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Introduction

Biological systems are adapted to respond quickly to changes in their environment. Signal

processing often leads to all-or-none switch-like activation of downstream pathways. Such

biological switches are based on molecular interactions that form positive feedback loops.

Proper signal processing and switching have to be made by the noisy interactions of fluctuat-

ing molecular components; still, switching has to happen quickly once a threshold in the input

signal is reached. Several computing algorithms have been designed to perform similar all-or-

none decisions with high efficiency. We discuss here how the structure and dynamical features

of a computational algorithm resemble the behaviour of a large class of biological switches and

what makes them work efficiently. Furthermore, we highlight what biologists can learn by

looking at specific features of computational algorithms.

Computer Science Is Influencing Our Thinking about Biology

In the 20th century, biological systems were mainly studied from a reductionist perspective

through experimental and observational approaches [1,2]. In this period, biology was focused

on genetics and later on molecular biology, investigating individual entities, such as genes or

proteins, one at a time. In the 19th century, an integrative perspective emerged in physiology

through the works of Ivan Pavlov and Claude Bernard [3,4]. However, in the context of biol-

ogy, systems approaches were first mentioned only in the mid-20th century [5–7], and spread

in the first years of the 21st century. This spread was thanks to the impact of mathematics and

physics on biological thinking [8,9] and to technological advances that now enable biologists

to do genome- and proteome-wide measurements [10]. Systems biology eventually helped us

in making predictions about structural and dynamical features of biological systems and in

driving experimental studies. Since then, systems biology has become a distinct research field

[11,12] and a “new prism through which biology can be understood” [1]: biology cannot be

understood as a sum of individual biological entities, but by investigating the complex behav-

iours arising from their interactions [8].

This field has continued to grow and expand, taking influence from other disciplines. Com-

puter science has contributed to the establishment of new tools to process the massive increase

of biological data [13] and to formal approaches for the accurate representation of biological

knowledge in a computable form [14,15]. Special interest has grown around the application of

theoretical computer science and algorithms to biology [15–18]. Theoretical computer science

contributes by analysing the correctness of algorithms (how they exhibit global system
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properties) and by analysing their intrinsic efficiency (distinguishing classes of algorithms up

to multiplicative constants, hence independently of precise parameters [19]). Specific algo-

rithms can be used to explain biological mechanisms, as many of them have counterparts in

nature, including those for network routing, distributed search, and consensus establishment

[18]. The parallels happen particularly in situations in which there are many independent

computational entities that, similarly to collections of molecules or organisms, interact and

cooperate through chance encounters. Particular examples are population protocols (Fig 1)

[20]. As with the parallels between ecological and molecular networks [21,22], here we claim

that population protocols can help us to understand a specific class of basic biological

functions.

The algorithmic viewpoint, exemplified here by population protocols, will become increas-

ingly important in the analysis of biological systems. As we increase our detailed understand-

ing of biological networks, understanding their complex information flows will gradually take

precedence over biochemical details that may be more accidental. We need to understand not

only what molecular states exist but also what they represent with respect to specific tasks that

a cell needs to perform. A given phosphorylation state inside a cell may represent some envi-

ronmental condition detected outside the cell: the logical interactions between these represen-

tations are what we need to track, beyond the underlying molecular interactions.

Fig 1. Population protocols. A communication protocol is, in general, a set of rules about how a set of

agents can interact. In population protocols, in particular, these rules very closely mirror assumptions about

chemical solutions. Namely, agents interact only in pairs (like in a molecular collision), the next pair to interact

is chosen randomly (like in a well-mixed solution), each agent can have only a finite number of states (like

phosphorylation states), and each interaction can result in a change of state in either or both agents. It is

therefore easy to draw a parallel between agent states and chemical species (interacting molecules) and

between binary interactions and bimolecular reactions (unimolecular reactions can be handled as a special

case). In that way, population algorithms can be translated into chemical reaction networks and vice versa

[23]. Population protocols are also used at a different abstraction level, modelling interactions between

species of a biological population [24]. The set of four state changes in this figure implements the Approximate

Majority population protocol. Each square is an agent in one of its three possible states (colours). Pairs of

agents have the potential to interact according to the left-hand-side patterns of the state changes and produce

new states according to the corresponding right-hand-side patterns. The interactions that actually happen are

determined randomly, but starting from the configuration on the top left they may result in four steps in the new

configuration on the bottom left, where further interactions become possible.

doi:10.1371/journal.pcbi.1005100.g001
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But how do we precisely relate a (biochemical) network, the components of which are mol-

ecules and reactions, to a (computational) algorithm, the components of which are symbolic

properties and events? We can in fact reduce this as the task of comparing the functionality of

different networks: these can be all biochemical networks or a mixture of biochemical and

algorithmic networks. To this end, we will discuss the notion of network emulation, by which

a network can, in a specific sense, impersonate the functionality of another network that is eas-

ier to analyse. Comparing networks and algorithms in such a way is actually a frequent activity

in computer science but is mostly used for discrete systems such as software programs and

communication protocols [25]. Here, we focus on continuous versions of those notions that

are more appropriate for the analysis of dynamical system properties and hence for biochemi-

cal networks. We expect that the sophistication and usefulness of techniques for comparing

network functionality will grow in the future.

The Cell Cycle Switch as an Algorithm

Computer science and biology can influence each other deeply because there are many paral-

lels between carefully developed algorithms and highly evolved biological systems [18]. An

example of such a parallel is the similarity in the behaviour of the Approximate Majority (AM)

algorithm with the dynamical features of the cell cycle G2/M transition regulatory network

[26]. AM is a fast population protocol [27] describing how to drive a population of agents that

are initially in either of two states (X or Y) into a final population in which all agents are in the

same state (Fig 1). That is, the aim is to achieve consensus through the whole population, and

the algorithm guarantees that the initial majority of X or Y will almost certainly win out in the

end. The algorithm is “approximate” because it is inherently stochastic and there is always

some (small) probability that the initial majority will lose, particularly if the two initial popula-

tions have similar sizes. On the other hand, stochasticity guarantees that a consensus will

always be reached eventually.

There can be many ways to achieve consensus, and some may be faster than others. The

AM algorithm trades off accuracy in favour of a fast runtime [27], in contrast to other algo-

rithms that are exact but slower or use more resources [28]. The AM algorithm employs a

third undecided agent state (B) in addition to the decided agent states X and Y. We can explain

the algorithm directly in terms of chemical reactions: (1) if two agents of opposite decided

states meet, one of them randomly becomes undecided (X + Y! X + B, X + Y! B + Y), (2) if

an undecided agent meets a decided agent, it takes on the state of the decided agent (X + B!

X + X, B + Y! Y + Y), and (3) otherwise nothing changes. Note that the two decided states

are antagonistic, as they move opposing agents away from the other decided state. At the same

time, both of these states are autocatalytic; thus, in AM there are three positive feedback loops:

two pure positive and one antagonistic (Fig 2) [29].

In a biological context, feedback loops are responsible for most complex dynamic behav-

iours [30–32]. If we consider two molecules, X and Y, that can influence each other’s activity

or level, then depending on the effects of interactions (negatives or positives), they can form

two types of feedback loops. Negative feedback loops contain an odd number of negative inter-

actions (i.e., X positivity affects Y, and Y negatively affects X), which can help to keep the sys-

tem in homeostasis. Longer negative feedback loops, which produce delayed self-inhibition,

can induce oscillations [33,34]. On the other hand, positive feedback loops contain only regu-

latory interactions with positive effects or an even number of negative interactions (i.e., in the

two molecules case X and Y, both negatively affect each other, leading to an antagonism

between X and Y). These architectures can create multistability: at a given level of external

input, the system can exist in multiple states, and only its history determines in which states it
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sits. When the external input changes, the system can go through a bifurcation; then, one or

more of these steady states disappear, so if the system was resting in such a state, it will transi-

tion to a different one. This is the basis of biological switches: they can convert a graded input

change into a digital on/off switch when a critical threshold in the input signal is reached

[35,36]. Strikingly, once the switch is turned on/off, it should rest in this state irrespective of

noise in the signal.

Perhaps the best characterized biological switch is the one that controls the critical cell cycle

transition from interphase (G2 phase) to mitosis (M phase). This transition is driven by an

abrupt switch in the activity of the mitotic cyclin-dependent kinase (Cdk) complex [37]. At the

G2/M transition, Cdk is activating its activator Cdc25 while it is inhibiting its inhibitor Wee1

(Fig 3) [38]. These two positive feedback loops (one pure positive, one antagonistic) are driven

by phosphorylation and dephosphorylation events on multiple sites on each of these proteins

[39,40]. The nonlinearity caused by the multisite regulation and the presence of positive feed-

back loops cause this system to behave like a bistable switch [41,42].

Comparing AM (Fig 2) with the classical G2/M regulatory module (CC on Fig 3), we can

see that they do not look much alike. They have a different number of species and their regula-

tion seems different, although both AM and CC contain several positive feedback loops com-

bined with multistep transitions between active and inactive states. Despite the differences, we

have recently shown that the steady state solutions at various inputs and switching dynamics

of the AM and CC model follow similar patterns [28]. This similarity was observed even when

both models were simulated with the simplest possible parameter set (all reaction rates equal

to one), but this can be extended to other parameter sets [43]; moreover, there are analytical

explanations for the similarity [44].

Although the behaviour of Cdk in the CC model preserves most of the dynamical features

of X in AM, the upper steady state in the CC model does not reach maxima, and the transition

Fig 2. AM and network notation. (A) We recast the AM algorithm of Fig 1 as a wiring diagram. Left: the four

reaction arrows correspond to the four state changes in Fig 1 (the hollow circle stands for a catalytic reaction).

The system presents two active states (X and Y) that are antagonist: X activates itself and inhibits Y, and Y

activates itself and inhibits X. Background arrows indicate the generated feedbacks loops: red arrows

represent the pure positive feedback loops and green ones represent the antagonistic double-negative, thus

also positive, feedback loop. Right: a condensed representation of the same network according to the

abbreviation explained in (B). The condensed graph shows that x activates itself (solid line indicates X’s

actions) and inhibits itself (dashed line indicates Y’s actions). (B) Notation for condensed influence networks.

A node X (right diagram) represents three species (x0, x1, x2) and four reactions (left diagram). A node X

influences other nodes when it is in either of its extremal states: 0 state (Out0—solid outgoing edge) or 2 state

(Out2—dashed outgoing edge). A node can be activated (ball-end edge) or inhibited (bar-end edge) by other

nodes, the reactions of which drive the node between its various states. Note how the collapsed notation in (B)

collapses the network (A, left) into the network (A, right). In the sequel, we mostly draw collapsed networks,

which can be systematically expanded.

doi:10.1371/journal.pcbi.1005100.g002
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between the two states is slower (Fig 3). This difference is caused by the external signals (a and

i), which continuously act against Cdk, serving as thresholds against Cdk and forcing Cdc25

and Wee1 into their other steady states [26]. But this difference is essentially an artefact of the

early models of G2/M: in a fuller model, these reactions are controlled by the phosphatases

PP2A and PP1, which in turn are inhibited by Cdk through the Greatwall kinase (Fig 3)

[45,46]. This extended “GW” network has more positive feedback loops than CC, because

PP2A/PP1 and Cdk are mutually antagonistic, and PP2A/PP1 is autocatalytic (Fig 3). In the

absence of a continuous pressure on Cdk, the resulting system shows a full transition to the

upper state and now exactly matches AM deterministic kinetics (see S1 Text) [44]. Also note

that with this basal parameter setting of all kinetic rates equal to one, even all forms of Cdc25,

Wee1, and PP2A behave similarly to the various forms of X in AM (see more on this later).

Confirming this computational finding [26], it was recently experimentally shown that Great-

wall is indeed essential for a complete switch into mitosis in frog and starfish eggs [47]. We

have also shown that the speed of the transitions in the GW model is as fast as those of the AM

model [26]. Because of the known algorithmic properties of AM [27], we can conclude that the

extended (GW) model can drive a fast and complete cell cycle switch at the G2/M phase.

We now consider the cell cycle switch in the wider context of cell division. Every time a cell

undergoes a new cycle of division, the G2/M transition takes place. In biological systems, we

can observe sustained and robust oscillatory behaviours when negative feedbacks loops are

combined with positive feedbacks [48,49]. This idea was used to connect the minimal switch-

ing model AM, or the basic CC model, to a negative feedback loop, and, as expected, these sys-

tems showed robust oscillations [26]. If we similarly connect the GW model to a negative

feedback loop, representing the activation of the complex of Cdc20 and the anaphase promot-

ing complex (APC), which eventually degrades cyclin [50], then we do not observe oscillations

Fig 3. Similarity in switching dynamics between approximate majority (AM) and two cell cycle model systems. Top: AM,

represented as an influence network in the notation of Fig 2. CC: The classical cell cycle module of the G2/M transition regulation,

represented as a molecular level wiring diagram in the notation of Fig 2, with a and i serving as proxies for a constant phosphatase

counteracting the effects of Cdk. GW: The cell cycle model extended with the regulation of phosphatases (PP1 and PP2A) through

the Greatwall kinase pathway [45,46], represented as molecular wiring diagram. Bottom: Examples of the deterministic behaviour of

each network initiated from an undecided state in which all species are present in similar amounts. The AM and the GW systems

show equal dynamics. Only the various forms of Cdk of the CC system resemble the behaviour of AM and GW, but because of the

external influence of a and i, the other species do not overlap with these while they properly align with them in GW.

doi:10.1371/journal.pcbi.1005100.g003
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(Fig 4A and 4C). The reason for this is that the direct positive feedback loop on PP2A/PP1 can

maintain the high phosphatase and low CDK activity even after Cdc20 level dropped. This dif-

fers from AM, in which a lower number of shorter positive feedback loops are coupled in a

way that ensures all molecules switch between their alternative states at the same time. We

resolve this lack of oscillations if the phosphatases receive an initial trigger from Cdc20, but

they cannot maintain their high activity when Cdc20 levels drop. Thus, the introduction of

such a link from Cdc20/APC to phosphatase activation leads to a system with robust limit-

cycle oscillations (Fig 4B and 4D). Although there is no evidence for such a direct link between

Cdc20 and PP2A in higher eukaryotes, there are data showing Cdc20 induces indirect activa-

tion of PP1 [51].

A Class of Efficient Biological Switches

The main requirements for an optimal switch are that a system should find a steady state

quickly (it should be efficient), even from a random initial undecided state (it should be reli-

able in finding steady states), and it should return to this steady state after small perturbations

Fig 4. Cell cycle oscillations controlled by the GW switch. The extended GW model of Fig 3B is embedded into the

negative feedback loop in which Cdk activates Cdc20 and by this induces its own removal. (A) Model with autocatalytic

activation of PP1/PP2A. (B) Model with PP1/PP2A activated by Cdc20. (C, D) Simulations of the models on A and B,

respectively. On the left panels, the GW model is drawn in black, the negative feedback loop components in light grey

(following [26]), and the new proposed interaction in purple.

doi:10.1371/journal.pcbi.1005100.g004
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in the variables of the system (it should be robust). Theoretically, AM has been shown to be an

efficient switching algorithm, in the sense of converging quickly to one of its steady states from

any initial state (and thus being reliable), and has a strong robustness against noise as well

[27]. By relating the kinetics of biological switches to the behaviour of AM, we can use known

theoretical results to immediately conclude that biological switches are efficient too [26], in

addition to being reliable and robust (which was largely known [52,53]).

Despite the extensive literature on biological switches [54–56], it still remains unclear what

actually makes biological switches efficient. In fact, it is not even well established whether effi-

ciency is useful in the context of a biological switch: the speed of biological switches is far less

investigated than their steady state dynamics, and it is not clear how far biological systems are

optimized for fast switching [18]. It has already been proposed that interlinked positive feed-

back loops on different timescales can speed up switches [55]. Obviously, slow switching will

at some point be deleterious, but another consideration is that biological switches are often

assembled dynamically and disassembled shortly after [57]. Hence, the initial state of a freshly

assembled protein complex controlling a biological switch can be random or undetermined

and needs to settle quickly into the “default” state from any initial conditions. During the prog-

ress of the cell cycle, various switches are setting appropriate initial conditions for the follow-

ing switch, ensuring that each cell cycle transition is controlled and kept in proper order [58],

with the actual Cdk activity level serving as a cue for the initial state of each switch.

The G2/M transition of the cell cycle is a classic example of an important biological switch,

but several other biological switches, including the control of other cell cycle transitions [59],

work with similarly structured regulatory networks, containing multiple positive feedback

loops [60]). Strikingly, the epigenetic memory switch [61] shows an exact structural equiva-

lence with the AM model. Each nucleosome can exist in one of three states: methylated (M),

unmodified (U) or acetylated (A). Histone-modifying enzymes (HMT, HDM, HAT, and

HDAC) are recruited by modified nucleosomes to interconvert nearby unmodified ones. A

whole population of histones thus switches between methylation/acetylation states, generating

a switch-like behaviour exactly matching that of the AM network (Fig 5A). Other highly inves-

tigated biological switches with two positive feedback loops include the lambda phage lytic-

lysogenic switch [62], polarity establishment [63], and symmetry breaking [64]. Among these,

the asymmetric activation of the septation initiation network in fission yeast shows a network

structure (SI) that contains a double positive and a double negative feedback loop, leading to

the exact same dynamics as AM (Fig 5C). The polarity establishment by the PAR system con-

tains two positive feedback loops and one double negative feedback loop, which resembles a

minimal model (MI) of two antagonistic but at the same time autocatalytic molecules (Fig 5B).

All these networks function through multiple positive feedback loops and are driven by post-

translational modifications on multiple sites, resembling the basic features of the efficient AM

algorithmic switch. Furthermore, they all show very similar dynamical behaviour.

Models of biological switches can show equally fast switching independent of their exact

wiring, at least for some choice of parameters (in these examples, all rates = 1; Fig 5). Thus, the

separation of the timescales of the two positive feedback loops [65] might be less important

than the presence of multiple loops. Interestingly, the simulations of the models of Fig 5 are

not only similarly fast but they show the exact same dynamics, suggesting that these biological

switches form a special class with equal dynamical features and switching efficiency.

Different Network Structures, Similar Dynamic Solutions

In the context of cell cycle regulation, it was pointed out that network topology and dynamical

behaviour are better conserved than sequences of key molecules [66]. But, as we have seen
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above (Figs 3 and 5), sometimes even the exact network structure can be different, while the

dynamical behaviour can be preserved.

The fact that those switches exhibit identical deterministic traces from specific initial condi-

tions has a mathematical explanation. It was recently shown that a large class of complex sys-

tems with multiple positive feedback loops can emulate (the traces of) AM, where emulation

in this context means that AM can summarize the key features of the larger systems (Fig 6)

[44]. Structurally, emulation is based on homomorphism, which means that multiple reactions

of a complex network can be collapsed into a lower number of reactions in a simpler system.

For example, all reactions between species in the MI network can be related to the elements in

the simpler network of AM (e.g., z2 and y0 in bottom wiring diagram [MI] collapse to x0 in the

upper diagram [AM]; Fig 6). Furthermore, this structural homomorphism must satisfy a stoi-

chiomorphism property that maintains the stoichiometric relationship between the elements.

Despite the strong requirement on matching trajectories, there is a wide collection of systems

with multiple feedback loops that can be mapped to AM (Fig 7). The most complex network

shown is NCC, which is based on an extended version of the cell cycle switch [67]. In the

Fig 5. Biological networks with switching dynamics. (A) The epigenetic switch model proposed by Dodd et al. (2007) [61]. (B) The

polarity regulatory model of Motegi et al. (2013) [63]. (C) The septation initiation network asymmetry establishment model of Bajpai et al.

(2013) [64]. The middle panels show the respective models with the condensed network notation, in which each node (molecule)

represents three forms: inactive, non-decided, and active (Fig 2); the right panels show the behaviour of the models when initiated from

equal initial conditions and simulated with equal parameter values (all rates = 1). On panels B and C, only three traces are visible, as they

totally overlap with the other three traces.

doi:10.1371/journal.pcbi.1005100.g005
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presented case, all rates are taken equal to unity; more general situations are discussed next.

Still, this means that, in this case, the highly complex NCC network can function equally well

as AM to drive a biological switch.

In our examples, such as in Figs 3–5, we have taken all rates equal to unity (1.0), and we

have typically considered simple initial conditions. These are simplifying assumptions that

allow us to illustrate some trajectories that are representative of network behaviour and, in par-

ticular, illustrate at least the potential for a network to emulate another one. More generally,

the trajectories of a network obviously depend on rates and initial conditions, sometimes criti-

cally so, and one should be rightfully sceptical of any particular choice of parameters. Ques-

tions about how much emulations are perturbed under perturbations of parameters can be

very difficult to answer in general. Still, there are several factors that mitigate our arbitrary

choices:

• All the reactions in our networks are bimolecular (because of our particular triplet motif, Fig

2). Hence, under any uniform scaling of the initial conditions, the kinetics remain the same

up to scaling of the time axis (this would not hold if we had, for example, a mixture of bimo-

lecular and monomolecular reactions). Although this property is specific to our triplets, it

can hold for other uniform interpretations of influences.

• The definition of emulation (see Fig 6) requires that the trajectories of the two networks are

aligned for all possible initial conditions of the target network (and for matching initial

Fig 6. Network emulation. Condensed and extended wiring diagrams of AM (above) and MI (below) and

their deterministic behaviour in time-course diagrams. A morphism m:(S,R)!(S’,R’) between two reaction

networks (S,R) and (S’,R’) is a mapping of species S (e.g., y0, y1, y2, z0, z1, z2 of MI) to species S’ (e.g., x0, x1,

x2 of AM, by corresponding colours) and of reactions R to reactions R’. Structural properties: A morphism that

preserves the reactants and products of each reaction under the mapping is called a homomorphism. One

that preserves stoichiometry under the mapping (by appropriately summing multiplicities and rates) is called a

stoichiomorphism. These properties can be calculated directly on the network representation. Dynamical

properties: A morphism m is an emulation if it preserves all trajectories of species concentrations over time

under the mapping (e.g., the trajectories on the right are preserved). That is, m is an emulation if for any

choice of initial conditions I’ for S’ there exist initial conditions I for S such that the trajectory of each species s

in S overlaps exactly the trajectory of m(s) in S’. Theorem [44]: A morphism that is a homomorphism and a

stoichiomorphism is also an emulation.

doi:10.1371/journal.pcbi.1005100.g006
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conditions of the source network). Yet, this property can be checked finitarily over the net-

works themselves [44]. Once we have found an emulation, we can choose to vary the initial

conditions of the target network arbitrarily.

• If there is an emulation between two networks, that emulation does depend critically on the

rates assigned to reactions in the two networks. For example, perturbing the rates in the

source network will typically prevent an exact emulation of the target network, because the

target network does not have as many degrees of freedom. Still, given an emulation, it is

always possible to arbitrarily change the rates of the target network and find another emula-

tion between those two networks by systematically changing the rates of the source network

(Change of Rates Theorem in [44]). Hence, a unit-rate emulation entails emulations for

many other rate assignments.

• The definition of emulation allows for networks with arbitrary rates, not just unit or uniform

rates. It also allows for rate aggregation across the morphism: rates do not have to match

exactly in the two networks but only achieve a certain kind of balance (which is the same as

saying that only the resulting differential equations have to match).

• Influence networks in which each species has a single activation and a single inhibition

(which covers all our examples) enjoy the following property: if there are no emulations

between two unit-rate networks (and this can be checked finitarily), then there can be no

Fig 7. Network morphisms. Blue arrows are both homomorphisms and stoichiomorphisms, implying kinetic emulation.

The species mapping is indicated under each arrow; the reaction mapping is the associated homomorphic projection that

simply respects the species mapping. A mapping like ~y!x means that the species y0,y1,y2 are mapped respectively to x2,

x1,x0 (based on the notation of Fig 2). Molecular names are indicated for the NCC network, which can be mapped back to

some of the more basic ones (like GW and CCR), but not to all. Figure is adapted from [44], where there is explanation on

the abbreviated name choices.

doi:10.1371/journal.pcbi.1005100.g007
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emulations between those networks under any rate assignment [68]. This allows us to easily

exclude the existence of emulations based on a check with unit rates.

• It is not always necessary to specify all rate parameters in the networks. We can leave some

parameters undetermined and have a theorem prover search for them, looking for emula-

tions. These computations can be carried out within decidable theories of arithmetic, where

we always get a correct yes/no answer (given sufficient time) about existence of suitable

parameters [69].

• In realistic examples, given realistic parameter sets, emulations will never hold exactly.

Notions of emulations that are approximate up to some epsilon are being investigated and

are a topic for future work. Meanwhile, it still seems useful to hold an exact emulation as a

paradigm for a more realistic not-quite-exact emulation that may arise in a specific biological

context, as we are demonstrating here.

The observation that—with appropriate parameter settings—complex networks can be col-

lapsed to smaller ones (Fig 7) raises several questions. More complex networks have more pos-

sible behaviours, arising from their larger set of possible initial conditions. Still, if a complex

network works as a switch, many of those possible behaviours may not be relevant. However,

if that network can be collapsed into a simpler one without losing any of its switch-like proper-

ties, what are the benefits of evolving more complex networks to control biological switches?

Evolution is a tinkerer [70], genes are duplicated and specialized [71], and such processes

could indeed drive evolution from AM to NCC, but it is not clear why the complexity of larger

networks could be beneficial. Redundancy could add to the robustness of systems [52,72], but

the dynamics of the complexly wired NCC could be also greatly perturbed by the removal of

any components, because NCC does not contain parallel pathways; rather, it has longer feed-

back loops. Cells try to protect the networks that carry out important functions, but such net-

works should be flexible enough to include and interpret new stimuli. The growth in

complexity then might arise neutrally and result in increased fitness and functional advantage

by enabling the cell to respond to multiple different stimuli [73,74]. Complexity could also

help to reduce noise in the system [75], although constraints on the extent to which this is pos-

sible have been demonstrated [76].

Recent comparison of several networks of Fig 7 revealed that intrinsic noise from molecular

fluctuations is, indeed, reduced by more complex networks; even extrinsic noise from parame-

ter perturbations is also greatly reduced in NCC compared to AM. The exact structure of the

networks influences the amount of noise reduction [77], suggesting that evolution can find

better solutions by increasing complexity.

As a final point, we note that, in AM and GW networks, the transient probability distribu-

tions of molecule copy numbers from the same initial conditions are different [26,77], while

we observe that GW can emulate the deterministic dynamics of AM exactly (Fig 2). This also

shows that, although emulation of the (deterministic) average behaviour could be perfect, net-

works with various levels of complexity might respond differently to the inherent molecular

fluctuations of biological systems. This further highlights that the use of computer science

approaches to investigate biological switches could eventually help us to understand how and

why complex biological switches have evolved.

Conclusion

We have discussed how an efficient population protocol (AM) exhibits similar dynamical fea-

tures to a well-characterized biological switch (CC). This similarity allows us to conclude that

evolution might have found an apparently complex but implicitly simple way of implementing
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efficient switches. These implicit patterns could have been used as building blocks to achieve

efficient switching in a broad variety of wirings at various levels of complexity, demonstrating

that, although system dynamics are important, the exact network structure and sequence of

regulators can greatly differ.

Biological switches are known to be controlled by nonlinear positive feedback loops

[78,79], and it is also known that multiple feedback loops make the switches even more robust

[52,54]. Because these switches are highly conserved and reoccurring in various regulatory sys-

tems, we might think that they function optimally. Through comparison with an algorithm,

we can find out if nature has picked an optimal or suboptimal solution to a problem. If the

algorithm is computationally optimal (so that no other algorithm is faster up to a multiplicative

constant), then we know that nature could not have done much better, and this may help

explain why a specific network structure was selected. And we indeed know this is the case for

AM. If the algorithm is not optimal, then either (A) our understanding is incomplete, (B) the

problem does not require an optimal solution, or (C) the suboptimal algorithm is in practice

faster than the optimal one in the operating regime (which is often the case for highly sophisti-

cated optimal algorithms). Each of these possibilities provides insights. It is also interesting to

consider how much evolution might select for speed in biological switches, but it is reasonable

to assume that a slowly responding, inefficient system is counter selected.

Efficiency in biological contexts can be meant as speed to reach a stable state both in the

sense of algorithmic efficiency and in a different sense as the use of limited resources in the

establishment of a network. Sometimes the two are related: energy-limited minimal organisms

might have used AM-like switches based on a single species (e.g., autocatalytic bifunctional

enzymes), or MI/SI-like switches based on two antagonistic species (Fig 5B and 5C), to drive

their responses to environmental changes. With the reduction in energy efficiency require-

ments, biological complexity could have neutrally increased, and, as evolution and engineers

both select for dynamical effectiveness (reliability, robustness, and speed), the number of posi-

tive feedback loops could have increased in the system (three in AM versus eight in NCC on

Fig 7). This increment could have facilitated the noise reduction efficiency of the switches and

allowed the emergence of multiple regulatory pathways affecting the same switch in different

ways.

Further investigation into the parallels between population protocols and biological systems

might help us to better understand how and why complex signalling networks have evolved.

Artificial biological switches were implemented in various cell types [80,81], and even the AM

algorithm has been assembled in synthetic DNA computing systems [82]. Synthetic biology

might provide the right tools [83,84] to investigate the efficiency of biological and computa-

tional switches in a controlled experimental setting. There is evidence of switching behaviour

in various biological systems (some listed in Figs 3 and 5). So far, experimental testing has

focussed more on identifying bistability by changing input parameters and scanning through a

hysteresis loop [85,86] or moving out from steady state by intervention on key variables [87].

Following our simulations, it would be interesting to see if any of the discussed systems can be

isolated and investigate if we see a quick transition to one or the other steady state and how

this decision depends on initial settings.

We have seen that fundamental ideas can cross disciplines, and the findings of one disci-

pline can be readily used to solve problems in another. As we have seen cross fertilizations in

far, distinct fields, like how banking systems can be driven by rules learned from ecology [88],

we believe that computer science and biology still have many insights to share. Both disciplines

investigate paradigms such as robustness, efficiency, and reliability. Influence can go both

ways [17,18]: biological findings can be used to improve the design of algorithms and theories,
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and computational concepts can help us use the increasing amount of experimental data to

improve our understanding of complex biological systems.

Supporting Information

S1 Text. Simulation methods and codes.
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