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• Symbolic Bound Computation Problem 
– Motivation, Definition, Reduction to Invariant Generation 

 

 

• Art of Invariant Generation 
– Colorful Logic 

– Fixpoint Brush 

– Program Transformations 
 

 

• Application to Symbolic Bound Computation Problem 
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Outline 



Program execution consumes physical resources. 
• Time 

• Memory 

• Network Bandwidth 

• Power 

 

Bounding such resources is important. 

• Economic reasons  

• Environment might have hard resource constraints. 

   

Bounding such resources requires computing bound on # of 
visits to control-locations that consume such resources. 
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Motivation: Bound Computation 



Program execution affects quantitative properties of data. 
• Secrecy: information leakage. 

• Robustness: error/uncertainty propagation. 

 

Bounding such properties is important for correctness. 

 

Bounding such properties requires computing bound on # of 
visits to control-locations that affect properties of the data. 
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Motivation: Bound Computation 



• Provide immediate feedback during code development 
– Use of unfamiliar APIs 

– Code Editing 
 

• Identify corner cases (unlike profiling) 

 

4 

Motivation: Static Computation of Worst-case Bound 



Let ¼ be a control-location inside a procedure P with 
inputs X. Let Visits(X) denote the number of visits 
to ¼ when P is invoked with X.   

 

Symbolic Bound: An integer valued expression B(X) is 
a symbolic bound if it upper bounds Visits(X). 
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Symbolic Bound Computation: A Quantitative Problem 



Relative Precision: A symbolic bound B1(X) is more precise 
than B2(X) if 8X: B1(X) · B2(X) 

 

Absolute Precision: A symbolic bound is precise if there 
exists a worst-case family of inputs W(X) that realizes 
the bound (upto multiplicative/additive constants c1/c2) 

• 8X satisfying W(X): (B(X)/c1) - c2  · Visits(X) · B(X) 
– Relaxing the condition c1 = 1 and c2 = 0 is required since it 
would be practically impossible to find closed-form 
representations of Visits(X). But it still ensures that the 
bound B(X) is asymptotically tight. 

• 8k>0: 9X such that W(X) Æ B(X)¸k 
– The family W(X) describes inputs that lead to increasingly 
larger evaluations for the bound expression.  
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Precision of a Symbolic Bound 



• n2 is a precise bound for # of visits to ¼
1
. 

– Precision Witness: W = 8j(1·j·n ) :A[j]), c1 = 4, c2 = 0 

• n is a precise bound for # of visits to ¼
2
. 

– W = 8j(1·j·n ) A[j]), c1 = 1, c2 = 0 
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Example 

Inputs: int n, bool[] A 
i := 0;  
while (i < n)  
       j := i+1; 
       while (j < n) 
             ¼¼¼¼

1111
: if (A[j]) { ¼¼¼¼

2222
: ConsumeResource(); j--; n--; } 

                  j++; 
       i++; 
                        
     



• Safety: Is ¼ never visited? 
– Violation is a finite trace 

• Liveness: Is ¼ visited finite number of times? 
– Violation is an infinite trace 

• Bound Computation: Bound on maximum visits to ¼. 
– Quantitative question as opposed to Boolean! 

– How about checking validity/precision of a given bound? 

• Checking Validity of Bound 
– Safety property 

• Checking Precision of Bound (given constants c1, c2) 
– Not even a trace property! 

– Given precision witness, realization check is safety property. 
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Bound Computation vs. Safety/Liveness Checking 



• Different solutions possible that form a lattice with · 
as partial order and Max/Min as LUB/GLB operators. 

 

• We show how to reduce bound computation to invariant 
generation. The more powerful the invariant generator, 
the more precise the bound. 
– We will study design of relevant invariant generator tools. 

– These are general principles useful for other applications 
too. 
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Our Approach to (Precise) Bound Computation 
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Reducing Bound Computation to Invariant Generation 

Claim: If c < F(n) is an invariant at ¼, then          
   Max(0,F(n)) is a bound on Visits(¼). 

    S1 
¼: S2 
    S3 

 

Inputs: int n     c := 0;     
    S1 
¼: c++; S2 
    S3 
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Importance of Max Rule 

Corollary: If c<F(n) is a loop invariant, then Max(0,F(n)) 
is an upper bound on number of loop iterations. 

 

If we instead claim F(n) to be an upper bound, we get an 
unsound conclusion. Consider, for example: 

 

      

 

Test(int n1, int n2) 

      int c1:=0; while (c1<n1) c1++; 

      int c2:=0; while (c2<n2) c2++; 

      

 
• c1 < n1 is a loop invariant. Suppose we regard n1 to be an 

upper bound for first loop. (Similarly, for c2 and n2). 

• Thus, n1+n2 is an upper bound for Test procedure. 
– But this is clearly wrong when say n1=100 and n2=-100.  
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Example: Bound Computation from Invariants 

Inputs: int n 
c := 0;  
x := 0; y := n;  
while (x < y)  
    ¼: 
    if (*) x := x+2; 
    else y := y-2;  

• Consider the inductive loop invariant: 2c = x+(n-y) Æ  x<y 

• Projecting out x and y yields c < n/2.  

•Thus, Max(0,n/2) is an upper bound on Visits(¼). 

c++; 



• Max Operator: Control-flow/Choice between paths 
 

• Addition Operator: Sequencing/Multiple paths 
 

• Non-linear Operators 
– Multiplication: Nested loops 

– Logarithm: Binary search 

– Exponentiation: Recursive procedures 
 

• Quantitative Attributes: Iteration over data-structures 
– Number of nodes in a list, or a list of lists 

– Number of nodes in a tree/Height of a tree 

– Number of bits in a bit-vector 
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Language of Bound Expressions 



Invariants required may be: 

• Non-linear 

• Disjunctive 

• Refer to numerical properties of data-structures 

 

A universal precise invariant generator does not exist! 

We will study principles of invariant generation, and then 
apply a variety of these techniques to our problem. 
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Language of Invariants Required 



1. Program Transformations 
– Reduce need for sophisticated invariant generation. 

– E.g., control-flow refinement, loop-flattening/peeling,    
non-standard cut-points, quantitative attributes 
instrumentation.  

 

2. Colorful Logic 
– Language of Invariants 

– E.g., arithmetic, uninterpreted fns, lists/arrays 

 

3. Fixpoint Brush 
– Automatic generation of invariants in some shade of logic, 
e.g., conjunctive/k-disjunctive/predicate abstraction. 

– E.g., Iterative, Constraint-based, Proof Rules 15 

Art of Invariant Generation 



We will briefly study decision procedures for following logics. 

 

• Linear Arithmetic 

 

• Uninterpreted Functions 

 

• Linear Arithmetic + Uninterpreted Functions 

 

• Theory of Arrays 

 

• Theory of Lists 

 

• Non-linear Arithmetic 
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Colorful Logic 



Decision Procedures 

DecideT(φ) = Yes, if φ is satisfiable 
                  = No, if φ is unsatisfiable 
 

Without loss of generality, we can assume that φ is a 
conjunction of atomic facts.  

• Why? 
– Decide(φ1Çφ2) is sat iff Decide(φ1) is sat or Decide(φ2) is sat. 

• What is the trade-off? 
– Converting φ into DNF may incur exponential blow-up. 
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� Linear Arithmetic 

 

• Uninterpreted Functions 

 

• Linear Arithmetic + Uninterpreted Functions 

 

• Theory of Arrays 

 

• Theory of Lists 

 

• Non-linear Arithmetic 
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Colorful Logic 



Linear Arithmetic 

Expressions  e := y | c | e1 § e2 | c £ e 
Atomic facts  g := e¸0 | e≠0 
 
Note that e=0 can be represented as e¸0 Æ e·0 
                 e>0 can be represented as e-1¸0  
                  (over integer LA) 
 
• The decision problem for integer LA is NP-hard.  
• The decision problem for rational LA is PTime. 

– PTime algorithms are complicated to implement. 
Popular choice is a worst-case exponential algorithm 
called “Simplex” 

– We will study a PTime algorithm for a special case. 
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Difference Constraints 

• A special case of Linear Arithmetic 

• Constraints of the form x·c and x-y·c 
– We can represent x·c by x-u·c, where u is a 
special zero variable. Wlog, we will assume 
henceforth that we only have constraints x-y·c 

• Reasoning required: x-y·c1 Æ y-z·c2 ) x-z·c1+c2 

• O(n3) (saturation-based) decision procedure 
– Represent contraints by a matrix Mn£n 

•  where M[i][j] = c represents xi–xj· c 

– Repeatedly apply following rule as in shortest path 
computation. 

• M[i][j] = mink { M[i][j], M[i][k]+M[k][j] } 

–  φ is unsat iff 9i: M[i][i] < 0 
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• Linear Arithmetic 

 

� Uninterpreted Functions 

 

• Linear Arithmetic + Uninterpreted Functions 

 

• Theory of Arrays 

 

• Theory of Lists 

 

• Non-linear Arithmetic 
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Colorful Logic 



Uninterpreted Functions 

Expressions  e := x | F(e1,e2) 

Atomic fact  g  :=  e1=e2 | e1≠e2 
Axiom 8e1,e2,e1’,e2’: e1=e1’ Æ e2=e2’ ) F(e1,e2)=F(e1’,e2’) 

                  (called congruence axiom) 

 

(saturation-based) Decision Procedure 

• Represent equalities e1=e2 2 G in Equivalence DAG (EDAG) 
– Nodes of an EDAG represent congruence classes of 
expressions that are known to be equal. 

• Saturate equalities in the EDAG by following rule: 
– If C(e1)=C(e1’) Æ C(e2)=C(e2’), Merge C(F(e1,e2)), C(F(e1’,e2’)) 

where C(e) denotes congruence class of expression e 

• Declare unsatisfiability iff 9 e1≠e2 in G s.t. C(e1) = C(e2) 
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Uninterpreted Functions: Example 

y 

F 

F 

F 

F 

F y=F3(y) 

F(y)=F4(y) 

F2(y)=F5(y) 

y=F2(y) 

y=F5(y) y≠F(y) 

F(y)=F3(y) 

y=F(y) 

?: unsat 

Æ Æ 
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Uninterpreted Functions: Complexity 

• Complexity of congruence closure : O(n log n), where 
n is the size of the input formula 
– In each step, we merge 2 congruence classes. The 
total number of steps required is thus n, where n is a 
bound on the original number of congruence classes. 

– The complexity of each step can be O(log n) by using 
union-find data structure. 
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• Linear Arithmetic 

 

• Uninterpreted Functions 

 

� Linear Arithmetic + Uninterpreted Functions 

 

• Theory of Arrays 

 

• Theory of Lists 

 

• Non-linear Arithmetic 
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Colorful Logic 



Combination of Linear Arithmetic and Uninterpreted Functions 

Expressions   e  :=  y | c | e1 § e2 | c £ e | F(e1,e2) 

 

Atomic Facts   g := e¸0 | e≠0 
 

Axioms: Combined axioms of linear arithmetic + 
uninterpreted fns. 

 

Decision Procedure: Nelson-Oppen methodology for 
combining decision procedures 
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Combining Decision Procedures 

• Nelson-Oppen gave an algorithm in 1979 to combine 
decision procedures for theories T1 and T2, where: 
– T1 and T2 have disjoint signatures  

• except equality 

– T1, T2 are stably infinite 

• Complexity is O(2n2£(W1(n)+W2(n)).  

• If T1, T2 are convex, complexity is 
O(n3£(W1(n)+W2(n))). 

 

The theories of linear arithmetic and uninterpreted 
functions satisfy all of the above conditions. 
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Convex Theory 

A theory is convex if the following holds. 

 

Let G = g1 Æ … Æ gn 

If G ) e1=e2 Ç e3=e4, then G ) e1=e2 or G ) e3=e4 
 

 

Examples of convex theory: 

- Rational Linear Arithmetic 

- Uninterpreted Functions 
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Examples of Non-convex Theory 

y=sel(upd(M,a,0),b)  )  y=0  Ç y=sel(M,b) 

But y=sel(upd(M,a,0),b) ) y=0 and  

       y=sel(upd(M,a,0),b) ) y=sel(M,b) 

/ 

/ 

• Theory of Integer Linear Arithmetic 

 

 

 

 

• Theory of Arrays 

2·y·3 ) y=2 Ç y=3 

But 2·y·3 ) y=2 and 2·y·3 ) y=3 / / 
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Stably Infinite Theory 

• A theory T is stably infinite if for all quantifier-free 
formulas φ over T, the following holds: 

    If φ is satisfiable, then φ is satisfiable over an 
infinite model.  

 
• Examples of stably infinite theories 

– Linear arithmetic, Uninterpreted Functions 

 
• Examples of non-stably infinite theories 

– A theory that enforces finite # of distinct elements. 
Eg., a theory with the axiom: 8x,y,z (x=y Ç x=z Ç y=z). 
Consider the quantifier free formula φ: y1=y2. 

     φ is satisfiable but doesn’t have an infinite model.  
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Nelson-Oppen Methodology 

• Purification: Decompose φ into φ1 Æ φ2 such that φi 
contains symbols from theory Ti. 
– This can be done by introducing dummy variables. 

 

• Exchange variable equalities between φ1 and φ2 
until no more equalities can be deduced. 
– Sharing of disequalities is not required because of 
stably-infiniteness. 

– Sharing of disjunctions of equalities is not required 
because of convexity. 

 

•  φ is unsat iff φ1 is unsat or φ2 is unsat. 
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Combining Decision Procedures: Example 

a1=2y2-y1  

y1·4y3·a2 Æy1≠4y3 

y1 = y2 
y1 = a2 

a2=F(a1)   

y1=F(y1) Æ y2=F(F(y1)) 
y1 = a1  
 

y1 · 4y3 · F(2y2-y1)  Æ  y1=F(y1)  Æ  y2=F(F(y1)) Æ y1≠4y3 

Purification 

y1=y2 

y1=a1 

y1=a2 

?: unsat 

Saturation 
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• Linear Arithmetic 

 

• Uninterpreted Functions 

 

• Linear Arithmetic + Uninterpreted Functions 

 

� Theory of Arrays 

 

• Theory of Lists 

 

• Non-linear Arithmetic 
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Colorful Logic 



Expressions   e  :=  y | Select(M,e)  

     M  :=  A | Update(M,e1,e2) 

Atomic Facts   g :=  e1=e2 | e1≠e2 
Axioms  Select(Update(F,e1,e2), e3) = e2 if e1=e3  

                                                        = Select(F,e3) o.w. 
• The decision problem is NP-complete.  
• Use the above rule to rewrite any select applied to 

an Update. Then use the decision procedure for 
Uninterpreted Fns. 

• Key Idea: Normalization 
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Theory of Arrays 



• Linear Arithmetic 

 

• Uninterpreted Functions 

 

• Linear Arithmetic + Uninterpreted Functions 

 

• Theory of Arrays 

 

� Theory of Lists 

 

• Non-linear Arithmetic 
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Colorful Logic 



Expressions   e  :=  y | e.f  

Atomic Facts  g := B(e1,e2,e3) | : g 

                        R(e1,e2) =def B(e1,e1,e2) 

Axioms: Not first order logic axiomatizable! 
 

• The decision problem is NP-complete.  
• Decision Procedure: Saturate using the following 

derivation rules without creating any new terms. The 
tricky detail is to prove completeness. 

 

Derivation Rules:  R(x,y) Æ R(x,z) ) B(x,y,z) Ç B(x,z,y)  

                            R(x,y) ) x=y Ç R(x.f,y) 

                     R(x,y) Æ R(x,z) ) B(x,y,z) Ç B(x,z,y)  

                            etc. 
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Theory of Lists 



• Linear Arithmetic 

 

• Uninterpreted Functions 

 

• Linear Arithmetic + Uninterpreted Functions 

 

• Theory of Arrays 

 

• Theory of Lists 

 

� Non-linear Arithmetic 
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Colorful Logic 



Non-linear Operators 

Expressions  e := y | c | e1 § e2 | c £ e | nl(e1,e2) 
Atomic facts  g := e¸0 | e≠0 
Axioms: User-provided first order axioms for nl operator. 
 

• View a non-linear relationship 3log x + 2x · 5y over {x,y} 
as a linear relationship over {log x, 2x, y}   

 

• User provides semantics of non-linear operators using 
directed inference rules of form L ) R. 
– Exponentiation: e1·e2+c ) 2e1 · 2e2£2c 

– Logarithm: e1·ce2 Æ 0·e1 Æ 0·e2 ) log(e1) · log c + log(e2) 

– Multiplication: e1·e2+c Æ e¸0 ) ee1 · ee2+ec 
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Non-linear Operators 

Expressions  e := y | c | e1 § e2 | c £ e | nl(e1,e2) 
Atomic facts  g := e¸0 | e≠0 
Axioms: User-provided first order axioms for nl operator. 
 

• (semi-) Decision Procedure: Saturate using the axioms 
provided by the user.  

 

• Termination Heuristic (called Expression Abstraction): 
Restrict new fact deduction to a small set of 
expressions, either given by user or constructed 
heuristically from program syntax.  
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Key Ideas: Normalization, Saturation w/o creating new terms 
or over heuristically constructed terms. 

 

• Linear Arithmetic: Non-saturation decision procedures. 

• Uninterpreted Functions: Saturation using the axiom 
over efficient EDAG data-structure. 

• Linear Arithmetic + Uninterpreted Functions: Modular 
construction, Sharing of variable equalities. 

• Theory of Arrays: Normalization using the axiom 

• Theory of Lists: Saturation using a special set of 
derivation rules. 

• Non-linear Arithmetic: Saturation using user-provided 
axiomatization over user-provided set of expressions. 
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Logic: Recap 



• Decision Procedures: An Algorithmic Point of View; Daniel 
Kroening, Ofer Strichman 

– Linear Arithmetic, Uninterpreted Fns, Combination, 
 Arrays, Bit-vectors  

 

• Back to the Future: Revisiting Precise Program Verification 
using SMT Solvers; Lahiri, Qadeer; POPL ‘08 

– Reachability 

 

• A Numerical Abstract Domain Based on Expression 
Abstraction and Max Operator with Application in Timing 
Analysis; Gulavani, Gulwani; CAV ‘08 

– Non-linear operators 
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Logic: References 



• Identify a class of programs that make use of 
domain-specific constructs. 
– E.g., Programs manipulating bit-vectors, strings. 

 

• Develop a language of facts with following properties: 
– Can describe useful properties of those programs. 

– Closed under weakest precondition. 

– Amenable to efficient reasoning. 

 

• Develop a decision procedure for the logic. 
– Proving completeness is usually the hard part. 
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How to write a good PL paper on logic?  


