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Abstract—Using data from 43 users across two platforms, we
present a detailed look at smartphone traffic. We find that browsing
contributes over half of the traffic, while each of email, media, and
maps contribute roughly 10%. We also find that the overhead of
lower layer protocols is high because of small transfer sizes. For
half of the transfers that use transport-level security, header bytes
correspond to 40% of the total. We show that while packet loss
is the main factor that limits the throughput of smartphone traffic,
larger send buffers at Internet servers can improve the throughput
of a quarter of the transfers. Finally, by studying the interaction be-
tween smartphone traffic and the radio power management policy,
we find that the power consumption of the radio can be reduced by
35% with minimal impact on the performance of packet exchanges.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks] Local and Wide-

Area Networks – Internet

General Terms
Measurement, Performance

Keywords
Smartphone traffic, Power management

1. INTRODUCTION
Smartphone traffic represents an increasingly large share of In-

ternet traffic. Cellular traffic is projected to grow 10 times faster
than fixed Internet traffic [22] and most of this traffic is generated
by smartphones [9]. By next year, smartphone sales are projected
to surpass desktop PCs [18].

However, little is known today about the nature of smartphone
traffic. Two recent studies have shed valuable light on some as-
pects of this traffic. Trestianet al. study the kinds of Web sites
accessed at different times of the day [20]; and Maieret al. study
HTTP traffic generated by mobile handheld devices (which include
music players and personal gaming consoles in addition to smart-
phones) in homes [15]. Both studies are based on data gathered at
a link in the middle of the network. As a result, while they can
analyze traffic from a large number of devices, they do not capture
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a detailed, comprehensive view of individual devices. For instance,
the second study misses traffic exchanged by devices through the
cellular interfaces or outside of their homes.

In this paper, we report on our ongoing work on detailed char-
acterization of smartphone traffic. Our approach is complementary
to that of previous studies—we employ passive sniffers on the de-
vice and record all sent and received traffic. Given the difficulty
of deploying continuous monitoring on a large number of end user
devices, the breadth achievable using this method is limited. But
the comprehensive view of smartphone traffic that it provides for
monitored devices enables inferences that would otherwise be im-
possible to make. For instance, we can study how much total traffic
a device generates in a day and interaction of its traffic patterns with
radio power management.

The results in this paper are based on two datasets. Our primary
dataset consists of 10 users across two smartphone platforms. For
these users, we deployed a logger that captured packet-level traces.
Our other dataset consists of 33 Android users. It contains bytes
sent and received by each application in every two-minute window.
We have from 1 to 5 months of data for each user.

Using these datasets, we shed light on several aspects of smart-
phone traffic. By analyzing commonly used ports and applications,
we quantify traffic generated by various applications. We find that
browsing contributes over half of the traffic, while each of messag-
ing (email, IM), maps and media contribute roughly 10%.

We also find that most smartphone data transfers are small, with
the median size being only 3 KB. Such small transfers have many
implications. For instance, the overhead of lower layer protocols
can be high. We show that for half of the transfers, header bytes
constitute over 12% of the total bytes. In the presence of transport
security, this overhead grows to 40%. For half of the transfers,
lower layer handshakes constitute 20% of the total completion time.

Consistent with controlled experiments with probe traffic [12],
we find that smartphone data transfers experience high delays and
losses. Unlike controlled experiments, however, our data allows
us to also study the impact of these path characteristics on actual
smartphone workloads. Focusing on transfers with more than 10
data packets, we find that the median throughput is only 3.5 kbps
in the downlink (from the network to the smartphone) and 0.8 Kbps
in the uplink.

Analysis of what limits the throughput of smartphone data trans-
fers [23] reveals that packet loss is the primary culprit. But in-
terestingly, a quarter of the downlink transfers are bottlenecked
by the size of the sender-side transport buffer. The throughput of
such flows can be improved by simply increasing the buffer sizes
at servers that communicate with smartphone clients.

Finally, we study the interaction of smartphone traffic with the
radio power management policy. We find that the current sleep
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Figure 1: (a) Smartphone traffic per day. (b) Ratio of traffic
sent on the WiFi interface.

timers, that is, the idle period after which the radio will go to sleep,
are overly long. By reducing them based on current traffic patterns,
radio power consumption can be reduced by at least 35% with min-
imal impact on performance.

2. DATASETS
Our results are based on two sets of traces. The first data set

consists of packet level traces from 10 smartphone users across two
different platforms. Our second data set contains application level
traffic information from 33 Android users.

Dataset1 Our first dataset is from 8 Windows Mobile (HTC
Touch) users and 2 Android (HTC Dream) users. It contains packet-
level traces, including link layer headers, for data sent and received
by the smartphone. We collected these traces usingNetlogon Win-
dows Mobile andtcpdumpon Android. The traces were stored lo-
cally and uploaded at regular intervals using the USB connection.

All users are knowledge workers. Each had an unlimited data
plan with their carrier (7 AT&T, 3 T-Mobile). The users were resi-
dent in two different cities in the USA.

Across all users, there is 532 days of data. For individual users,
the data varies from 26 to 84 days.

Dataset2 Our second dataset is from 33 Android (HTC Dream)
users. It was collected using a custom logging tool that provides an
application-level view of smartphone traffic. Every two minutes, it
records the number of bytes sent and received by every process that
runs on the smartphone. This tool is available to other researchers
by request and more details on its operation are available in [10].

The set of users consists of 17 knowledge workers and 16 high
school students. As for user interactions [10], we did not find statis-
tically valid differences among the two demographics with respect
to traffic. We thus present their results jointly. Each participant was
provided an unlimited voice, text and data plan through T-Mobile.
The users were resident in the same city in the USA.

Across all users, there is 1660 days of data. For individual users,
the data varies from 49-147 days.

A key limitation of our work is the small user populations of our
datasets, even though they provide independent vantage points on
smartphone traffic characteristics. Expanding our set of users is a
subject of ongoing work.

3. TRAFFIC COMPOSITION
In this section, we study the basic makeup of smartphone traffic,

starting with volume per user. Figure1(a) shows how much traffic
is exchanged per day by users. This amount is 2-20 MB in Dataset1
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Figure 2: Ratio of downlink to uplink traffic.

and 1-500 MB in Dataset2. Compared to residential broadband
traffic this is roughly one order of magnitude smaller [1].

Two factors may explain the differences in the two datasets. One
is that Dataset1 is dominated by Windows Mobile, while Dataset2
is exclusively Android. It is likely that the Android OS and users
generate more traffic. The heaviest user in Dataset1 is in fact an
Android user. In earlier work, we found that Android users interact
with their devices more heavily than Windows Mobile users [10].
For instance, the median session length of Android users is more
than twice that of Windows Mobile users.

The second factor, not unrelated to the first, is that many users in
Dataset2 use WiFi heavily. Dataset1 does not provide direct infor-
mation on the interface (WiFi or cellular) used by individual pack-
ets. But by observing interface addresses and path delays—cellular
delays are much higher—we conclude that WiFi usage was mini-
mal among those users. In Dataset2, we can reliably identify the
share of WiFi traffic using information about interface state.

Figure1(b) shows the ratio of WiFi traffic in Dataset2. We see
that the median ratio is almost 0.5 but it varies widely across users.
While the bottom 20% do not use WiFi at all, the top 20% use
it for more than 80% of their traffic. These results also imply that
depending on the user population smartphone studies based on only
cellular traffic [20] or only WiFi traffic [15] can miss a significant
fraction of device traffic.

We now study the composition of smartphone traffic from other
perspectives.

Downlink vs. uplink Figure 2 shows the ratio of downlink
(from the network to the smartphone) to uplink traffic. There is a
wide variation among users, caused likely by diversity in applica-
tion usage, from downlink traffic equaling uplink traffic to it being
over 10 times the uplink traffic. The average across all users for
downlink to uplink ratio is 6:1. This high asymmetry, indicating a
strong bias towards downloads, has implications for provisioning
access technologies for smartphones. It is comparable to asymme-
try in residential broadband traffic in Europe [14] and Japan [11]
but is well above the subset of “peer-type heavy-hitters”[11] whose
ratio is close to 1:1.

Despite differences in total traffic exchanged the downlink to up-
link ratios in the two datasets are similar. This suggests that the mix
of activities that generate network traffic may not be disparate for
the two cases. We study these next.

Common ports [Dataset1] Ports provide insight into user ac-
tivities on smartphones. Identifying applications using ports may
be inaccurate in some cases (e.g., peer-to-peer), but it is a simple
indicator that works well overall [14].

Table1 shows for Dataset1 all ports that carry over 0.1% of the



Bytes (%) Packets (%)
HTTPS (443) 43.88 31.66
HTTP (80) 37.48 22.16
IMAP4S (993) 15.21 39.32
DNS (53) 1.08 2.31
IM (5000-01) 0.69 0.32
Android-Mkt (5228) 0.48 1.10
IPv6local (5355) 0.22 0.88
DHCP (67) 0.22 0.24
NetBIOS (137-39) 0.17 0.60
other 0.57 0.37

Table 1: Ports (in parenthesis) used by IP packets in Dataset1.

Bytes (%)
Browsing 58.02
Media 10.82
Messaging (Email, IM) 10.33
Maps 8.51
System 5.83
Social networking 4.18
Games 0.36
Productivity 0.15
unknown/other 1.79

Table 2: Traffic generated by applications in Dataset2.

bytes. We see that the dominant ports correspond to HTTPS, HTTP,
and IMAP4S. These results suggest that the main traffic generators
on smartphones of these users are browsing and email. HTTPS is
used by secure Web sites and email servers (including Exchange).
HTTP of course is used heavily as part of browsing and for down-
loading data of various kinds. IMAP4S is the secure version of
the IMAP protocol for email. While IMAP4S has the most pack-
ets, it is third with respect to the number of bytes. This implies a
bias towards small packets, likely generated as part of frequently
polling for (often non-existent) new email. Many Dataset1 users
had two configured email accounts—a push-based work account
and a polling-based personal account. Increased adoption of push-
based email, by which clients are notified when new email arrives,
will change the nature of email traffic.

The 37% share of HTTP traffic that we find is roughly half of
that observed for mobile handheld devices in homes [15] and 50%
less than that in residential broadband traffic [14].

The large volume of traffic that uses HTTP or HTTPS perhaps
indicates the trend among smartphone applications to tunnel their
data through these protocols, even when such data would not nor-
mally be considered HTTP payload (e.g., music, video and, social
apps).

Applications [Dataset2] Our second dataset lets us directly
observe what applications are generating smartphone traffic. We
partition applications into several categories that are shown in Ta-
ble 2. “System” includes applications that are part of the OS (e.g.,
package manager, backup), and “Productivity” includes applica-
tions for calendars, alarms, and document handling (e.g., Office,
PDF reader). The meanings of the other application categories are
what their names suggest.

We see in the table that browsing dominates smartphone traffic.
As in Dataset1, messaging is also a significant contributor. Media
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Figure 3: Transfer sizes in Dataset1. Thex-axes are log scale.
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Figure 4: Transfer sizes in Dataset2. Thex-axis is log scale.

and maps are other major contributors. These applications tend to
use HTTP and HTTPS for transport, but the application-level view
lets us quantify their contribution independently.

4. TRANSFER SIZES
In this section, we study the sizes of individual data transfers,

which impact throughput as well as power consumption [2]. We
identify individual transfers using TCP flows. A TCP flow is iden-
tified using IP addresses and ports. Packets of a flow without an ex-
tended idle period (1 minute), are considered as part of one transfer;
flows with long idle periods are considered separate transfers [6].
Long idle periods can arise within a TCP flow if the client (e.g.,
email application) maintains an open connection to the server, to
avoid the TCP connection setup overhead for each transfer.

Figure3 shows the CDF of transfer sizes in bytes and packets
across all users in Dataset1. The size in bytes includes the bytes
contributed by TCP and IP headers. While the mean transfer size
is 273 KB sent and 57 KB received, most transfers are extremely
small. When considering both directions cumulatively, 30% of
them have fewer than 1K bytes and 10 packets. These results are
consistent with those of Maieret al. for HTTP traffic from hand-
held devices [15].

Figure4 shows that Dataset2 is dominated by small transfers as
well. We define a transfer size differently in this case. Dataset2
has bytes sent and received by individual applications in 2-minute
long intervals. For each application, we combine contiguous inter-
vals with non-zero data exchanged as one transfer. If an application
exchanges data over multiple TCP connections, this definition ag-
gregates data across those connections into one transfer. Despite
this aggregation, the graph shows that most transfers are small.

The small transfer sizes that we observe have many implications.
Given the high amount of energy consumed by the 3G radio to go
from sleep to ready state and from idle to sleep state (§6), there can
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Figure 5: The overhead of layers below TCP and SSL (inclu-
sive) in Dataset1.

be a high energy overhead associated with them. Another impli-
cation is that a scheme like Catnap [8] is unlikely to reduce radio
power consumption. Catnap puts the radio to sleep during transfers
but is effective only for long transfers. In §6, we present a sim-
ple method that can reduce radio power consumption by 35% by
appropriately setting radio sleep timers.

Yet another implication of small transfers is that the already high
overhead of lower-layer protocols can dominate. This overhead
manifests as extra bytes that must be transmitted as headers as well
as extra time that it takes to complete handshakes.

We quantify these overheads at the transport (TCP) and transport
security (SSL) layers. According to our analysis 96% of smart-
phone traffic is TCP-based and more than half uses SSL (through
HTTPS and IMAP4S). In Figure5, “TCP+” captures overhead of
TCP and all layers below it. “SSL+” captures overhead of SSL and
all layers below it, and it is computed only for SSL-based transfers.

Figure5(a) shows that the median TCP+ overhead at byte-level
is 12%, i.e., more than one in ten bytes is devoted to TCP or lower
layer headers. SSL further increases overhead. The median SSL+
overhead is 40%, and 20% of the transfers have an overhead that is
twice that amount.

Figure5(b) shows the time overhead. TCP+ is measured as the
time between the first SYN and the first packet that contains non-
TCP bytes. If the radio is asleep when the SYN is sent, this measure
will include the time to wake up the radio. In the next section, we
quantify the radio waking overhead separately. SSL+ is measured
as the time between the first TCP SYN and the first packet that
contains non-TCP, non-SSL bytes. Thus, in addition to the TCP
handshake, it includes any time needed for SSL key exchange.

We see that the time overhead too is significant. The median
overhead of TCP is 20%, i.e., a fifth of the total transfer time is
spent waiting for TCP handshake to complete.

Surprisingly, SSL does not add much to the time overhead be-
yond TCP, which points to the effectiveness of SSL session key
caching for smartphone workloads. Smartphones frequently talk
using SSL to the same server (e.g., email server). Cached session
keys enable quick connection establishment without the overhead
of full key exchange. Most of the additional overhead due to SSL
appears to be due to their larger headers. In Figure5(b), the SSL+
overhead appears slightly lower than TCP+ in some cases because
the two curves are computed over different sets of transfers.

In summary, we find that most smartphone transfers are small.
Such transfers have a high energy cost and amplify the overhead of
lower-layer protocols. One way to avoid this overhead, which we
will investigate in the future, is to aggregate transfers across appli-
cations and across time. Using a proxy in the cloud can facilitate
such aggregation.

5. PERFORMANCE
We now investigate the performance of TCP transfers. We study

observed round trip time, throughput, and retransmission rate as
well as estimate what limits the transfer throughput. We use only
Dataset1 because Dataset2 does not have the granularity of infor-
mation needed for this analysis. As almost all of Dataset1 traffic is
3G-based (§3), our analysis sheds light on the performance that is
seen by smartphones when using the 3G interface in real operating
conditions.

5.1 Round trip time
We estimate the RTT of a transfer as the difference between

the SYN and SYN-ACK packets. Accurate inference of RTT us-
ing data and acknowledgment packets is complicated by delayed
acknowledgments. If multiple SYN packets are transmitted for a
transfer, we use the last SYN packet. In some cases, the SYN-ACK
packet may be sent by a proxy in carrier network instead of the
contacted server. Even in these cases, we get a good estimate if the
dominant component of the RTT is the wireless delay [12].

We explicitly correct for a source of error that would otherwise
significantly overestimate network RTT. If the radio is asleep when
the transfer is initiated, it includes the times it takes for the radio to
wake up and synchronize with the tower. To weed out this impact,
we focus on transfers that are initiated when the radio is in full
power mode. We identify such transfers as those that are initiated
within 3 seconds of the previous transmission or reception. The
idle period after which the radios go into a lower power mode is
well above this threshold (§6).

The “Trailing” curve in Figure6(a) shows the RTTs observed by
such transfers. We see that the median is 125 ms but 10% of the
transfers observe an RTT of over 0.5 seconds. Such high variance
in RTT is consistent with controlled experiments [12]. A TCP flow
that experiences high variance in RTT will suffer from delayed re-
sponse to congestion among other things. Such variance can stem
from a host of factors including link layer retransmissions (that are
not visible to us), network congestion, and overloaded equipment
inside the carrier network.

The “All” curve in the graph represents RTTs computed for all
transfers, not just those initiated when the radio is awake. The dif-
ference in the two curves quantifies the overhead of radio wake-ups.
The difference is 400 ms at the median and 1.7 seconds at 90th per-
centile. The variation stems from the variable amount of time the
radio takes to fully synchronize with the tower and a wake-up may
already be in progress because of another transfer.

5.2 Retransmission rate
We now study how frequently packets are retransmitted in TCP

transfers. Retransmissions are identified using sequence numbers
and provide a good estimate of path loss rate. Their rate can dif-
fer slightly from loss rate due to TCP dynamics such as spurious
timeouts.

Across all transfers, the uplink retransmission rate is 3.7% and
the downlink rate is 3.3%. These loss rates are much higher than
those for wired paths. The median average loss rate seen from the
SLAC laboratory during 2008 was less than 0.1% for North Amer-
ica and less than 1% for most of the world [7]. However, our ob-
served wireless loss rate is similar to those inferred using controlled
experiments [12]. We show below that packet loss is the main bot-
tleneck for TCP throughput.

Figure6(b) shows the retransmission rates for individual trans-
fers. This graph is based only on connections that send more than
10 data packets in a given direction. We see that roughly 60% of
the connections experience no retransmissions. But 25% of them
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Figure 6: Performance of TCP transfers in Dataset1.

retransmit 5% of the packets and 10% of them retransmit more than
10% of the packets.

5.3 Throughput
As a final measure of smartphone traffic performance, we focus

on the throughput observed by TCP connections in our data. Con-
nection throughput is a function of not only path RTT and loss rate
but also of application-level factors such as the amount of data.

Figure6(c) shows the throughput of TCP transfers with at least
10 data packets in a given direction. We see that most transfers
have very low throughput. The median is 0.8 Kbps for uplink
and 3.5 Kbps for downlink. The 90th percentile values are 3 and
15 Kbps respectively.

Given that half the transfers in the analysis above have over 25
data packets, the lack of application data or slow TCP dynamics
alone cannot explain the low throughputs that we observe. To
understand the bottlenecks, we conduct the analysis of Zhanget
al. [23]. This analysis estimates the factor that limits the through-
put of a given TCP transfer, based on the timing and sequence of
packets. We refer the reader to the original paper for details. The
accuracy of this analysis has been evaluated in the wired case but
not in a wireless setting. Manual inspection of several cases shows
that it provides accurate answers for our data. This gives us con-
fidence that it can yield an accurate aggregate characterization of
the type that we present below. We will conduct a more rigorous
evaluation in the future.

Figure6(d) shows the results for transfers that have more than
100 data packets in the given direction. We find that with this
threshold the analysis yields reliable, consistent estimates. Simi-
lar results are obtained with a threshold of 50.

We see that packet loss is the primary limiting factor in both
directions, and the large transfers that we focus on are rarely bot-
tlenecked by transport or application dynamics.

Interestingly, sender window limits over a quarter of the down-
link transfers. This suggests that increasing the size of this win-
dow (which holds unacknowledged data) at servers will increase
the throughput of downlink TCP transfers to smartphones. It is
likely that the current buffer sizes are tuned to wired clients which
tend to have much lower path delays. In future work, we plan to
investigate this issue in detail.

6. INTERACTION WITH RADIO POWER
MANAGEMENT

The radio is a major power consumer on a smartphone [17], and
the nature of traffic determines the efficacy of its power manage-
ment policy. In this section, we study the interaction between this
policy and real smartphone traffic.

We first consider the power signature of current radios. Figure7
shows the current drawn by an HTC Touch smartphone with Win-
dows Mobile 6.1 when transmitting data over the 3G radio. We see

Figure 7: Current consumption (@4.2V) of HTC Touch.
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four distinct phases. The radio takes about 1.5 seconds to become
operational from its sleep mode (Phase 1). After data transmission
completes (Phase 2), the radio remains at its highest power level
for 5 seconds (Phase 3) and at a lower level for 12 seconds (Phase
4). It then goes to sleep. This power signature is not unique to
HTC or Windows Mobile. Similar behaviors hold across different
manufacturers and OSes [2], though the exact timer values may be
carrier dependent.

The goal of the tail in Phases 3 and 4 is to enable the radio to
quickly resume packet exchange, without the time and energy cost
of waking up. However, if it is too long, power is unnecessarily
wasted when no transmissions occur. If it is too short, the radio
will oscillate between the sleep and active states, which will waste
energy due to the wake up cost. Given that each wake-up is accom-
panied by signaling to reserve resources for the radio in the carrier
network, an overly short tail will also lead to a higher signaling
overhead for the carrier.

The optimal length of the tail depends on the burstiness of smart-
phone traffic. More bursty traffic, with packet exchanges happen-
ing in clusters rather than being uniformly spread, calls for a shorter
tail. To understand how bursty smartphone traffic is, we consider
packet exchanges in Dataset1. Figure8 shows the CDF of the delay
between consecutive packets for all users. While there are differ-
ences among users, across all users 95% of the packets are received
or transmitted within 4.5 seconds of the previous packet. The inter-
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packet delay for the rest of the packets appears to be roughly uni-
formly distributed over a longer time range.

This result suggests that a 4.5-second long tail before going to
sleep can cover 95% of the packets; longer tails will have dimin-
ishing returns with respect to covering more packets while wasting
more energy. But we saw above that the current tail is 17-second
long, which suggests highly suboptimal power consumption.

To quantify this sub-optimality, we replay packet exchanges for
every user, and we use the timing and power parameters from Fig-
ure7 to compute the energy consumed by the 3G radio for different
tail lengths. This computation includes the wake-up overhead. Fig-
ure 9 shows the energy savings from using a 4.5-second long tail
compared to a 17-second long tail. It also shows the energy sav-
ings from using an oracle that has perfect knowledge of when the
next packet exchange will occur and can therefore make an optimal
decision of when and for how long the radio should go to sleep.
This oracle can not be implemented in practice but indicates the
maximum energy savings that can be achieved.

With an oracle, the energy consumption of the 3G radio can be
reduced by 60%. A 4.5-second long tail reduces energy consump-
tion by 35% on average across all users. To place these numbers
in context, the radio typically accounts for a third to a quarter of
energy drain on the phone [17].

We find that these energy savings have a minimal impact on the
performance of packet exchanges. Figure10 shows the number of
times that the 3G radio has to wake up to exchange a packet as a
percentage of all packets. With a 4.5-second tail, only an additional
2-5% of the packets are delayed by having to wake up the radio.
This result also suggests that the additional signaling overhead due
to a 4.5-second tail will be low.

In additional experiments, not reported in this paper, we find that
the tail length needs to be carefully set based on both radio wake-up

overheads and traffic characteristics. For instance, a tail length of
100 ms, which covers 50% of the packets, hurts energy consump-
tion as well as performance. Energy usage doubles, and 35% of the
packets are delayed due to radio the wake up overhead.

In summary, we show that current radio power management poli-
cies are highly inefficient. Because of temporal characteristics of
smartphone traffic, simply reducing the tail length to 4.5 seconds
can save 35% of the energy consumed by the radio. However, the
oracle algorithm suggests that an additional 25% can be saved. We
are currently investigating how to do so practically, by learning the
traffic patterns of individual users and dynamically adjusting the
radio sleep timers depending on various factors such as the appli-
cation and the time of the day.

7. RELATED WORK
Given the challenge of conducting measurements on mobile de-

vices, existing studies of mobile traffic are based on observations
from the infrastructure [19, 15, 3, 13, 21, 20]. Recently, Maieret
al. study packet-level traces from residential DSL connections at
an aggregation point [15]. Using hints such as HTTP user-agent
strings, they identify traffic from mobile hand-held devices and
observe that this traffic is dominated by multimedia content and
mobile application downloads. Trestianet al. study 3G authenti-
cation traces from a provider to measure the correlations between
location, time-of-day and application usage [20]. Our approach of
monitoring devices is complementary to these studies. It provides a
comprehensive view of monitored devices and enables us to study
aspects of smartphone traffic such as interaction with radio power
management that would otherwise be difficult.

In recent work, we broadly characterized smartphone usage, in-
cluding user interactions, traffic per day, and diurnal patterns [10].
The current paper studies smartphone traffic in detail, including its
composition, transfer sizes, performance, and interaction with ra-
dio power management.

Also complementary to our work are studies that conduct active
measurements using synthetic workloads [12, 4, 5, 16]. Such stud-
ies can analyze network characteristics in a range of conditions.
But they do not provide a view of what users actually experience,
which was our focus.

8. CONCLUSIONS
Based on monitoring the devices of 43 users, we presented a

detailed look at smartphone traffic. We find that browsing con-
tributes most traffic, lower layer protocols have a high overhead
due to small transfers sizes, and packet loss is the primary bottle-
neck for traffic throughput. We also find that current server-side
transfer buffers and radio power management policies are not well-
tuned for smartphone workloads.

Our analysis points at several simple mechanisms that can im-
prove the efficiency, performance, and power consumption of smart-
phone communication. Aggregating multiple small transfers through
an in-cloud proxy can reduce the overhead of small transfers; in-
creasing the socket buffer sizes at servers can improve throughput;
and reducing radio sleep timers can reduce power consumption. In
the future, we plan to investigate in the detail the efficacy of these
mechanisms.
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