
 1

PygmyBrowse:

A Small Screen Tree Browser

Abstract

We present PygmyBrowse, a browser that allows users

to navigate a tree data structure in a limited amount of

display space. A pilot evaluation of PygmyBrowse was

conducted, and results suggest that it reduces task

completion times and increases user satisfaction over

two alternative node-link tree browsers.

Keywords

Navigation, trees, browsing

ACM Classification Keywords

H.5.2 – User Interfaces (Specifically, interaction styles)

Introduction

There is a long history of storing and visualizing data in

trees, including thesauri, organizational charts, indices,

and more recently Extensible Markup Languages (XML).

Storing information in this way creates a need to

provide interface support to navigate within such

structures. Two main types of solutions have been

proposed to display and manipulate trees interactively:

space-filling and node-link techniques.

Space-filling techniques (e.g., TreeMaps [5]) have been

successful at visualizing trees with attribute values at

the node level. These techniques perform best when

users care mostly about leaf nodes and their attribute

Copyright is held by the author/owner(s).

CHI 2006, April 22–27, 2006, Montreal, Canada.

ACM 1-xxxxxxxxxxxxxxxxxx.

Zvi Band

Human-Computer Interaction Laboratory

University of Maryland

College Park, MD 20742, USA

skeevis@skeevis.com

Ryen W. White

Human-Computer Interaction Laboratory

University of Maryland

College Park, MD 20742, USA

ryen@umd.edu

 2

values but not the tree topology, or tree topology is

trivial. Node-filling techniques leave the root side of

the tree empty and overcrowd the opposite side,

wasting display space. Optimized layout techniques

produce more compact displays by shifting branches or

nodes [4], but those techniques only partially alleviate

the problem and can be inappropriate for interactive

applications [5]. Other techniques, coupling overview

+ detail with pan and zoom [1], three-dimensional

node-link diagrams [6], and circular layouts [2] have

also been proposed.

An issue with all of these techniques is that they

require a substantial amount of display space to be

used effectively. For software applications and

interfaces that either cannot dedicate a large amount of

display space, or are compact applications themselves

(e.g., PDAs, portable music players, toolbars), a new

interface method needs to be developed to facilitate

tree browsing.

PygmyBrowse

PygmyBrowse is our attempt to provide a method for

browsing trees in a confined display space. To navigate

a tree, users are first presented with one panel

representing the root node, and a scrolling list of

candidate child nodes. Two types of node are displayed

in this list: interior nodes (i.e., nodes that contain child

nodes), and leaf nodes (i.e., nodes that do not contain

child nodes). Interior nodes are distinguished from leaf

nodes by element color and contain in their label a

count of the number of items categorized or classified

into that node (shown as “choices”). To facilitate more

effective navigation decisions, interior nodes containing

less than five children are shown in red and those

containing five or more children are shown in blue. As

illustrated in Figure 1, as a user navigates the tree,

panels are added to the top of the PygmyBrowse to

depict their browse path.

Figure 1: PygmyBrowse interface. In this example user is five
levels down in the tree and has selected a leaf node.

At any point the user has three interaction options:

1. Go deeper in the tree. When the user clicks on an

interior node, two things happen: (i) the selected

choice is added to the browse path displayed at the

top of the PygmyBrowse interface, (ii) the selection

list is updated to display all children of the selected

node that are one level down in the tree.

2. Return to a higher level. Selecting a panel in the

browse path returns the user to that level. The

selection list is then refreshed, showing the nodes

contained within the selected node.

3. Select a leaf node. As mentioned earlier, leaf

nodes are distinguishable from interior nodes by

color (and lack a “choices” label). When a leaf node

Path from
root node

Candidate
selection
list

 3

is selected, no change occurs in the component

other than the leaf node being highlighted. This

typically marks the end-point of a browse path.

Pilot Evaluation

We conducted a pilot evaluation of PygmyBrowse with a

sub-tree of a thesaurus developed by the Survivors of

the Shoah Visual History Foundation to classify video-

taped interviews with Holocaust survivors, witnesses,

and rescuers. The sub-tree consisted of approximately

6000 nodes with an average depth of 6 nodes. The use

of this data structure was in line with the aims of our

research project and provided a reasonable data source

for this pilot evaluation.

PygmyBrowse was compared against two alternative

node-link based tree browsing interfaces in a restricted

display space 100 pixels wide by 150 pixels high. A

within-subjects experimental design was employed, and

systems and tasks were counterbalanced to counteract

learning effects. Participants were assigned search

tasks, and we measured the time to complete each task

(timed by an observer using a stopwatch), and the

number of correct answers to questions (assessed a

posteriori by experimenters). Questionnaires used

Likert scales, semantic differentials and open-ended

questions to elicit participant opinions [3]. We now

describe the two comparator systems, tasks, research

questions, and other experimental issues.

Systems

We compare the PygmyBrowse system against an

expandable outliner (as a Java JTree), and SpaceTree

[5], an interactive tree browser based on dynamic

rescaling. Since the topology of the tree was complex,

and the leaf nodes had no attributes other than their

label we chose to compare PygmyBrowse against two

node-link interfaces rather than space-filling versions.

EXPANDABLE OUTLINER

Interfaces such as the “Explorer” facility in Microsoft

Windows generally display data as an indented list of

nodes. The baseline interface in our evaluation displays

the underlying data structure in this way (Figure 2).

Figure 2: Tree presentation in the Expandable Outliner.

Interior nodes and leaf nodes are distinguished by icons

displayed next to them. Presenting trees in this format

facilitates determination of relative levels, and the

viewing of alternative nodes at higher levels. However,

it can be difficult to distinguish between deeper levels

in the tree, scrolling down can hide ancestor nodes, and

preservation of state can disorient users. All such

problems are more acute given restricted display space.

SPACETREE

Perhaps the most understandable way of navigating a

tree is to actually view it as a tree, and allow users to

dynamically rescale it as they browse. Currently, one

of the best examples of this is SpaceTree [5], shown in

Figure 3.

 4

Figure 3: Tree presentation in SpaceTree.

Like the Expandable Outliner, there are advantages and

disadvantages to this method. Understanding the

structure of the underlying data using SpaceTree is

easy, users find it fun to use, and they can zoom in and

out to resize the tree. However, when browsing deeply

in the tree or viewing the tree in small screens users

may lose track of ancestors, expanding a node with

many children can unbalance the tree, and moving

around the tree can be disorienting.

Although other interfaces such as those described in

the “Introduction” could have been compared to

PygmyBrowse, the Expandable Outliner and SpaceTree

gave reasonable scope for comparison.

Tasks

Participants attempted five tasks on each of the three

interfaces, with a two minute maximum per task,

imposed to improve experimental consistency. There

were three types of task, based on the classification

used in [5]:

1. Node search (e.g., find node entitled “cannibalism”)

2. Navigate from previously visited nodes (e.g., from

“cannibalism” to “field hospitals”)

3. Topology questions (e.g., How many steps would

you have to make to get between node “labor affairs

organizations” and “field hospitals”?)

Tasks were rotated according to a Graeco-Latin square

based on their classification. The resultant experimental

design is shown in Table 1.

Table 1: System/Task type assignment for all six participants.

System,Task type
Participant

1 2 3

1 4 SA,T1 SB,T2 SC,T3

2 5 SB,T3 SC,T1 SA,T2

3 6 SC,T2 SA,T3 SB,T1

As can be seen from the table, the order of the five

tasks within each task type does not change between

participants, only the type order is counterbalanced.

Research Questions

Three research questions drove our investigation:

1. Which system performs best for tasks involving

specific node searches?

2. Which system performs best for tasks involving

navigation from previously visited nodes?

3. Which system performs best for tasks about the

topology of the data structure?

The dependent variables (task time and correctness)
are used to answer these questions.

Participants

Six participants were recruited from within our research

project and beyond. To provide motivation to perform

well a $10 bonus was offered to the fastest participant

(with no incorrect answers) on each system. The

median age of participants was 25.5 (range: 23—49),

they used computers daily, and tree browsers

occasionally.

 5

Experimental Procedure

The experiment lasted 45 minutes. Each participant

followed this procedure:

1. welcomed, introduced to the experimental goals,
and completed introductory questionnaire;

2. attempted five tasks on the first system (assigned
according to experimental design);

3. completed short post-system questionnaire;

4. repeated Steps 2 and 3 for other systems, and;

5. completed final questionnaire.

Minimal training was given to participants since part of

our evaluation was intended to measure how usable the

systems were when participants were given no training.

The trees displayed in the interfaces were re-contracted

between each participant, but not between each task,

to simulate how the tool would generally be used.

Findings

Running six participants in our chosen experimental

design gave us 10 task times and potential answer keys

for each task-system pair. We set the level of

significance is to p < .05, and given the small sample

size and abnormality of the distribution across task-

system pairs and systems alone1 we use non-

parametric statistical testing [7].

Task times and Answer correctness

The average task times and answer correctness for

each of the three task types is shown in Table 2.

Trends in the results suggest that PygmyBrowse leads

to the lowest task completion times for all three search

task types. We applied non-parametric Kruskal-Wallis

1 The sample did not conform to a normal distribution using a
Shapiro-Wilk Test (ps > .386).

Tests to the data gathered for each task type.2 The

results of the tests revealed no significant differences

between the systems for each task type (see Table 2).

We compared task times for the three systems across

all tasks using a Friedman Rank Sum Test; differences

between systems were not significant.3 Although there

were insufficient data to perform sound statistical

testing on the number of tasks answered correctly on

each system, the results are suggestive of statistically

insignificant differences had a larger sample been used.

Participant perceptions

Participants were asked for their opinions of the three

systems immediately following each set of tasks.

Although they completed Likert scales and semantic

differentials in these questionnaires the small sample

size restricts our analysis of participant responses to

something less rigorous that full-blown statistical

significance testing. Tables 3 and 4 present some

findings from the post-experiment questionnaire where

participants selected preferred systems and answered

open questions. Results indicate that subjects

preferred the PygmyBrowse system and generally

found it easier to learn, easier to use and overall.

2 Since this analysis involved many tasks, we use a Bonferroni
correction to control the experiment-wise error rate and set
the alpha level (α) to .0167, i.e., .05 divided by the number of
task types. This correction reduces the number of Type I
errors i.e., rejecting null hypotheses that are true.

3 χ2(2) = 2.56, p = .287, where N = 26. Tasks lasting longer
than the two minute threshold were terminated by the
experimenter and marked as incomplete.

 6

Conclusions

In this paper we have presented an approach to tree

browsing in a confined display space. The results of

our pilot evaluation were promising. They suggest that

PygmyBrowse may lead to lower task completion times,

especially for tasks where the target is known, or where

users need to move between two nodes on separate

branches of a tree. Browsing trees in confined display

spaces in this way is an area worthy of further

investigation. In future work we will enhance

PygmyBrowse based on participant feedback, and run a

larger sample of participants with other data structures.

References
[1] Beard, D. V., Walker II, J. Q. (1990). Navigational

techniques to improve the display of large two-
dimensional spaces. Behavior & Information
Technology, 9(6), 451-466.

[2] Bertin, J. (1983). Semiology of graphics, diagrams,
networks, maps. University of Wisconsin Press.

[3] Busha, C.H., Harter, S.P., (1980). Research
methods in librarianship: Techniques and

interpretation. New York: Academic Press.

[4] Ellson, J., Gansner, E., Koutsofios, E., Mocenigo, J.,
North, S., Woodhull, G. (2005). Graphviz, open
source graph drawing software.
http://www.research.att.com/sw/tools/graphviz/

[5] Plaisant, C., Grosjean, J., Bederson, B.B (2002).
SpaceTree: Supporting exploration in large node
link tree, design evolution and empirical evaluation.
In Proc. of Infovis, pp. 57-64.

[6] Robertson, G. G. Mackinlay, J. D., Card, S. K.
(1991). Cone Trees: Animated 3D visualizations of
hierarchical information. In Proc. of SIGCHI, pp.

189-194.

[7] Siegel, S., Castellan, N.J. (1988). Nonparametric
statistics for the behavioural sciences. 2nd ed.
Singapore: McGraw-Hill.

ExpOutliner

+ “Preserves state” [P2], “Easy to Learn” [P3], “Familiar” [P6]

– “Loss of parent node when scrolling” [P1], “disoriented after

a while” [P3], “a lot on screen at once” [P4]

SpaceTree

+ “Fun to use, understandable structure” [P6]

– “Too slow to actually use” [P5], “Limited visibility” [P6]

PygmyBrowse
+ “Easy to manipulate” [P3], “Compactness” [P1]

– “Random ordering” [P4], “Color coding not helpful” [P1]

Table 2: Task completion (time and number).

ExpOutliner SpaceTree PygmyBrowse
Task type

Time (secs) Number Time (secs) Number Time (secs) Number

Significance

(Kruskal-Wallis Test)

1 31.11 9 22.75 10 15.29 7 χ2 = 2.05, df = 2, p = .359
2 44.78 10 56.50 10 20.00 10 χ2 = 3.48, df = 2, p = .176
3 43.11 10 61.22 10 34.44 10 χ2 = 5.25, df = 2, p = .074

 Table 3: Participant preferences

Participant Easiest to Learn Easiest to Use Overall

1 PygmyBrowse PygmyBrowse SpaceTree

2 SpaceTree SpaceTree SpaceTree

3 PygmyBrowse PygmyBrowse PygmyBrowse

4 ExpOutliner PygmyBrowse PygmyBrowse

5 SpaceTree SpaceTree ExpOutliner

6 PygmyBrowse PygmyBrowse PygmyBrowse

Table 4: Participant comments.

