameters (Line 4,
Algorithm 1) and infer the labels YB (Line 5, Algorithm
1). Although they have not been applied directly to the AE
task before, there are two approaches that can be immedi-
ately adapted to this domain. We describe these methods
(RML and R-EM) next and analyze how they would use GL
and GO. As neither models the full GS , they will experi-
ence a larger amount of label correlation bias (as discussed
above). To address this, we propose a novel approach (PR-
EM), which estimates GS to improve learning and inference.

Adapted RML: Unlike random walk based methods, tra-
ditional RML conditions directly on a vertex’s attributes
and neighboring labels, as opposed to weighting the labels
of nearby instances. RML formulates the problem in two
steps: learning of parameters ΘC using labeled data (Line 4,
Algorithm 1), then inferring the missing labels using the
parameters (Line 5, Algorithm 1). Existing RML meth-
ods assume knowledge of the full graph for learning and

4The results are averaged over 100 trials, and the error bars
are small and hidden behind the line markers.

Algorithm 2 R-EM Learning(GO, C,ΘC)
1: while Not Converged do
2: P (YB) = Inference(GO, C, Θ̂C)

3: Θ̂C = Learn(GO, P (YB), C,ΘC)

4: return P (YB)

Model Learning Inference CI over YB

Adapted RML GL GO No
Adapted R-EM GO GO No

Proposed PR-EM GS GS Yes

Table 1: Models and subgraphs.

inference, meaning each conditional distribution is over G.
In order to adapt RML to the AE task, this would corre-
spond to learning using just the labeled data GL, mean-
ing each label yi ∈ YL ∪ YB has a conditional distribution
P (yi|xi,YNL(vi),ΘC). The parameters ΘC are learned from
the labeled subgraph GL via Maximum Likelihood Estima-
tion (MLE) or the more efficient Maximum Pseudolikelihood
Estimation (MPLE) [5]:

Θ̂C = arg max
ΘC

PL(YL|XL,EL,ΘC)

= arg max
ΘC

∑
vi∈VL

logPL(yi|xi,YNL(vi)
,ΘC)

where the second line shows the MPLE maximization prob-
lem. We use PL to denote learning on the labeled subgraph
GL; similarly, RML uses the learned parameters Θ̂C to in-
fer the border labels utilizing the subgraph GO, denoted
PO(YB |YL,XB ,EO, Θ̂C) (Line 5, Algorithm 1).

Adapted R-EM: In [13], the authors proposed a relational
expectation maximization (R-EM) algorithm, which utilizes
the expected values of the unlabeled instances to improve
estimation of Θ̂C . Again, we can adapt this model to the AE
task by using Algorithm 2 in place of Lines 4-5 in Algorithm
1. Algorithm 2 first (Line 2) computes the expected values
of the unlabeled examples:

E-Step: Compute PO(YB |YL,XB ,EO,Θ
old
C)

That is, we use the previous iteration’s estimated parame-
ters Θold

C to compute the distribution of the border labels.
Let YB indicate the space of possible label combinations for
the missing border labels. The distribution of combinations
YB ∈ YB is used to maximize the pseudolikelihood on the
observed subgraph GO (Line 3):

M-Step: Update the parameters Θ̂C to be:

arg max
ΘC

∑
YB∈YB

PO(YB |YL,XS ,EO,Θ
old
C)

∑
vi∈VL

logPO(yi|xi,YNO(vi)
,ΘC)

This contrasts with traditional RML, which would learn
using just the subgraph GL. The E and M steps are repeated
until convergence. However, the R-EM inference step re-
mains limited by only inferring over the observed graph GO.
As a result, the expectations of the unlabeled border ver-
tices VB are inferred independently as there are no observed
edges between the border nodes.

Proposed PR-EM: In this paper, we propose to improve
the border label predictions by utilizing a distribution of
possible border edges. Our method will infer the subgraph
GS : this will introduce dependencies between the border
labels and allow us to perform collective inference when pre-
dicting YB . Thus, vertices which are “near” each other in
the network will be able to utilize each other’s predictions to
jointly improve inferences. In particular, let P (E′B |EO) rep-
resent the probability of a particular set of edges E′B ∈ EB

xi yj

vj ∈ N(vi)

yi

(a)

xik

xik ∈ xi

yj

vj ∈ N(vi)

yi

(b)
Figure 4: (a) General model and (b) RNB.

given the observed graph GO. We will extend the relational
EM process to marginalize over the distribution of possible
border edges:

PS(YB |YL,XB ,EO,ΘC)=
∑

E′
B
∈EB

PS(YB |YL,XB ,E
′
S ,ΘC)P (E

′
B |EO)

where E′S = EO∪E′B . This estimate replaces the previous E-
Step of the R-EM method with a collective prediction of YB :

New E-Step (Line 2, Algorithm 2): Compute

PS(YB |YL,XB ,EO,ΘC)=
∑

E′
B
∈EB

PS(YB |YL,XB ,E
′
S ,ΘC)P (E

′
B |EO)

Our proposed inference step utilizes a distribution over
G′S ∈ GS , rather than only using GL or GO. As the expec-
tations are computed with GS , the M-step is over the full
subgraph by using the improved predictions:

New M-Step (Line 3, Algorithm 2): Update parameters Θ̂C

arg max
ΘC

∑
YB∈YB

PS(YB |YL,X,EO,Θ
old
C)

∑
vi∈VL

logPS(yi|xi,YNS(vi)
,ΘC)

As our proposed method incorporate the probabilities of
the missing relationships into the learning and inference, we
call it Probabilistic Relational EM, or PR-EM. PR-EM can
be utilized to jointly infer the probability of missing edges
EB in a network and incorporate the additional information
into predicting the unlabeled YB . PR-EM is designed for
AE, where large numbers of edges are unavailable, but can
also be applied on other probabilistic network domains.

Unlike learning using just GL or GO, utilizing the dis-
tribution over GS presents a unique set of challenges. In
the worst case, marginalizing over the full distribution of
P (E′B |EO) would involve a summation over an exponential
number of edge combinations. Even when assuming con-
ditional independence between the edges, a straightforward
implementation of PR-EM would pair every border vertex
with each other, resulting in a quadratic runtime. Thus, we
also develop a fast algorithm that performs PR-EM inference
over the probabilistic edges in O(dNO (vb)) for each vb ∈ VB .
This algorithm is linear in the number of observed neighbors
of a vertex, rather than a conventional inference algorithm
being quadratic in the number of observed neighbors, and is
the same runtime as RML and R-EM.

4 Probabilistic Relational EM (PR-EM)
In this section we discuss our proposed PR-EM model, with
a focus on efficient inference over the probabilistic edges. We
begin with a discussion of the inference methods of RML
and R-EM, which will be extended to incorporate collective
inference when estimating the border labels YB . Along the
way we will incrementally introduce the probability of edges
E′B ∈ EB , the corresponding VMF inference algorithm, and
our linear time implementation. We make the usual RML
Markov assumption and define a generative local conditional
model C which falls into the class of models represented by
Figure 4.a. That is, given a subgraph G∗ we assume the

relational features are conditionally independent from the
attributes and each other:

P∗(yi|xi,YN∗(vi),ΘC) ∝ P (yi)P (xi|yi)
∏

vj∈N∗(vi)

P (yj |yi)

We allow any form for the attributes conditioned on the la-
bel; for instance, the Naive Bayes representation falls within
this class of models (Figure 4.b), but the attribute condi-
tional can be more expressive.

Inference on the Observed Graph (GO): To start, we for-
mulate the inference methods of RML and R-EM. These in-
fer the border labels YB utilizing the joint distribution of
YB given the observed graphGO: PO(YB |YL,XB ,EO,ΘC).
We will then extend to the more difficult distribution over
GS , which is necessary for our PR-EM method.

Given only the observed graph GO, all border vertices
vi ∈ VB are conditionally independent of each other, mean-
ing the joint distribution of border vertices can be broken
into inferring each border vertex vi independently. Zi rep-
resents the corresponding partition function for the condi-
tional log probability of yi. We define αi(yi) to represent the
summation over the observed log probabilities for a vertex vi
- the log conditional for an instance yi is then:

logPO(yi|xi,YNO(vi)
,EO,ΘC)

= log(P (yi)) + logP (xi|yi) +
∑

vj∈NO(vi)

logP (yj |yi)− Zi (1)

= αi(yi)− Zi

We can compute each local summation αi(yi) inO(dO(vi))
time. Utilizing the conditional independence provided by
GO, RML and R-EM apply the above equation to each vb ∈
VB to infer the joint distribution PO(YB |YL,XB ,EO,ΘC).

Inference on the Full SubGraph (GS): The above infer-
ence represents the contributions from the observed graph
GO when inferring the border labels YB . However, it does
not incorporate any edges given a full subgraph G′S ∈ GS .
Consider yi ∈ YB : let VB\i be the set of vertices in VB ex-
cluding vi. Similarly, for all vb ∈ VB\i, let Eib be a random
variable representing an edge between vi and vb. Eib = 1
when the edge between vi and vb exists, and 0 otherwise.
Define E′iB as the complete set of random variables Eib, or
the possible edges between vi and all other border vertices.
In the next step, we introduce the conditional of yi under
the assumption YB\i and EiB are known:

log PS(yi|xi,YNO(vi)
,EO,YB\i,E

′
iB ,ΘC) (2)

= log

P (yi)P (xi,YNO(vi)
|yi)

∏
vb∈VB\i

P (yb|yi)Eib

− Zi
=αi(yi) +

∑
vb∈VB\i

Eib logP (yb|yi)− Zi (3)

When an edge Eib is unobserved the corresponding belief
from yb is not incorporated into the summation and does not
contribute to yi. The derived conditional log probabilities
currently have three complicating elements:

• The conditional edge probabilities between border ver-
tices P (EiB |EO) must be defined.

• The distributions of border labels YB\i and edges E′iB
need to be incorporated into Equation 2.

• Naive implementation of VMF inference leads to a
complexity of O(|VB |2).

In the rest of this section we will solve each of these issues.

4.1 PR-EM Edge Probabilities
We begin by proposing the probability of an edge P (Eik|EO)
between two border instances (vi, vk) ∈ E′B . We will then
generalize this to the distribution of edges P (E′B |EO).

First, the probability of an edge Eik is proportional to a
two hop random walk across the observed graphGO. Namely,
the probability of a random walk taking a single step from
a vertex v to a neighbor v′ ∈ N∗(v) is (d∗(v))−1. The corre-
sponding probability of a two hop random walk starting at vi
and landing at vk on GO is a marginalization over the inter-

mediate vertices vj ∈ NO(vi):
∑
vj∈NO(vi)

1
dO(vi)

I[vk∈NO(vj)]

dO(vj)
.

We allow the random walk to start at either vi or vk and
assume the number of edges that are missing per vertex is
proportional to the observed number of edges. This enforces
more active vertices from the observed subgraph GO to be
more active in the full subgraph GS . We introduce the hy-

perparameter
Θβ
2

to represent the weight of the walk (we
divide by 2 without loss of generality). We solve to recover:

P (Eik=1|EO) ∝
Θβ

2
dO(vi)

∑
vj∈NO(vi)

1

dO(vi)

I[vk ∈ NO(vj)]

dO(vj)

+
Θβ

2
dO(vk)

∑
v
j′∈NO(vk)

1

dO(vk)

I[vi ∈ NO(vj′)]

dO(j′)

=Θβ
∑

vj∈NO(vi)

I[vk ∈ NO(vj)]

dO(vj)
(4)

As a result, the probability of an edge Eik existing is the
weighted summation of the intermediate vertices’ inverted
degrees. First, as the summations are defined over GO the
probabilities Eij ∈ E′B are conditionally independent. This
result, coupled with the summations being only over the two
hop neighbors, initially reduces our complexity to O(|VB |2).
Second, Θβ must lie in the following range:

0 ≤ Θβ ≤ arg max
i,k

1∑
vj∈NO(vi)

I[vk∈NO(vj)]

dO(vj)

The lower bound of 0 will remain fixed and represents the
case where no collective inference is performed (inference
reduces to GO); however, later in this section we will show
how in practice the upper bound can be relaxed (0 ≤ Θβ).

4.2 PR-EM Variational Mean Field Inference
The PR-EM conditional distributions of yi ∈ YB defined in
Equation 2 require the other border labels YB\i and edges
E′iB (found in Equation 3). We next incorporate the prob-
abilities over these sets utilizing VMF inference. We define
a fully factorized approximating distribution over the set of
border labels YB and edges E′B , denoted Q(YB ,E

′
B):

Q(YB ,E
′
B) =Q(YB)Q(E

′
B) =

∏
vi∈VB

Q(yi)
∏

Ejb∈E
′
B

P (Ejb|EO)

Each Q(yi) represents the current probability of each vi’s
label to be yi ∈ Y. VMF computes the optimal solution of
Q(YB ,E

′
B) by iteratively updating each Q(yi) component

until convergence [6]. We next define the updates for each
Q(yi) given the other Q(yb) for yb ∈ YB\i and Eib ∈ E′iB .
As the Ejb ∈ E′B are independent we do not recompute them
at each iteration. Let YB\i be the space of possible border
labelings except vi, and E ′iB be the space of all possible vi
border edges. The VMF update for each conditional is5:

5For clarity we omit listing xi and EO. These are fixed and
conditioned on when inferring yi.

logQ(yi)

=
∑

YB\i∈YB\i

Q(YB\i)
∑

E′
iB
∈EiB

Q(E
′
iB)logPS(yi|YNO(vi)

,YB\i,E
′
iB ,ΘC)−ZQ(i)

=
∑

YB\i∈YB\i

Q(YB\i)τ(yi;YNO(vi)
,YB\i, EiB)− ZQ(i)

(5)

where ZQ(i) is the variational normalizing constant (replac-
ing Zi). We begin by reducing the newly notated τ by in-
serting our conditionals from Equation 2 and simplifying:

τ(yi;YNO(vi)
,YB\i, EiB)

=
∑

E′
iB
∈EiB

Q(E
′
iB) logPS(yi|YNO(vi)

,YB\i,E
′
iB)

=
∑

E′
iB
∈EiB

Q(E
′
iB)

αi(yi) +
∑

vb∈VB\i

Eib logP (yb|yi)



= 1 · αi(yi)+
∑

E′
iB
∈EiB

Q(E
′
iB)

 ∑
v′
b
∈VB\i

Eib logP (y
′
b|yi)


We pause to highlight that the observed dependencies

αi(yi) do not depend on the border edge probabilities. Namely,
as Q(E′iB) is a probability distribution and EiB is all combi-
nations of border edges the summation must equal 1, allow-
ing αi(yi) to be pulled out of the summation. Similarly, a
label yb ∈ YB\i only depends on Q(Eib), with the summa-
tion over the distribution of remaining edge factorizations
also equaling 1. We further reduce the above6:

τ(yi;YNO(vi)
,YB\i, EiB)

= αi(yi)+
∑

vb∈VB\i

∑
Eib∈{0,1}

P (Eib|EO) [Eib logP (yb|yi)]

= αi(yi)+
∑

vb∈VB\i

P (Eib=1|EO) logP (yb|yi)

where in the last step we have excluded the case where Eib =
0. We insert our derived τ variables back into logQ(yi):

7

logQ(yi)

=
∑

YB\i∈YB\i

Q(YB\i)τ(yi;yi,YNO(vi)
,YB\i, EiB)

=
∑

YB\i∈YB\i

∏
yb∈YB\i

Q(yb)

αi(yi)+
∑

y′
b
∈YB\i

P (Eib′ =1|EO) logP (y
′
b|yi)


= αi(yi)+

∑
YB\i∈YB\i

∏
yb∈YBi

Q(yb)
∑

y′
b
∈YB\i

P (Eib′ =1|EO) logP (y
′
b|yi)

(6)

where in the last step the local terms αi(yi) are conditionally
independent of the border labels YB\i. The border labels
YB\i are also independent by the definition of Q:

log Q(yi)

= αi(yi)+
∑

YB\i∈YB\i

∏
yb∈YB\i

Q(yb)
∑

y′
b
∈YBi

P (Eib′ =1|EO) logP (y
′
b|yi)

= αi(yi)+
∑

vb∈VB\i

∑
yb∈Y

Q(yb)P (Eib=1|EO) logP (yb|yi)

At this stage the conditionals for the updates depend on
the full set of border instances; however, from the derived
edge probabilities we can see that P (Eib = 1) = 0 when vi
and vb are not within two hops of each other. LetN2

OB
(vi) be

6EO is reintroduced to provide clarity regarding the condi-
tional edge distribution P (E′B |EO).
7For the next several equations we omit the partition func-
tion ZQ(i) for space, as it does not change or simplify.

the border vertices within two hops of vi. The above equa-
tion reduces to summations over just the two hop neighbors:

log Q(yi) = αi(yi) +
∑

vb∈N
2
OB

(vi)

∑
yb∈Y

Q(yb)P (Eib=1|EO) logP (yb|yi)
(7)

At this point we have a collective inference algorithm
where each update to Q(i) costs O(dO(vi)

2). We will next
discuss how to reduce this complexity to O(dO(vi)).

4.3 PR-EM Efficient Collective Inference
The above formulation implies a simplification we can make:
namely, if vk ∈ VB is two hops away from both vi1 , vi2 ∈ VB

then it will contribute similar amounts of information to
both Q(yi1) and Q(yi2). In this subsection we will introduce
a method which does not recompute the influence from vk
when evaluating Q(yi1) and Q(yi2).

We give a simplified example of our approach in Figure 5.
In Figure 5a-b, we wish to use the two hop neighbor proba-
bilities to infer the label of the vertices vi1 and vi2 , respec-
tively. The total contributed weighted log probabilities from
the two hop neighbors for vi1 and vi2 are identical, aside
from their contributions to each other’s estimate. Thus,
when computing Q(yi1) we can store the logarithmic sum of
two hop beliefs, then incorporate the previously computed
sum when evaluating Q(yi2). This will allow us to propa-
gate the beliefs without having to recompute the weighted
evidence from every two hop neighbor. We define the set of
variables γj(y):

γj(y) =
∑

v′
k
∈NOB (vj)

∑
y′∈Y

Θβ

dO(vj)
Q(y

′
) logP (y

′|y)
(8)

where NOB (vj) is the border neighbors of vj in the observed
graph. For each labeled vertex vj , γj(y) is the total condi-
tional log probabilities of the border neighbors given a label
y ∈ Y. For example, consider Figure 5.c. γe(1) sums over
the positive conditional log probabilities of the neighbor-
ing va, vb, vc, while γf (1) sums over the positive conditional
log probabilities of the neighboring va, vc. Corresponding
summations γe(0) and γf (0) are also maintained. After we
update a single factor Q(yi) we can update the neighbor-
ing γj in O(1) time by subtracting off the old belief (de-
termined by Qold(yi)) and adding in the new belief (deter-
mined by Q(yi)). We apply the derived edge probabilities
from Equation 4 to the conditional log probability expressed
in Equation 7:

log Q(yi)

= αi(yi) +
∑

vb∈N
2
OB

(vi)

∑
yb∈Y

Q(yb)P (Eib=1|EO) logP (yb|yi)

= αi(yi) +
∑

vb∈N
2
OB

(vi)

∑
yb∈Y

∑
vj∈NO(vi)

ΘβI[Ejb]
dO(vj)

Q(yb) logP (yb|yi)

= αi(yi) +
∑

vj∈NO(vi)

 ∑
vb∈N

2
OB

(vi)

∑
yb∈Y

ΘβI[Ejb]
dO(vj)

Q(yb) logP (yb|yi)



= αi(yi) +
∑

vj∈NO(vi)


∑

vb∈NOB (vj)

yb∈Y

ΘβI[vb 6= vi]

dO(vj)
Q(yb) logP (yb|yi)


In the last step we have noted that an intermediate node
vj only connects to its immediate neighbors NO(vj) out of
all the two hop neighbors of vi, NOB (vi). We must only
exclude vb = vi, as vi is not dependent on the previous Q(yi)

vevi1

vi2

vk
vk

vk
vk

vk

vk

(a)

vevi1

vi2

vk
vk

vk
vk

vk

vk

(b)

ve vf

va

vb
vc

(c)
Figure 5: PR-EM with respect to (a) vertex vi1 and
(b) vertex vi2 . (c) A more general case

values. The relational components are in the same form as
weighted Naive Bayes, meaning we must only require 0 ≤ Θβ

to return valid probabilities for Q(yi). As Θβ increase, more
influence from the other border neighbors influences Q(yi),
and smaller values revert to traditional R-EM.

We now reformulate the above equation in terms of the
summations γj . Define the previous iteration’s Q(yi) as
Qold(yi). When summing the γj variables into our log prob-
ability for vi, we subtract off the weighted contribution from
the previous iteration:

log Q(yi)

=αi(yi)+
∑

vj∈NO(vi)


∑

vb∈NOB (vj)

yb∈Y

ΘβI[vi 6= vb]

dO(vj)
Q(vb)logP (yb|yi)

−ZQ(i)

=αi(yi)+
∑

vj∈NO(vi)

γj(yi)−∑
y′
i
∈Y

Θβ

dO(vj)
Q(y

′
i)
old

logP (y
′
i|yi)

−ZQ(i)

(9)

As we maintain the γj summations, when inferring Q(yi)
we do not need to recompute the contributions from all the
two hop neighbors. Before inferring Q(yi) we subtract off
the belief proportional to Qold(yi) from each neighboring
γj . After inference for Q(yi) we add these values back into
the neighbor’s summations γj . We then perform inference
on the next border vertex, until convergence. As we only
consider the summations stored at each immediate neigh-
bor vj , rather than recomputing the value for each possi-
ble vk, the inference runtime of a single border vertex vi is
O(dO(vi)). This is the same runtime order as independent
inference, meaning our PR-EM process does not impact the
total runtime.

4.4 PR-EM Algorithmic Implementation
We lay out our PR-EM procedure in Algorithm 3: this col-
lective inference replaces the independent inference over VB

in the original R-EM algorithm (Algorithm 2, Line 2). Here,
we give an example for a binary classification task. Every
labeled instance keeps track of the two γj sums:

for y ∈ {0, 1} : γj(y) =
∑

vk∈NOB (vj)

∑
yk∈{0,1}

Θβ

dO(vj)
Q(vk) logP (yk|y)

In practice, we extend the algorithm to allow the inclusion
of the labeled instances as part of the two hop beliefs: when
vl ∈ VL then Q(y′l) is either 1 or 0, depending on whether
yl = y′l. By adding the labeled neighbors it can incorporate
belief from labeled vertices that lie both one and two hops
away multiple times, which places higher weight on neigh-
boring vertices with a large number of common neighbors.

Algorithm 3 begins by pushing the conditional beliefs from
the labeled instances to their relational neighbors, to use
when informing the border instances (Lines 6-10). Each it-
eration of the loop calls Algorithm 5, which dynamically
handles inserting the weighted conditional log probability

Algorithm 3 CollectiveInference(GO, C,Θβ ,ΘC)

1: # Initialize vectors
2: Q = ∅ # Mean expectations
3: γ(1) = [γ1(1), γ2(1), . . . , γb(1)] = [0, 0, . . . , 0]# Two hop beliefs
4: γ(0) = [γ1(0), γ2(0), . . . , γb(0)] = [0, 0, . . . , 0]# Two hop beliefs
5: # Push labeled beliefs onto neighbors summations
6: for all vi ∈ VL, vj ∈ NO(vi) do
7: if yi = 1 then
8: γ = UpdateSummation(1, vj , γj ,+, C,Θβ ,ΘC)
9: else
10: γ = UpdateSummation(0, vj , γj ,+, C,Θβ ,ΘC)

11: # Initialize Border Labels for VMF
12: for all vi ∈ VB do
13: Q[vi] = C.Expectation(xi, NO(vi),ΘC) # Equation 1
14: for all vj ∈ NO(bi) do
15: γ = UpdateSummation(Q[bi], vj , γj ,+, C,Θβ ,ΘC)

16: # Repeat until convergence
17: while Not Converged do
18: Q = InferenceLoop(GO, C,Q, γ(1), γ(0),Θβ ,ΘC)

19: return Q

Algorithm 4 InferenceLoop(GO, C,Q, γ(1), γ(0),Θβ ,ΘC)

1: for all vb ∈ VB do # Update Q for all vb ∈ VB

2: # This updates Equation 9 for vi
3: for all vj ∈ NO(vb) do
4: γ = UpdateSummation(Q[vb], γj ,−, C,Θβ ,ΘC)

5: Q[vi] = C.Expectation(vb, NO(vb), γj ,ΘC)
6: for all vj ∈ NO(vb) do
7: γ = UpdateSummation(Q[vb], γj ,+, C,Θβ ,ΘC)

8: return Q

into the correct summation. The collective inference algo-
rithm then proceeds to initialize the Q initial samples from
local conditionals defined by the generative model C for each
of the border instances (Lines 12-15). Q[vi] sums the expec-
tations of the border instances, which are then pushed into
the summations of the immediate neighbors.

After initialization, repeated calls are made to Algorithm
4 for a specified number of iterations. Algorithm 4 begins by
removing any belief in the summation that was contributed
by the vertex that is being estimated (Lines 3-4). Line 5
computes a new expected value for the vertex by utilizing
the running sum of beliefs over the vertex’s neighbors, while
lines 6-7 update the neighbor’s sums of weighted conditional
log probabilities, before the loop repeats for the next vertex.

5 Related Work
Various variations of the AE task exist, with the domains
having varying levels of network availability. Each of the
previous algorithms provided for solving the corresponding
variation of AE reduce to weighted averages of the neigh-
boring (or nearby) labels. In [12, 4], the authors assume
a full network is available for inference. Garnett et al. [4]
performed a lookahead to determine the expected impact of
a selection, but the lookahead could be costly for more than
a single step. The authors proposed an improvement by us-
ing a “soft” random walk coupled with an estimated impact
factor [12]. This allowed a random walk to flow through the
currently labeled instances and outperformed the single step
lookahead citations. However, these methods do not incor-
porate the observed attributes into their estimation. Fang
et al. [3] assume a somewhat more restrictive case of AE.
Their selection algorithm has the option to only acquire re-
lational structure, resulting in a partial free crawl across the
network. The authors also allow for usage of node features
to formalize a supervised random walk, weighting the transi-

Algorithm 5 UpdateSummation(Q(a), γj ,±, C,Θβ ,ΘC)

1: # This maintains the γj variables from Equation 8
2: # ± is specified when calling this function

3: γj(1) = γj(1)±
Q(a)Θβ
dO(vb)

· log (P (1|1))

4: γj(1) = γj(1)±
(1−Q(a))Θβ
dO(vb)

· log (P (0|1))

5: γj(0) = γj(0)±
Q(a)Θβ
dO(vb)

· log (P (1|0))

6: γj(0) = γj(0)±
(1−Q(a))Θβ
dO(vb)

· log (P (0|0))

7: return γ

tion probabilities. While their methods do learn the weights
of the random walk given the attributes, they do not di-
rectly condition on the attribute values and remain limited
to weighted averages of the neighbors’ labels. In [11], we
presented our AE formulation. Similar to this work, [11]
utilizes weighted two hop averages for prediction; however,
that algorithm remained quadratic in runtime, did not in-
corporate attributes and did not learn a model. In contrast
to each of these methods, we learn the label dependencies on
both the attributes and neighbors. Our method allows the
classifier to learn the relative importance of the attributes
versus relational features.

AE has a similar setup as network active learning and
active querying, but has distinct goals. For network active
learning, a sampler selects instances which either improve
the classifier or reduce variance across the network and are
not concerned with maximizing the identification of a par-
ticular class label [2, 7]. Active learning and AE also have
distinct goals from active querying [10]. In active querying,
a sampler selects instances to improve the predictions of a
particular set of vertices which it cannot sample directly.

6 Experiments
In this section, we evaluate AE using our proposed PR-EM
model, several baseline learning approaches and the state-
of-the-art AE methods discussed in Section 5.

6.1 Methods
We compare AE using our proposed method against five
competing methods and a random method: each compet-
ing method is used for AE (Algorithm 1) to infer the label
probabilities of the border vertices. For each method, we
list the subgraph it models (GL, GO, GS) and whether it
performs learning (Line 4, Algorithm 1), inference (Line 5,
Algorithm 1) or both.

Naive Bayes (NB): This is the independent Naive Bayes
estimator: it only uses the vertex attributes when perform-
ing estimation and inference and does not utilize any net-
work information. It learns (Line 4) using the labeled ver-
tices and their corresponding attributes (YL,XL), and ap-
plies the result to predict border labels (Line 5) using only
the available border attributes (XB).

Relational Naive Bayes (RNB): This is similar to the
NB estimator, but uses the labeled relational neighbors as
features during estimation and inference. For learning it
utilizes the labeled graph GL (Line 4). During inference the
border labels use the labels of their relational neighbors with
the GO network (Line 5).

weighted vote Relational Neighbor (wvRN): This
is the estimator introduced in [9] and used for AE in [11]. It
does not learn, rather, it selects items which have the highest
percentage of positive observed (GO) neighbors (Line 5).

0% 2% 4% 6% 8% 10%
Budget as % of Graph Labeled

0

100

200

300

400

500

600
Po

si
tiv

es
Fo

un
d Rnd

NB

RNB

wvRN

SoftRW

SupRW

PR-EM (RNB)

(a) Facebook

0% 2% 4% 6% 8% 10%
Budget as % of Graph Labeled

0

100

200

300

400

500

600

Po
si

tiv
es

Fo
un

d

(b) IMDB

0% 2% 4% 6% 8% 10%
Budget as % of Graph Labeled

0

200

400

600

800

1000

Po
si

tiv
es

Fo
un

d

(c) DVD

0% 2% 4% 6% 8% 10%
Budget as % of Graph Labeled

0
200
400
600
800

1000
1200
1400
1600

Po
si

tiv
es

Fo
un

d

(d) Music
Figure 6: Gains reported for each datasets. PR-EM performs as well as the top competitor for the Facebook
and IMDB datasets, and is considerably better for the Music and DVD datasets.

0% 2% 4% 6% 8% 10%
Budget as % of Graph Labeled

−0.20
−0.15
−0.10
−0.05

0.00
0.05
0.10
0.15
0.20

Y
L

C
or

re
la

tio
n

RNB PR-EM (RNB)

(a) Facebook

0% 2% 4% 6% 8% 10%
Budget as % of Graph Labeled

−0.20
−0.15
−0.10
−0.05

0.00
0.05
0.10
0.15
0.20

Y
L

C
or

re
la

tio
n

(b) IMDB

0% 2% 4% 6% 8% 10%
Budget as % of Graph Labeled

−0.20
−0.15
−0.10
−0.05

0.00
0.05
0.10
0.15
0.20

Y
L

C
or

re
la

tio
n

(c) DVD

0% 2% 4% 6% 8% 10%
Budget as % of Graph Labeled

−0.20
−0.15
−0.10
−0.05

0.00
0.05
0.10
0.15
0.20

Y
L

C
or

re
la

tio
n

(d) Music
Figure 7: The correlation of the labels across the observed edges. PR-EM can accurately estimate in cases
where the observed graph is negatively correlated.

Dataset Nv Ne W ρ P (+)

Facebook 6,342 36,685 2 0.174 0.320
IMDB 12,469 61,115 28 0.207 0.119
DVD 17,219 37,798 28 0.208 0.200
Music 60,215 136,272 26 0.154 0.074

Table 2: Data statistics. From the left: Number
of vertices, edges, and attributes, label correlation
across edges, positive prior.

Soft Random Walk (SoftRW): This is a recently pro-
posed method by Wang et al. for AE [12] which improves on
the methods of [4]. It does not perform learning — it creates
a soft random walk through the labeled instances, making a
broader scope of label information available to the unlabeled
vertices (Line 5). As a result, this method models GS . This
is in contrast to only viewing the immediate neighbors with
wvRN. We use the parameters suggested in their work.

Supervised Walk (SupRW): This is a recently pro-
posed method by Fang et al. for AE [3]. It weights the
probability of a walk passing between instances as a func-
tion of features created by the endpoint vertices’ attributes,
which are learned (Line 4). The predictions are made from
the averages of the random walk (Line 5). As the random
walk is grounded, only immediate neighbors are used during
inference meaning this method only utilizes GO. We use the
edge features and linear weighting suggested by the authors.

Probabilistic Relational EM (PR-EM (RNB)): Our
EM which utilizes the probabilistic relationships – we utilize
5 iterations of EM with 10 iterations of our VMF approx-
imation during the E-step. Our conditional form is RNB
– we initialize the attribute parameters using a single max-
imization of RNB, while the relational parameters on the
first iteration are uniform. Between inference steps we cali-
brate the estimates of the PR-EM probabilities so their mean
matches the labeled population mean [1]. During learning,
we incorporate an informative Beta prior for each relational
parameter: B(0, |YL| · P (1)) for the positive conditional
probability and B(|YL| · P (0), 0) for the negative. We set
Θβ = 22, and will discuss the impact of this selection. As
discussed previously, PR-EM performs both learning and
inference (Algorithms 2-5) by modeling GS .

6.2 Datasets
We compare each of the above methods on four datasets.
The full statistics for the datasets are compiled in Table 2.

Facebook: This is a snapshot of the Purdue University
Facebook network. We include users who have listed their
(a) Political Views, (b) Religious Views and (c) Gender. We
use the users’ Political views as the label, and Religious
Views and Gender as the two attributes.

IMDB: This is the IMDB dataset (www.imdb.com), where
the goal is to predict whether a movie is successful (i.e., high
box office return). We use a boolean label to indicate if
the reported gross receipts were greater than $50 million.
We use 19 boolean feature variables indicating whether the
movie belongs to any of 19 possible genres. We break the
user rating into 9 boolean variables, each of which indicates
whether the average movie rating is greater than the corre-
sponding variable index. We construct a network by insert-
ing an edge if two movies share two or more producers.

DVD: This is the Amazon copurchase network compiled
by [8], but we only select the DVD items. This allows us to
incorporate 24 genres of movies as features. We construct
boolean features based on the average user’s review of a
product: star ratings are between 1 and 5. The label we
predict is whether the item is a top seller (salesrank < 7500).

Music: This is the Amazon copurchase network compiled
by [8], but we only select the Music items. This allows us to
incorporate 22 styles of music as features in addition to the
user rating features, and keep the same top seller labeling.

6.3 Methodology
We conduct 100 trials of each method on each dataset8. At
the beginning of each trial we give every method the same
starting subgraph with 20 vertices. The starting subgraphs
are created by (a) sampling a single positive instance and
(b) actively exploring with the random method 19 times.
We set the budget to 10% of the total network size: each
method takes the starting subgraph and selects vertices to
label until the budget is exhausted. The Select function
(Algorithm 1, Line 7) is to choose the 20 most probable

8SupRW is not compared on the larger Music dataset due
to the expensive learning time at each iteration.

0% 2% 4% 6% 8% 10%
Budget as % of Graph Labeled

-5%
0%
5%

10%
15%
20%
25%

G
ai

n
Pe

rc
en

ta
ge

Θβ = 23

Θβ = 22

Θβ = 21

Θβ = 20

Θβ = 2−1

Θβ = 2−2

Θβ = 2−3

RNB

(a) Facebook

0% 2% 4% 6% 8% 10%
Budget as % of Graph Labeled

-20%
-15%
-10%

-5%
0%
5%

10%

G
ai

n
Pe

rc
en

ta
ge

(b) IMDB

0% 2% 4% 6% 8% 10%
Budget as % of Graph Labeled

-2%
0%
2%
4%
6%
8%

10%
12%
14%
16%

G
ai

n
Pe

rc
en

ta
ge

(c) DVD

0% 2% 4% 6% 8% 10%
Budget as % of Graph Labeled

-5%
0%
5%

10%
15%
20%
25%
30%
35%
40%

G
ai

n
Pe

rc
en

ta
ge

(d) Music
Figure 8: Varying Θβ on each dataset. PR-EM significantly outperforms the baseline across all Θβ.

instances. The measure we utilize for evaluation is the recall,
or number of positive instances identified as the number of
selected vertices grows. For each method on each dataset
the average positives found over 100 trials is reported.

6.4 Results
Figure 6 shows the recall for each method on each of the
four networks. The only point where PR-EM is ever outper-
formed is at the very beginning of the IMDB curve where
RNB achieves slightly higher recall. However, PR-EM re-
covers and outperforms all other methods by the time 4% of
the graph is labeled. At 10% labeled, PR-EM performance
is equivalent, or significantly better, than the second best
method on all four datasets. Although SupRW does well on
Facebook and RNB does well on IMDB, the PR-EM model
is the only method to do consistently well across all the net-
works. Moreover, it achieves significant gains over all the
competing methods on the DVD and Music networks. PR-
EM is thus able to learn the important information and use
it for accurate predictions across a variety of scenarios.

Next, we examine the types of partially observed networks
RNB can effectively learn from in comparison to PR-EM.
Figure 7 shows the label correlations in GL as we run the AE
algorithm with RNB and PR-EM. Notably, in two datasets
(DVD and Music), PR-EM learns in a space where the ob-
served GL is negative, but is still able to make accurate
predictions (Figure 6). In contrast, RNB cannot learn accu-
rate parameters in scenarios where effective AE would gen-
erate a GL with negative label correlation. In these cases,
RNB samples neighbors of negative items rather than posi-
tive items, until the GL label correlation becomes more pos-
itive. By inferring the missing edges, PR-EM is able to learn
correct parameters from heavily biased sample networks.

Lastly, we investigate the impact of the probabilistic re-
lationships on performance in terms of the associated Θβ

parameterization, which controls the weight of the probabil-
ities (Section 5.1). The evaluation is performed in compar-
ison with RNB. In particular, in Figure 8 we plot the gain
percentage, or additional percentage of positives, compared
to RNB as we vary Θβ with different powers of 2. Larger
weightings correspond to more probable relationships. RNB
only performs well in the IMDB network, which is the only
network where RNB observes positive correlations in GL
(Figure 7.b): even in this network, PR-EM overtakes RNB.
Additionally, on the DVD and Music datasets we see that
large Θβ greatly improves the performance. Future work
could include methods for automatically tuning Θβ to fur-
ther increase the gains. For all datasets and all parameter-
izations, PR-EM outperforms the baselines and competing
models over nearly all sample points.

7 Conclusions and Future Work
In this work we have studied the task of active exploration.
We improved on previous work in this area by developing the

first AE method to accurately learn a model of the complex
dependencies in a partially observed network. We demon-
strated that the network gathered by a targeted AE process
can exhibit label correlation bias, which can adversely im-
pact learning. To address this issue, we modeled probabilistic
relationships among the border vertices and developed an ef-
ficient collective inference method to jointly infer the item
labels at the same time as the missing edges. This makes
it feasible to use our collective inference approach within an
iterative AE process. We demonstrated the gains offered
by our PR-EM method on four real-world datasets, showing
that PR-EM outperforms several baseline learning methods
as well as previous state-of-the-art AE methods.

There are several directions to explore in future work.
First, our collective inference method could potentially be
applied to other domains with probabilistic edges, or to im-
prove general RML in observed networks by incorporating
labels across the community. Second, the choice of hyper-
parameter Θβ does not generally impact PR-EM perfor-
mance compared to competing methods, but the relative
performance of different hyper-parameter settings changes
depending on the network. We will investigate this effect
to estimate the best parameterization based on an observed
graph structure.

Acknowledgements
This research is supported by NSF under contract numbers
IIS-1017898, IIS-1149789, and IIS-1219015.

8 References
[1] P. N. Bennett. Assessing the calibration of naive bayes’

posterior estimates. Technical report, 2000.

[2] M. Bilgic, L. Mihalkova, and L. Getoor. Active learning for
networked data. In ICML, 2010.

[3] M. Fang, J. Yin, and X. Zhu. Active exploration: simultaneous
sampling and labeling for large graphs. In CIKM, 2013.

[4] R. Garnett, Y. Krishnamurthy, X. Xiong, J. Schneider, and
R. P. Mann. Bayesian optimal active search and surveying. In
ICML, 2012.

[5] L. Getoor and B. Taskar. Introduction to Statistical Relational
Learning. The MIT Press, 2007.

[6] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul.
An introduction to variational methods for graphical models.
Mach. Learn., 37(2):183–233, Nov. 1999.

[7] A. Kuwadekar and J. Neville. Relational active learning for
joint collective classification models. In ICML, 2011.

[8] J. Leskovec, L. A. Adamic, and B. A. Huberman. The dynamics
of viral marketing. ACM Trans. Web, 1, 2007.

[9] S. A. Macskassy and F. Provost. A simple relational classifier.
In MRDM-KDD, 2003.

[10] G. M. Namata, B. London, L. Getoor, and B. Huang.
Query-driven active surveying for collective classification. In
MLG, 2012.

[11] J. J. Pfeiffer III, J. Neville, and P. N. Bennett. Active sampling
of networks. In MLG, 2012.

[12] X. Wang, R. Garnett, and J. Schneider. Active search on
graphs. In KDD, 2013.

[13] R. Xiang and J. Neville. Pseudolikelihood em for
within-network relational learning. In ICDM, 2008.

