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Web search engines can perform poorly for long queries (i.e., those containing four or more terms),
in part because of their high level of query specificity. The automatic assignment of labels to
long queries can capture aspects of a user’s search intent that may not be apparent from the
terms in the query. This affords search result matching or reranking based on queries and labels
rather than the query text alone. Query labels can be derived from interaction logs generated
from many users’ search result clicks or from query trails comprising the chain of URLs visited
following query submission. However, since long queries are typically rare, they are difficult to
label in this way because little or no historic log data exists for them. A subset of these queries
may be amenable to labeling by detecting similarities between parts of a long and rare query and
the queries which appear in logs. In this article, we present the comparison of four similarity
algorithms for the automatic assignment of Open Directory Project category labels to long and
rare queries, based solely on matching against similar satisfied query trails extracted from log
data. Our findings show that although the similarity-matching algorithms we investigated have
tradeoffs in terms of coverage and accuracy, one algorithm that bases similarity on a popular
search result ranking function (effectively regarding potentially-similar queries as “documents”)
outperforms the others. We find that it is possible to correctly predict the top label better than one
in five times, even when no past query trail exactly matches the long and rare query. We show that
these labels can be used to reorder top-ranked search results leading to a significant improvement
in retrieval performance over baselines that do not utilize query labeling, but instead rank results
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using content-matching or click-through logs. The outcomes of our research have implications for
search providers attempting to provide users with highly-relevant search results for long queries.
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1. INTRODUCTION

Web search engine users, working with limited support for query specification,
may use longer-than-usual query statements to provide additional informa-
tion about their needs to the engine [Kumaran and Allan 2007]. However,
handling such rich representations is difficult for search engines since the
query text usually contains a lot of noise, such as extraneous terms that
users believe are important to conveying their information needs, but in fact
are confusing to automatic systems [Kumaran and Allan 2008]. One way
to address this challenge is by associating category labels with queries. For
example, the top category labels drawn from the Open Directory Project
(ODP, http://www.dmoz.org) for the query [t-bills united states treasury]
might be Business/Investing/Stocks and Bonds, Society/Government/Finance,
and Business/Investing/Guides. These labels may provide valuable additional
information to augment retrieval operations (e.g., as additional ranking fea-
tures or for postretrieval result reranking).

We can assign query labels using interaction log data containing users’ post-
query interactions [Li et al. 2008]. Search engines such as Google, Yahoo!,
and Microsoft’s Bing gather extensive interaction log data pertaining to each
query via many users’ result click-through and postquery browsing. These
data can be used for improving search engine performance [Agichtein et al.
2006; Bilenko and White 2008] or for search behavior analysis [White and
Drucker 2007]. For queries that occur frequently, interaction data is plenti-
ful. In such circumstances, it is relatively straightforward to assign labels us-
ing click-through records describing which search results users visit, a method
for labeling those pages, and the aggregation of those labels across multiple
queries and/or users.

For the purposes of this research, we define long queries as those containing
four or more query terms. The distribution of query frequencies in log data
is strongly weighted towards short queries, ranging from one to three terms
in length. Figure 1(a) illustrates the typical query length frequency distrib-
ution, obtained from a multimonth sample of major Web search engine inter-
action logs. Combined, long queries make up over a quarter of the volume of
queries from which this plot was generated. While it is possible that popular
queries could be long as well, in practice they are short. Short queries form the
“head” of the query histogram. For queries that occur rarely, the interaction
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Fig. 1. Query length and frequency histograms.

ACM Transactions on The Web, Vol. 4, No. 4, Article 15, Pub. date: September 2010.



15: 4 · P. Bailey et al.

log data is sparse to nonexistent. These queries form the “tail” of the query
histogram. This can be seen visually in the query histogram in Figure 1(b).
In fact, the Spearman rank correlation coefficient between query popularity
and query length in our sample is -0.28, signifying that query popularity is
inversely related to query length. Long queries are generally rare, making
them unamenable to log-based query labeling, but they are also important to
search engines given the significant proportion of the query volume that they
represent.

To assign accurate labels to queries where little or no interaction data ex-
ists, we present an approach that leverages queries for which we can assign
labels, mines these queries for those that are similar to rare long queries of
interest, and propagates the labels from them to the rare long queries. We use
a labeling mechanism with a large number of categories drawn from the Open
Directory Project1 (ODP), as we believe that long queries tend to have more
specific query intent (an assertion supported by previous work [Phan et al.
2007]), and thus narrower categories will more precisely reflect the query. We
employ the postquery interactions of many search engine users (referred to as
their query trails) to create a labeled set of past queries, and experiment with
multiple query similarity functions that allow us to leverage such sets to label
rare long queries.

The contribution of this article is twofold. First, we demonstrate that it is
possible to accurately predict the category labels for a significant proportion
of long and rare queries using historic log data, and draw conclusions about
the most effective label prediction algorithms for this task given related work
in areas such as probabilistic retrieval, language modeling, and named entity
extraction. Second, we show that the category labels assigned to long and rare
queries have utility in improving retrieval effectiveness when used to rerank
the top results obtained using a state-of-the-art retrieval algorithm.

The remainder of this article is structured as follows. In Section 2 we de-
scribe related work in processing long queries and query labeling. Section 3
describes the experimental framework, including the data sets and the algo-
rithms tested. Section 4 presents the evaluation methods, including the met-
rics used to determine algorithm performance. The findings of our analysis are
presented and discussed in Section 5. In Section 6 we demonstrate through
experimentation how the assigned labels can be used to improve search result
relevance. We conclude in Section 7, including some important opportunities
for future research.

2. RELATED WORK

The significant areas of related work pertaining to the research we describe
in this article are: prior work on processing long queries and work on query
labeling and classification. Information from the ODP has also been used for
result reranking activities.

1http://www.dmoz.org
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2.1 Long Queries

Prior research work on long queries has generally focused on the development
of automatic techniques for the reduction of long queries to a shorter form of
the same query that may be more effective for retrieval [Bendersky and Croft
2008; Lease et al. 2009; Kumaran and Carvalho 2009]. Techniques include the
learning of key concepts in verbose queries using query, collection-dependent,
and collection-independent features [Allan et al. 1997; Bendersky and Croft
2008], the conversion of verbose queries into structured queries [Callan et al.
1995], reweighting all terms in long queries [Lease et al. 2009], or the selec-
tion of high-quality subqueries by predicting the quality (or performance) of
those subqueries [Kumaran and Carvalho 2009]. Kumaran and Allan [2008]
addresses the issue of extracting the optimal subquery (in terms of retrieval
effectiveness) from the original long query. Their approach involves extracting
a short list of candidate subqueries using a mutual information measure and
presenting this list to the user, allowing her to replace the original query by one
of the candidates from the list. This approach resulted in significant improve-
ments over retrieval with the original long queries. The reduction of queries to
shorter form—either automatically or interactively—resembles some of the re-
search described in this article. However, we are focused on identifying similar,
not necessarily reduced, queries. We also use interaction logs rather than ma-
chine learning or natural language processing techniques. Lastly our task is to
assign labels to queries to create a richer representation of information needs
that can be used for a range of purposes, of which more effective information
retrieval (IR) is only one example, rather than finding the best subquery that
maximizes retrieval performance.

2.2 Query Labeling and Classification

Relevant related work on query labeling and classification can be organized
into three main groups: (i) Web-based methods, where Web search results for
the query are retrieved and then classified; (ii) interaction-log-based methods,
where the search queries and other Web interactions of users are logged and
mined for patterns of behavior, and; (iii) term matching and machine-learning
methods, where queries are matched to other queries by features. The selec-
tion of previous work we present in this subsection is representative, but not
exhaustive.

The work of Broder et al. [2007] is an example of a Web-based method
for query classification. In a similar way to our research reported in this
article, they focus on classifying rare queries using thousands of categories
from a commercial taxonomy. Query labels were determined by classifying the
corresponding retrieved Web documents for each query and applying these
classifications to the queries. They achieved a classification performance sig-
nificantly better than a nearest-neighbor-based baseline algorithm. The main
assumption for such Web-based methods is that the top retrieved Web docu-
ments are highly relevant to the query. The main purpose of their work was to
use these query labels for better matching of online advertisements with rare
queries.
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Another Web-based approach is proposed by Shen et al. [2005] for their par-
ticipation for the KDD Cup 2005 [Li et al. 2005]. In their approach, Web doc-
uments from multiple major search engines are first classified into the ODP
hierarchy using an ensemble of classifiers. These classification results were
then mapped to the target taxonomy for the query classification. Other Web-
based methods include Kardkovács et al. [2005] and Vogel et al. [2005]. As dis-
cussed previously, these Web-based methods make the assumption that the
search engines are reasonably good at returning relevant documents for the
given query, such that the top retrieved results are highly correlated with
the query intent. However, this solution may not be practical for long and
rare queries since Web search engines typically use a logical AND operator in
their underlying retrieval models. This means the result set may be small or
contain no results at all, making classification challenging or impossible.

Related work on the use of interaction logs for query classification was con-
ducted by Li et al. [2008]. They report on leveraging click graphs obtained from
interaction logs to drastically increase the amount of training data classifica-
tion methods receive. Using their method, a small set of seed queries are first
manually labeled. The label information then propagates through the click
graph to the unlabeled queries until a global equilibrium state is achieved. By
applying some regularization techniques, they prevent a click graph from prop-
agating erroneous labels. The success for such a graph-based semi-parametric
learning approach depends on the selection and quality of the small set of seed
queries. If the number of query labels is small, this is easier to do. However,
if the number of distinct query labels extends into many thousands or beyond,
it is not obvious how this small set of seed queries can be correctly selected.
Similar work by Beitzel et al. [2005] leveraged unlabeled data to improve the
supervised learning performance.

Previous work has also investigated term matching methods for query la-
beling. The simplest idea to label a query is by looking it up in a database
of manually classified queries, as discussed by Beitzel et al. [2007]. A draw-
back with such an exact matching approach is that queries are structurally
diverse. Punctuation and search operators may be misused or misparsed, and
keywords can be altered by synonyms with similar meanings. This can result
in exact term matching occurring infrequently. The authors also propose a re-
laxed n-gram matching strategy to mitigate this problem. For n-grams, a query
is partitioned into a set of substrings that are n units long, where units can
be words or characters. From their results, even though the n-gram matching
substantially increases recall over exact matching, it is limited for our pur-
pose by the difficulties in covering the rare queries in the long tail. Similar
techniques include query expansion through external dictionaries, for example,
Voorhees [1994]; query refinement through explicit interactive feedback [Allan
and Raghavan 2002]; and query enhancement through implicit feedback [Gra-
vano et al. 2003]. However, dictionary-based solutions may encounter coverage
issues, especially for long and rare queries. As already stated in the previous
section, we required a solution that was noninteractive to work at scale and
reduce user burden, so any method that requires user feedback (explicit or im-
plicit) was inappropriate for our purposes.
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2.3 Use of ODP for Result Reranking

We use ODP information to rerank search results in a demonstration of how
query labels can be used to benefit users. Bennett and colleagues assigned ODP
category labels to top-ranked search results and showed that these labels could
boost retrieval performance [Bennett et al. 2010]. Chirita et al. [2005] used
the topics contained within the ODP as a way for users to characterize their
interest profiles. Web results are then reranked according to their distance
from the user’s profile. They found an increase in relevance performance of
Google results reranked according to a personalized algorithm that promoted
Web results that had been classified within these ODP groups. Qiu and Cho
[2006] build on this work by providing a mechanism whereby a user’s topic-
sensitive profile can be automatically inferred from their click patterns.

In the next section we describe the experimental framework used for our
study. This includes a description of the data sets and the four similarity
matching algorithms used to find queries related to a given long and rare query.

3. EXPERIMENTAL FRAMEWORK

The primary aim of our study was to investigate the performance of different
label prediction algorithms for long and rare queries. To achieve this, we re-
quired a query labeling algorithm, the output of which we could consider as the
ground truth for our experiments.

To develop this ground truth we used a rich set of interaction logs contain-
ing the querying and browsing behavior of around 500,000 users of the widely
distributed Windows Live toolbar during 2008. Toolbar users consented to hav-
ing their interaction logged, and all user-identifying information was stripped
from the logs prior to use in this study. The information contained in these
log entries included a unique identifier for the toolbar, a timestamp for each
page view, a unique browser window identifier, and the URL of the Web page
visited. Intranet and secure (https) URL visits were excluded at the source.
In order to remove variability caused by geographic and linguistic variation
in search behavior, we include only entries generated in the English-speaking
United States locale.

From these logs we obtained information about users’ Web interaction be-
havior, including the search queries they issue to all popular engines, the Web
pages they visit, and their dwell time on each of the pages. These logs allowed
us to utilize all Web searching behavior rather than the subset that is a visible
from a particular search engine.

To assign labels to queries we extracted query trails [Bilenko and White
2008] from the logs. A query trail qt comprises a user’s query q (consisting
of a sequence of terms {t1, t2, ...t|q|}), and a sequence of zero or more visited
documents identified by URL {u1, u2, ..., un}, visited on the click trail following
q. (For easy reference, all notation used throughout the article is summarized
in Table I).

We considered only satisfied query trails sqt: these are trails where there is
no signal of the user abandoning the query. Abandonment signals include: no
URLs being clicked in response to the query, no URLs being visited for more
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Table I. Notation Used for Describing the Framework and Algorithms

q query
eq an equivalence query (i.e., query same as another, perhaps through normalization)
t query term
ne named entity (from Wikipedia)
u a URL
d a word within a document (URL)
l ODP category label for a URL
c frequency count of a category label’s occurrence
pl a predicted ODP category label
qt query trail, comprising a query and subsequent visited URLs
sqt satisfied query trail, with no sign of user dissatisfaction or abandonment

(e.g., no short dwell time)
su satisfying URL in a sqt (i.e., page view with no dissatisfaction or abandonment

signal)
lqt labeled query trail, with URLs labeled using ODP categories
lqt.query the query from a labeled query trail
alqt aggregated labeled query trails, comprising ODP labels and their frequency

counts from all query trails with equivalent queries
alqt.query the equivalence query from an aggregated labeled query trail
trailsh historical trails, all query trails from six months of log data (used in training)
trailshe historical trails, queries exactly as issued
trailshn historical trails, queries normalized
trailst test trails, from two months of log data (used in testing)
trailste test trails, queries exactly as issued
trailstn test trails, queries normalized

than five seconds (based on empirical evidence), and no transition to another
search engine. An sqt consists of a user’s query q and a sequence of one or more
visited Web pages that meet our criteria for indicating user satisfaction and
are identified by URL {su1, su2, ..., sus}.

The labeler automatically assigned leaf-level category labels from the ODP
taxonomy to Web pages in sqt by performing directory lookup on the page
URL in a manner similar to Shen et al. [2005]. These labels were then as-
sociated with the query that initiated the trail. The basic method was to
assign labels using a backoff strategy, such that if sui fails to match any
of the URLs in the ODP, successive URL path fragments are removed from
the end of sui and the residual URL retried for a match within the ODP.
Note that sui (or some path fragment thereof) must exist within ODP for
it to be labeled, and that it is labeled with the full ODP category (e.g.,
Recreation/Outdoors/Hiking/Books and Maps) rather than, say, the first-level
category (e.g., Recreation). Exactly one ODP category is reported by the labeler,
although identical URLs may appear in multiple categories. However, since our
labeler is deterministic, it is unimportant for any individual URL as to which
category it is labeled with.

A labeled query trail lqt consists of a user’s query q (comprising a se-
quence of terms {t1, t2, ..., t|q|} and sometimes written as lqt.query), and a se-
quence of one or more tuples consisting of ODP category labels and counts
{(l1, c1), (l2, c2), ..., (lm, cm)}. A count c j is determined by the number of URLs
sui which were labeled with any specific category label lj. For example, an lqt
ACM Transactions on The Web, Vol. 4, No. 4, Article 15, Pub. date: September 2010.
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generated for a user searching for information on backpacking might resemble
the following.

Initial query: [ultralight backpacking]
Recreation/Outdoors/Hiking/Backpacking/Ultralight Backpacking : 7
Recreation/Outdoors/Hiking/Organizations/North America : 4
Recreation/Outdoors/Hiking/Trails : 2

Note that the number of category labels in lqt may be substantially fewer
than the number of URLs in the corresponding satisfied query trail sqt, since
multiple URLs (e.g., {ui, uk, . . .}) may be assigned the same category label lj.
Note also that an sqt may have no corresponding lqt, if none of the URLs in sqt
can be labeled.

For the purposes of our experiment, we further transformed the labeled
query trail data to create aggregated labeled query trails (alqt), where ag-
gregation was by equivalence of their component query q. The way in which
equivalence between queries is determined forms one aspect of the data prepa-
ration that may significantly affect results, as discussed in Section 3.2. An
alqt consists of an equivalence query eq (consisting of a sequence of terms
{t1, t2, . . . , t|q|}), and a sequence of one or more tuples (li, ci) such that li appears
if it appears in any of the lqt that were aggregated, and such that the count ci
for a label li is the sum of the counts for li in each of the individual lqt which
were aggregated.

3.1 Datasets

To investigate labeling previously unseen queries, we split our aggregated la-
beled query trails into two time periods: historical and test. The historical data
(trailsh) consisted of all aggregated labeled query trails from six months of tool-
bar logs. Our particular interest is in long and rare queries, where rarity is to
the point of being unseen with respect to past query trails. We thus chose test
data (trailst) consisting of aggregated labeled query trails from the succeeding
two months’ worth of toolbar logs, such that: (1) equivalence queries were more
than three terms in length; and (2) no occurrence of the equivalence query eq
existed in trailsh. All trails whose equivalence queries did not meet these two
criteria were discarded from the test data set.

Our test data contained entirely queries which emulate the real-world chal-
lenge of having never been seen prior to their issuance in a search engine.
Indeed, 30.4% of the unique queries in the two-month period were not issued
to any engine in the previous six months (illustrating the importance of ef-
fectively handling rare queries) and 16.8% of unique queries were both long
and unseen (illustrating the importance of effectively handling long and rare
queries). Our goal is to accurately predict the labels for these long and unseen
queries using search trail information. We develop different algorithms for this
purpose, which use labels assigned to similar seen queries for which we do have
log data. To evaluate these algorithms we develop a ground truth set for trailst,
containing queries labeled according to the ODP labeling algorithm. That is,
we use the query trails in the unseen set, label them with ODP categories per
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the technique described in the previous subsection, and use these labels as the
ground truth for evaluating our label predictions based on coverage and rele-
vance. This labeling process allows us to perform automated judging, which is
essential given the millions of trails present in our test set. Although used
for the construction of the ground truth, no prior usage data about the
specific queries being processed is made available to the similarity matching
algorithms (i.e., the queries must remain unseen).

3.2 Variations in Data Preparation

Any investigation of long queries is open to pursuing different ways of process-
ing the data, and alternate outcomes in the performance of different labeling
methods. One dimension is the treatment of past queries—whether to normal-
ize them or not, and to what extent. Query normalization refers to a set of
actions taken to alter queries so that small variations in language or expres-
sion are not considered to be significant.

In the following text, we adopt the notation [termA termB] to indicate a
query consisting of the terms and punctuation between the pair of brackets [].
For example, the query [pictures mount baker] and the query [Mount Baker
pictures] are syntactically different. However, if lower-casing and term-sorting
are applied, both queries become [baker mount pictures]. This approach follows
on our intuition that there are many queries for which the intent is identical,
even if the expression of the intent varies. Query normalization can cause false
equivalence, however. For example, [man bites dog] and [dog bites man] both
normalize to [bites dog man] even though the semantics of the two queries are
different.

We prepared two variants of the trails data: one exactly as originally
recorded in our interaction logs (trailshe and trailste), and one with normaliza-
tion processing of queries (trailshn and trailstn). The normalization that we ap-
plied consisted of converting all terms to lower case, replacing all sequences of
whitespace characters with a single space character, removing all punctuation
characters, removing English-language plurals indicated by a trailing s charac-
ter, and sorting in alphabetical order. According to this logic, the query [Mount
Rainier’s scenic hiking trails] thus becomes [hiking mount rainier scenic trail].
Since our logs were from users in the English-speaking United States ISO lo-
cale, we did not observe many non-English queries. Non-English queries that
were observed were removed from our analysis. We chose to retain stop words
(e.g., “a,” “the,” “and”) in the current analysis since we analyze completely un-
seen queries and we felt that stop words may be an important aspect of long
queries, and hence worth retaining. Future work will examine the effect of
removing stop words.

Table II reports on the percentage of labeled query trails and aggregated
labeled query trails in each set, relative to the labeled query trails for exact
query equivalence. Since we use proprietary search data for our analysis, we
are unable to provide exact numbers in this article. However, we can say that
we use hundreds of millions of trails in total, and that our test sets contain
tens of millions of trails. Note that the number of lqt using normalized query
ACM Transactions on The Web, Vol. 4, No. 4, Article 15, Pub. date: September 2010.
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Table II. Percentage Sizes by Dataset and Prepara-
tion, Relative to the Labeled Query Trails for Exact

Query Equivalence

Exact Normalized
alqt lqt alqt lqt

historical 24.2% 100.0% 13.9% 99.9%
test 3.9% 6.8% 2.3% 4.8%

equivalence is a little less than for exact query equivalence. This arises be-
cause we discard eq that are empty of terms after normalization, which can
happen if the entire query consists of punctuation. However the number of alqt
almost halves following normalization, indicating many very close repetitions
in all queries, short and long. Note also that trailstn and trailste are substantially
smaller than trailshn and trailshe respectively, because they are extracted from
only two months’ of data and also because they originate with queries that are
both long and unseen. However the size of these test sets is still over 16% of
the size of the historical trails sets (i.e., 3.9% versus 24.2% and 2.3% versus
13.9%), which indicates that long and unseen queries constitute a significant
percentage of the query load for Web search engines.

3.3 Matching Algorithms

A variety of similarity matching algorithms were employed to perform query-
to-query matching of long and unseen queries with previously seen queries
present in the logs. The objective was to issue each test query to the similarity
matching algorithm (SMA), and for the algorithm to return an ordered set of
historical aggregated labeled query trails (alqt) that the algorithm determined
to be related by query similarity. The general process for an individual mapping
of a query to aggregated labeled query trails can be denoted as: SMA(q) →
{alqt′, ..., alqtn}, such that alqt′, . . . , alqtn ∈ trailsh.

Once a set of similar previous alqt had been retrieved from the historic trails
data (trailsh), the labels from that set could be used to generate query labels for
the long and unseen test query. In the remainder of this section we describe
each of the four similarity algorithms that we developed and tested in this
study.

3.3.1 Term Dropping (TD). The first algorithm developed dropped the least
frequent term from the unseen query, and then found historical queries which
included all of the remaining terms.

Term frequency is determined from the statistics of the historical query set,
the same set as used elsewhere in this study. The term dropping algorithm
works as follows:

TD(q) → {alqta, ..., alqtn}, such that for q = {t1, t2, ..., ti, ..., t|q|}, with ti having
the least frequent term occurrence in the queries of trailsh, then alqta, ..., alqtn ∈
trailsh, and alqt f .query contains terms {t1, t2, ..., ti−1, ti+1, ..., t|q|},∀ f ∈ 1..n.

The rationale for this algorithm is that we anticipate the query intent behind
more complex queries may be partly satisfied by simpler related queries. For
example, dropping the least frequent term from the query [TREK mountain
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bikes oclv] would leave [TREK mountain bikes], and other queries contain-
ing these three terms would be considered as similar queries. This example
demonstrates a likely positive application of the algorithm where the least
frequent term modifies the core concept (of mountain bikes manufactured by
TREK) and query trails related to that concept might well share similar query
intent. Our intuition behind term dropping is supported by previous research
described earlier in this article, where long queries are reduced to shorter forms
to improve retrieval effectiveness [Bendersky and Croft 2008; Lease et al. 2009;
Kumaran and Carvalho 2009].

While term dropping is necessary (to match unseen queries with seen
queries for which we have historic log data) and may help find similar queries,
term dropping may also lead to poor performance in cases where term fre-
quency statistics do not work so well. For example, dropping the least frequent
term from the query [where is the bank in Boston] would leave [where is the
bank in]. Queries containing these terms may capture the general intent of
locating banks, but not the specific location intent related to Boston, which is
likely to be crucial to a good match.

3.3.2 Named Entities (NE). We considered ways to match specific semantic
components of the query to past queries. A number of methods to identify spe-
cific semantic intent within the query are appropriate, including part of speech
tagging, named entity recognition, term specificity data, and n-gram frequen-
cies. We ultimately settled on using named entity recognition to identify the
candidate concepts within queries which should be treated as a unit, rather
than as separate terms. Our approach is a variant of that for named entities
suggested by Cucerzan [2007], where the surface forms are restricted to the
query under consideration. Using this approach, entities in queries are iden-
tified based on whether there is a current entry in Wikipedia2 for the entity.
For example, given the query [freestyle snowboarding on Crystal Mountain],
“snowboarding” and “Crystal Mountain” would be identified as named entities
present in Wikipedia and used to match against the set of historic alqt. Around
one million entities were extracted from Wikipedia and used in the named-
entity assignment. All past queries that contained at least one named entity
in common with one in the test queries were considered similar. Queries were
ranked based on the degree of named entity similarity. Briefly:

NE(q) → {alqta, . . . , alqtn}, such that for q = {t1, . . . , nei, . . . ,

nek, . . . t|q|}, where nei, . . . , nek are named entities from Wikipedia, then
alqtj.query contains one or more ne j ∈ {nei, . . . , nek}.

This yielded a list of alqt, ranked in descending based on the degree of
named-entity match between test query and each alqt.

When investigating the role of query normalization, named entities were ini-
tially assigned to all unnormalized variants of the normalized query, and then
aggregated and de-duplicated to assign the entities to the normalized query.

2http://www.wikipedia.org
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The query similarity challenge can be regarded as a query ranking problem.
In addition to term dropping and named entity recognition, we also investi-
gated two ranking methods: language modeling and BM25.

3.3.3 Language Modeling (LM). For language modeling, we used version
2.7 of the Indri information retrieval system [Strohman et al. 2005], and
employed the query-likelihood variant of statistical language modeling for
our language modeling experiments. The query-likelihood approach models
queries as being generated by a random sampling from the probabilistic model
of documents [Ponte and Croft 1998]. Given a query q = {t1, t2, t3, . . . , tn}, and
a query “document” D = d1d2d3 . . . dm, we estimate P(q|D), the probability that
the query would be generated by the query “document.” Next, by applying
Bayesian inversion, we estimate P(D|q), and use this value to rank all the doc-
uments in a collection.

Assuming that the terms in the query are independent of each other,
P(q|D) =

∏n
i=1 P(ti|D), where P(ti|D) is estimated as P(ti|D) = c(ti;D)+μc(ti;C)

|D|+μ
and

where c(ti; D) represents the number of times term ti occurs in query “docu-
ment” D, c(ti; C) represents the number of times ti occurs in the entire col-
lection of documents C, and |D| is the document’s length. We used Dirichlet
smoothing [Zhai and Lafferty 2001], a technique that assigns some probabil-
ity mass from the background collection model to the probability estimate for
each query term. This allowed us to avoid the zero-frequency problem, that is,
even if a particular term does not occur in a query “document,” it does not lead
to the P(q|D) estimate evaluating to zero. The amount of probability mass is
determined by the value of the parameter μ. For our experiments, we set μ to
five. This parameter value was determined by conducting an extensive set of
parameter sweeps for normalized and exact queries and maximizing for best
performance. This parameter tuning helped ensure that the algorithm was
competitive. Upon studying exact queries we made adjustments to the query
pre-processing components of Indri so that punctuation, case, and query term
order were preserved.

The language modeling approach ranks the entire set of queries (or at least,
all queries with at least one term in common with the test query) from trailsh.
Assuming LMScore, we have:

LM(q) → {alqta, . . . , alqtn}, s.t. LMScore(q, alqta.query) ≥
LMScore(q, alqtb .query) . . . ≥ LMScore(q, alqtn.query).

This yielded an unmanageably large set of alqt, ranked in descending order
of similarity per LMScore. We chose two retrieval thresholds for n, set top 3
and 10, that limited the number of top-ranked similar queries used in query
labeling. A sweep of the n values through each value in the range 1..20 re-
vealed that language modeling performance decreased slightly as the retrieval
threshold increased.

3.3.4 BM25. The second conventional ranking system we used was an im-
plementation of Okapi BM25 [Robertson et al. 1994]. We implemented a BM25
scoring function (BM25Score). The tuning weights, k1 and b , for BM25Score
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were set to the conventional values of k1 = 2.0 and b = 0.75. As with language
modeling, we treated the queries from trailsh as documents when indexing. For
our purposes, we have a similarity matching BM25 algorithm which returns a
ranked list of alqt as follows:

BM25(q) → {alqta, . . . , alqtn}, s.t. BM25Score(q, alqta.query) ≥
BM25Score(q, alqtb .query) . . . ≥ BM25Score(q, alqtn.query).

Since BM25 ranks the entire set of queries (or at least, all those with at least
one term in common) from trailsh, we then chose two retrieval thresholds for
n. These thresholds were 3 and 10, matching those for the language modeling
approach.

In this section we have described four query similarity methods used in our
study. The methods we selected covered a range of possibilities, could be ap-
plied easily at scale, and demonstrate the plausibility of query labeling using
our methodology. Other similarity methods may also be appropriate, including
those tailored to short segments of text [Metzler et al. 2007] or semantic simi-
larity [Bollegala et al. 2007]. Future work should test other similarity matching
algorithms using this experimental framework.

3.4 Label Prediction

All matching algorithms produced lists of historical alqt whose queries were
considered similar to each test query. From these lists, we required category
label predictions (in rank order) for each test query.

The next step was, therefore, for every test query, to extract from an alqt the
corresponding set of category labels and counts associated with each similar
past alqt.query. A set of sets of category labels was therefore available for each
test query. From these, we wished to produce a single ranked list of category
labels. Given the varying matching algorithms used (and thus the different
combining approaches for each algorithm that would be possible given infor-
mation about scores and/or ranks of the similar historical queries), we chose a
simple approach of combining the sets of categories into a ranked list. By us-
ing the same combining algorithm in all cases, we maintained the focus of this
research on the underlying performance of the similarity matching algorithms.
The approach used was to pool the sets of categories into a single set, scoring
each category label by the sum of the corresponding counts from the alqt sets
it had appeared in. The set was then ordered by this frequency score to form
a ranked list. At the end of this step, we had for each test query in trailste and
trailstn a ranked lists of predicted category labels (written {pl1, pl2, . . . , plp}) for
each similarity algorithm and its ranked list of actual category labels (written
{l1, l2, . . . , ln}) which served as ground truth. For example, for the query [stain-
ing a new deck], the three predicted labels in ranked frequency order might
be: {Business/Chemicals/Coatings and Adhesives, Home/Homemaking, Home/
Gardening/Forums and Online Communities}, and the three ground truth labels
in ranked order might be {Shopping/Home and Garden/Home Improvement,
Business/Chemicals/Coatings and Adhesives, Home/Homemaking}. Manual ve-
rification was performed on the labeling accuracy of the predictions using a
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small set of query trails that were not used in training or testing our predictive
models.

In this section we have described the datasets we used, the variations in
data preparation to consider issues surrounding query normalization, the sim-
ilarity matching algorithms to identify queries highly similar to a given long
and unseen test query, and the generation of predicted labels based on similar
queries. In the next section we describe the evaluation methods used to deter-
mine the predictive performance of the matching algorithms for labeling long
and unseen queries.

4. EVALUATION METHODS

The evaluation task is to predict actual query labels for a given set of long and
unseen test queries based on historic queries and the associated labels gener-
ated from their postquery navigation trails. We evaluate the predictive perfor-
mance of the similarity matching functions based on two important measures:
coverage and relevance. We now describe how we interpret these measures in
our study.

4.1 Coverage

Coverage reflects the ability of the matching algorithm to generate predictions
for any given alqt.query seen in trailste or trailstn. Obviously the lower the cov-
erage, the less satisfactory the approach is likely to be for a general solution.
However, it is possible that highly effective algorithms might be selected when
they do not provide coverage, even if it is necessary to fall back to another
matching algorithm with greater coverage for when they do not.

4.2 Relevance

We evaluate the relevance of the predictions using a suite of measures similar
to that used by White et al. [2009] for a similar task. We used multiple mea-
sures to provide more complete information about where the algorithms were
performing well and where they were performing poorly.

Evaluation measures in similar settings such as the KDD Cup 2005 [Li et al.
2005] often use the F1 measure (also known as test accuracy), which computes
the harmonic mean of precision and recall. However, the work of Phan et al.
[2007] demonstrated that long queries typically have more narrow query intent
associated with them. The practical use of successful label prediction technol-
ogy would most likely be in providing a surrogate for query intent and/or in
reranking search results. It is rare that more than 10 result snippets (i.e., Web
page titles, summaries, and URLs) will be viewed by a user before reissuing a
different query. Thus there must be a focus on early precision of the category
label prediction so that a search engine could identify pages that match the
top one or at most two categories, and promote them higher in the rankings.
For any query, the recall depth is computed based on the number of predicted
labels. In addition to computing F1, we devised three different precision mea-
sures to measure precision at the top of the predicted label ranking—P@1(top),
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P@1(any), and P@3—and two additional measures that also captured the rele-
vance of highly-ranked items: mean reciprocal rank and normalized discounted
cumulative gain. These metrics were computed over queries for which labels
could be assigned.

P@1(top). The first measure P@1(top) required that the top predicted cate-
gory label pl1 for an alqt matched its top actual label l1. If so, the prediction
algorithm would be given a score 1, and 0 otherwise. The scores over all alqt in
the test sets were then summed and averaged to provide a final P@1(top) score.
This measure is a very high standard, which basically requires a direct match
between the top prediction and the top label.

P@1(any). The second measure P@1(any) allowed any predicted category la-
bel pl1, . . . , plp for an alqt to be compared with its top actual label l1. If any
of pl1, . . . , plp matched l1, the prediction algorithm would be given a score 1,
and 0 otherwise. As before, scores were summed and averaged to compute fi-
nal P@1(any) scores for each of the algorithms and test sets. This measure
assumes that the top-ranked label l1 of an alqt is the most important label, and
that predicting this at all is valuable.

P@3. The third measure P@3 compared the top predicted category label pl1
for an alqt with any of its top three actual labels l1, l2, l3. If there was a match,
the prediction algorithm would be given a score 1, and 0 otherwise. Scores were
summed and averaged to compute final P@3 scores as before. This measure
assumes that at most one label prediction would be used in a real system, but
that helping get any of the three dominant intents correct would be useful.

Mean reciprocal rank. A standard alternative measure used often in
Web search evaluation tasks is mean reciprocal rank (MRR); for example,
Chowdhury and Soboroff ’s investigation [2002] reported its use. To compute
this measure in our context, the top actual category label l1 from an alqt was
compared progressively down the ordered list of predicted category label predic-
tions pl1, . . . , plp. If l1 matched pli, the score assigned was the reciprocal of the
prediction rank position—1/i, and 0 otherwise. Scores were summed and av-
eraged to compute MRR overall. This measure rewards prediction algorithms
that get the most likely category label towards the top of the list of their predic-
tions. In the example for the query [staining a new deck] in Section 3.4, com-
puting the MRR (of 0.5) would involve first comparing the top-ranked predicted
label (Top/Business/Chemicals/Coatings and Adhesives) against the top-ranked
ground truth label (Top/Shopping/Home and Garden/Home Improvement) be-
fore finding a match with the second-ranked ground truth label.

nDCG. The final measure was a variant on nDCG [Järvelin and Kekäläinen
2002]. nDCG biases towards the early retrieval of highly-relevant documents,
although it also includes a recall component to the calculation. In our case the
documents are category labels, such that the list of actual labels from an alqt is
considered an ideal vector, with each actual label given a relevance score of 1.
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The list of predicted labels {pl1, . . . , plp} is then compared to the ideal vec-
tor, and a discounted cumulative gain score computed, using a standard log2
discount factor. The twist on standard computation of nDCG was in restricting
the depth of the comparisons between the two label vectors to the minimum
length of the two. The score was normalized by dividing it by the maximum
possible value that could be obtained to this depth, and the results summed
and averaged as before.

In the next section we present the findings of our experiment.

5. FINDINGS AND DISCUSSION

The coverage calculation and the relevance measures described in Section 4
were used to evaluate the performance of each of the similarity matching func-
tions. The findings are reported in Table III(a). These results were calculated
by first sampling 10 random sets without replacement from trailste, where each
random set consisted of 100,000 alqt. Evaluation and coverage measures were
computed over each set, and the results averaged. For simplicity, all evaluation
measures have been scaled to report in the range (0, 100). The maximum of the
standard errors between the means is reported also.

We observe that the term dropping and named entities approaches both suf-
fer from the problem that the historical query set used may not permit any
matching queries to be identified. Thus their coverage level is roughly a half
and a third respectively of the other methods. Although precision is low, long
and rare queries are one of the most challenging query segments for search
engines, and being able to accurately label queries for a subset of queries (one-
in-five times in the case of BM25 (T=5)) could still result in user benefit. We
explore the extent of this benefit in the next section. The low standard error
values suggest that the differences between matching algorithms for each of
the metrics were statistically significant. This was verified with independent-
measures analysis of variance (ANOVA) tests followed by post-hoc Tukey tests
across all algorithm pairs (all p < 0.001). Given the large sample sizes, all
differences between algorithms across all measures reported in this section are
statistically significant at p < 0.001.

Language modeling techniques are known to outperform BM25 in the case
of ad-hoc information retrieval [Bennett et al. 2008]. However, the results sug-
gest that LM-based retrieval is not well-suited for the task of retrieving queries,
performing worse than all other approaches we tried. From parameter sweeps
on training data we identified a value of five as the best setting for the Dirich-
let parameter (μ). Further, as we increased μ, that is, we interpolated to a
greater extent with the background collection model, we noticed that the LM
technique had a tendency to retrieve queries of progressively greater length
than the original. The lower performance is therefore not surprising: queries
even longer than the original are likely even rarer, and have a lesser chance of
being assigned specific (or high-quality) ODP category labels.

The BM25 approaches score significantly better across all measures than the
other approaches, with the retrieval threshold of top-three performing mar-
ginally better than top-ten. The work of Najork et al. [2007] suggests that
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Table III. Coverage and Relevance of Query Label Prediction Using Different Similarity
Matching Algorithms

Algorithm Cov(%) P@1(top) P@1(any) P@3 MRR nDCG F1
(a) Exact query equivalence

Term dropping 41.2 10.1 12.1 18.4 15.7 11.3 12.0
Named entities 30.5 9.5 11.4 18.4 15.7 10.6 10.9
LM (T=3) 100 6.7 8.2 13.5 10.3 7.2 8.3
LM (T=10) 100 8.1 9.5 16.8 14.4 9.5 11.8
BM25 (T=3) 100 13.2 16.0 24.9 21.0 15.6 15.9
BM25 (T=10) 100 12.7 15.2 24.1 21.4 14.1 15.1
Standard errors ≤ 0.06 ≤ 0.04 ≤ 0.05 ≤ 0.04 ≤ 0.07 ≤ 0.07

(b) Normalized query equivalence
Term dropping 45.1 10.1 12.1 18.4 15.7 11.2 12.4
Named entities 35.6 9.3 11.3 17.5 15.8 10.4 11.8
LM (T=3) 100 6.9 8.3 14.0 10.8 7.9 8.6
LM (T=10) 100 8.6 10.1 17.2 14.7 9.6 10.7
BM25 (T=3) 100 13.7 16.3 25.4 21.4 15.2 16.6
BM25 (T=10) 100 13.1 15.6 24.5 21.8 14.5 15.8
Standard errors ≤ 0.05 ≤ 0.03 ≤ 0.04 ≤ 0.03 ≤ 0.04 ≤ 0.06

(c) Normalized query equivalence and ≥ 5 clicks
Term dropping 49.7 15.5 19.4 25.8 22.0 17.4 17.0
Named entities 36.6 13.2 16.7 23.1 21.0 15.0 14.6
LM (T=3) 100 9.6 12.1 17.7 13.9 11.1 10.2
LM (T=10) 100 12.3 15.2 23.1 19.5 14.2 14.0
BM25 (T=3) 100 19.5 24.4 33.3 28.1 22.0 23.1
BM25 (T=5) 100 22.3 26.1 35.6 32.0 24.2 25.8
BM25 (T=10) 100 19.3 23.9 33.5 29.2 21.5 23.2
Standard errors ≤ 0.02 ≤ 0.02 ≤ 0.02 ≤ 0.03 ≤ 0.03 ≤ 0.04

(d) Normalized query equivalence, ≥ 5 clicks, all report matches
Term dropping 12.9 14.8 23.6 20.3 14.0 15.0
Named entities 12.4 14.5 22.1 18.6 13.5 14.6
LM (T=3) 8.8 10.6 17.4 13.5 10.0 10.6
LM (T=10) 11.0 13.1 21.6 18.4 12.3 13.3
BM25 (T=3) 17.0 20.3 30.8 26.1 18.8 20.5
BM25 (T=5) 20.8 23.4 33.1 28.4 20.1 25.3
BM25 (T=10) 15.9 19.0 29.7 26.1 17.6 19.5
Standard errors ≤ 0.05 ≤ 0.03 ≤ 0.04 ≤ 0.03 ≤ 0.04 ≤ 0.05

BM25F (a more sophisticated version of BM25 that can assign different weights
to different document fields) is better for ranking more specific queries than a
range of other features for ad hoc information retrieval in a Web setting. Al-
though we are using BM25 only (and our “documents” are just queries without
multiple fields), our queries are long and likely to be more specific. It may
be that the behavior of the ranking characteristics of BM25 observed by Na-
jork and colleagues also applies in our scenario and therefore leads to better
performance.

5.1 Normalized versus Exact Query Equivalence

As discussed in Section 3.1, we prepared the trails data both exactly as recorded
and using a query normalization algorithm. To examine the impact that query
normalization had, we ran the same experiment reported above over a different
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sampling of 10 random sets without replacement from trailstn, where each ran-
dom set consisted of 100,000 alqt. Our hypothesis was that normalized query
data would lead to an improvement for two reasons: at some level there should
be more data to use per alqt if different queries now become equivalent. Sec-
ondly, the removal of erroneous differences appearing due to different word
ordering, punctuation, and pluralization are likely to outweigh any increase in
query conflation given the length of the queries. The results of this analysis
are summarized in Table III(b).

Fairly consistently, scores increased for all similarity matching algorithms
across all measures, and the standard errors decreased. Thus from hereon, we
used only trailstn as the source of sample alqt for our experiments.

5.2 Exploring the Retrieval Threshold

Given the strong performance of the BM25 algorithm, we chose to explore how
modifying the BM25 retrieval threshold (i.e., the number of historical queries
used to predict category labels) affected its prediction performance. We reran
the experiment on one of our randomly-selected normalized sets of 100,000
queries, and varied the retrieval threshold for BM25 from 1 to 20 similar
queries. In Figure 2 we show the mean average F1 score for the algorithm
at each retrieval threshold. From this analysis, it appears that setting a re-
trieval threshold of five maximizes the F1 relevance score; all other evaluation
measures followed a similar trend. With less than five similar queries the algo-
rithm may lack sufficient labeling information to make an accurate prediction.
More than five similar queries there may be noisy labels that reduce the accu-
racy of the prediction.

5.3 Improved “Judgment” Confidence

One observation we made on examining the predictions where our relevance
scores were poor was that due to the sparsity of click data in a subset of the
alqt test set which constituted our ground truth, the actual labels periodically
looked of poor quality. Manual inspection of the query and the predicted labels
suggested that our predictions might in fact be good. We hypothesized that
because an alqt might represent only one occurrence of an unseen query, and
have just a single user, using a single search engine, and visiting one or two
Web pages, these extremely sparse trails might be distorting the evaluation
measures on the quality of predictions.

To investigate this, we reran the evaluation of Section 5.1, holding out
queries from the test set trailstn where fewer than five clicks were associated
with any alqt. The results of the evaluation for all approaches are shown in
Table III(c). Note that the coverage values increase for both term dropping and
named entities algorithms, since the test set size has decreased. The scores
for almost all algorithms increase substantially across all relevance measures.
In particular, we see the BM25 (T = 5) scores increasing in the region of 26%.
The relative performance ordering of algorithms remained the same as that
reported in analysis earlier in the section.
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Fig. 2. Exploring the retrieval threshold for BM25 (± SE).

5.4 Overlap Comparison

To provide a fairer examination of the relative relevance performance of the
different algorithms, we show in Table III(d) the scores on a subset of queries
for which all algorithms were able to predict labels. Although the ten sets of
100,000 sampled unseen queries were obviously of equal size, the subsets from
each of these differed marginally. The average size of the overlap subsets was
14,191 alqt (a total of 141,912 alqt overall). The coverage column is dropped,
because all algorithms had 100% coverage. The relative performance ordering
once again remained the same.

5.5 Effect Size

All of the observed differences in the means between algorithms were statis-
tically significant with paired measures t-tests (at p < 0.001). This was to be
expected given the large sample sizes. The final analysis we performed was to
ensure that the observed differences between the algorithms were meaningful.
We used Cohen’s d tests to determine the effect size of each between-algorithm
comparison [Cohen 1988]. Table IV shows the obtained d-values. The effect
size is small to medium, although it is largest when comparing the BM25 al-
gorithms with comparator algorithms; this signifies that BM25 had the largest
treatment effect and its prediction performance is most different from the other
matching algorithms under consideration.

The findings presented in this section demonstrate that the BM25 match-
ing algorithm outperforms the other algorithms tested. In the next section we
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Table IV. Effect Size for Between-Similarity Matching Algorithm Comparisons

Algorithm TD NE LM(3) LM(10) BM25(3) BM25(5) BM25(10)
TD – .13 .12 .11 .22 .32 .28
NE – .11 .10 .23 .31 .30
LM(3) – .09 .29 .30 .26
LM(10) – .24 .32 .27
BM25(3) – .20 .09
BM25(5) – .17
BM25(10) –

evaluate the potential effectiveness of applying the query labels generated by
this algorithm for the task of improving retrieval performance.

6. APPLICATION

Long and unseen queries are an important challenge for Web search engines.
Such queries constitute around 16% of all unique queries that such engines
receive.3 The findings presented in the previous section demonstrate that it
is possible to assign the correct top-ranked label to a long and unseen query
around one in five times. While promising, this does not provide insight into
the utility of assigning category labels to long and unseen queries.

To address this concern, we evaluated one possible application of query
labeling—result reranking. We used the query labels to rerank the top search
results generated by a popular and effective ranking algorithm for a set of long
and unseen queries. We randomly sampled a set of 75 queries from months of
query logs from Microsoft’s Bing search engine. These queries contained more
than four tokens (i.e., were long per our definition), were normalized, and were
unseen (i.e., appeared in trailstn but not in trailshn). We ranked Web search re-
sults using the popular BM25F algorithm [Robertson et al. 2004], and then
reranked the top-n results using two techniques:

ODP. The top-results were reranked using the query labels and ODP cat-
egory labels assigned to each of those results per the technique proposed by
Shen et al. [2005], used to label query trails described earlier in this article.
We began by initializing the score for all n search results to zero, effectively
giving them all the same initial rank. For each result, we stepped through the
labels assigned to the current long and unseen query using the BM25 labeling
algorithm, which outperformed the other algorithms in the analysis presented
in the previous section. We compared the result’s ODP category label against
each of the current labels for the query. If there was an exact match between
the query label and the result label we incremented the score for that result by
one. If there was an inexact match (i.e., category backoff was required), then

3Note that an automated analysis of a set of 1,000 randomly-selected long and unseen queries
revealed that only 11.8% included spelling errors. The analysis involved submitting each query to
the Microsoft Bing search engine and monitoring whether the spelling suggestion was shown on
the search engine result page. This signifies that most queries were unique because they expressed
search intent in a unique way and were not simply incorrectly-spelled variants of seen queries.
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we incremented the result’s score by the number of levels in the result’s cat-
egory label when a match was made, divided by the total number of category
levels for the result label. This penalized results for only broadly matching the
query intent. The top-n results were then sorted based on these scores and the
rank order of those results with a score of zero at the bottom of the ranked list
were randomly permuted.

Comb. We also combined all pairs of approaches and all three approaches
using a rank aggregation technique known as the Borda Count method [Dwork
et al. 2001]. Specifically, our approach involved reranking results based on the
average of the rank positions of each result, when each method was applied
independently. For example, if a result was ranked at position five in the ODP-
based ranking and position three in the BM25F-based ranking then the final
rank position of that result would be four. All results were ordered based on
their average ranks from the two methods.

For each of the 75 queries in our set, we obtained human relevance judg-
ments on a six-point scale—Bad, Poor, Fair, Good, Excellent, and Perfect—for
each of the top-50 search results obtained by the BM25F algorithm. We then
computed the nDCG scores at positions 1, 3, and 10 for the original ranking and
the two reranking strategies described above, and report the average values in
Table V averaged across 100 experimental runs (to handle the random per-
mutation). We experimented extensively with reranking the top-10, 20, . . . , 50
results and using the top-1, 2, . . . , 10 query labels. The reranking performance
was highly sensitive to the number of results reranked and the number of query
labels used. The reported values in Table V are for reranking the top ten re-
sults and using the top three predicted labels. These were the best performing
parameter settings, perhaps because: (i) BM25F had already placed relevant
results in the top ten, reducing the likelihood that erroneous results would be
introduced by the reranking, and (ii) selecting three query labels provided a
good sense of query intent but not too much information that might introduce
noise. A similar pattern was observed while exploring the BM25 threshold in
Section 5.2.

To address potential concerns about the need for labeling, we also rerank the
BM25F results using only the result page click-through logs for queries most
similar to each long and unseen query. This bypassed the labeling process and
allowed us to investigate the utility offered by query labeling. To do this, we
obtained one month of click-through logs from the Microsoft Bing search engine
during December 2009 from the English-speaking United States ISO locale.
We ran each query through the BM25 (T = 5) labeling algorithm described in
Section 3.3.4 and obtained the top-five most similar queries that appeared in
trailsh and in the click-through logs. The BM25 (T=5) algorithm was shown to
perform best in finding similar queries for the labeling experiments presented
in the previous section and hence seemed appropriate for this task. The clicked
URLs and their frequency counts for each of these five queries were retrieved
from the logs and their frequency counts aggregated to obtain a click-based
final result ranking for each long and unseen query. The top-50 BM25F search
results were reordered according to these frequency counts. Results for which
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Table V. nDCG for BM25F, Click Reranking, ODP Reranking,
and Combinations

Method nDCG@1 nDCG@3 nDCG@10
BM25F (baseline) 43.7 45.4 46.7
Click 45.5 46.5 47.2
ODP 46.8 47.9 48.9

BM25F+Click 46.7 47.0 47.1
BM25F+ODP 45.3 46.2 47.9
Click+ODP 47.7 47.8 48.2

All (BM25F+ODP+Click) 46.4 47.7 49.0

we did not have click-through data were assigned a score of zero and placed at
the bottom of the ranked list in a randomly permuted order similar to how we
handled ODP reranking. The results for click-through analysis are also shown
in Table V.

The findings suggest that reranking based on the ODP labels alone can out-
perform BM25F and click-through, at rank positions one, three, and ten. Com-
bining features appears to help, at least leading to a slight increase in retrieval
performance over the worst-performing algorithm of the combination. Statis-
tically significant nDCG differences over the BM25F baseline—using paired
t-tests—are marked in Table V in italics (for p ≤ .05) and bold (for p ≤ .01). All
differences between ODP and Click-through were significant (all t(74) ≥ 2.38,
all p ≤ .02). The strong performance of the ODP labeling (especially over click-
through) was promising as it shows that there may be relevance signal in the
labels that could be leveraged to improve the retrieval performance of search
engines for long and unseen queries and that the trail-based labeling adds
value over the click-through alone. In future work we will investigate the value
of reranking results generated by more sophisticated ranking algorithms, such
as those that use machine learning techniques and more sophisticated ways to
perform the reranking beyond simple rank aggregation.

7. CONCLUSIONS AND FUTURE WORK

Our research makes a number of contributions. We developed an experimen-
tal framework to investigate some challenges in labeling long and rare queries,
where these queries have never previously been issued to a Web search en-
gine. Such queries are difficult for search engines because of the lack of inter-
action log data available for them. The framework makes use of query trails
so that evaluation of predicted labels can be performed without costly human
involvement.

We divided the label prediction problem into separate parts: finding similar
queries from past user data, combining the real labels from aggregated query
trails containing these queries, and generating a ranked list of labels as a pre-
diction for the query. Our investigation focused on comparative evaluation for
the first task—finding similar queries. We held the other aspects of our exper-
iment constant to eliminate sources of difference between approaches.
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For the task of label prediction, the order of performance from best to worst
was probabilistic ranking (using BM25), term dropping, named entities, and
lastly (somewhat surprisingly given its general utility for ad hoc information
retrieval) language modeling (using Indri). We investigated retrieval thresh-
olds for the BM25 approach, and found that a five-query threshold was the
optimal value. Across a random set of 100,000 long and unseen queries, this
approach achieved an F1 score of 20.5, and when we imposed confidence thresh-
olds on the test set truth labels (by requiring five or more clicks in the query
trail), it improved to 25.8. Even requiring strict matching between only the top
predicted label and the top real label achieved a P@1 score of over 22. In other
words, in better than one in five cases we predict the label perfectly. However,
this means there is still plenty of scope for future research in identifying other
factors in labeling long and rare queries.

We found that normalizing queries improved performance for all algorithms.
Normalizing queries may reduce errors arising from minor inconsistencies in
past user data. We recommend it in all cases; however, some approaches (such
as named entities) must extract data while still in the original term order.
Overall, mining query trails from past user data provides a useful source for
predicting the category labels for never-before-seen long and rare queries. The
techniques evaluated in this article were all simple and scalable, and could be
implemented as an additional service in a search engine that would map an in-
coming long and unseen query to category labels and use the labels to enhance
the search experience.

We also showed that the query labels have utility for at least one application:
reranking search results. We used the query labels as a richer representation
of query intent and applied them to the task of reordering the top retrieved
results served by a popular search algorithm (BM25F). We demonstrated that
the application of the labels for result reranking in combination with BM25F
led to a significant increase in retrieval effectiveness over BM25F alone. Search
engines may wish to employ richer representations of long and unseen queries
to facilitate result reranking, tailored ranking algorithms, and other special
treatment options, such as richer result snippets.

Future work includes greater success and failure analysis. For example,
are there query patterns for which particular algorithms consistently do well
or poorly on, or are there patterns in the trails (e.g., cycles of repeat visits to
the same URLs) that lead to improved or degraded performance? The over-
lap comparison indicates that the named entities approach noticeably differs
from the term dropping approach (they produce matches in common for less
than 50% of queries). This observation supports our belief that distinct query
patterns exist with long queries, and may be susceptible to differential treat-
ment if the patterns are consistent. The effect of removing stop words from
queries both in the past usage data and in test queries would be interest-
ing to explore for the BM25 approach. Another important area is the effect
of applying different approaches in combining the real labels and in generat-
ing the ranked list of labels, rather than simple count aggregation methods.
Determining the limitations of log mining for label selection would also be
valuable.
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