
DECEMBER 2016 | VOL. 59 | NO. 12 | COMMUNICATIONS OF THE ACM 111

Software-Defined Batteries
By Anirudh Badam, Ranveer Chandra, Jon Dutra, Anthony Ferrese, Steve Hodges, Pan Hu, Julia Meinershagen,
Thomas Moscibroda, Bodhi Priyantha, and Evangelia Skiani

DOI:10.1145/3007179

Abstract
Different battery chemistries perform better on different
axes, such as energy density, cost, peak power, recharge
time, longevity, and efficiency. Mobile system designers
are constrained by existing technology, and are forced
to select a single chemistry that best meets their diverse
needs, thereby compromising other desirable features. In
this paper, we present a new hardware–software system,
called Software Defined Battery (SDB), which allows sys-
tem designers to integrate batteries of different chemis-
tries. SDB exposes application programming interfaces
(APIs) to the operating system, which controls the amount
of charge flowing in and out of each battery, enabling it
to dynamically trade one battery property for another
depending on application and/or user needs. Using micro-
benchmarks from our prototype SDB implementation,
and through detailed simulations, we demonstrate that it
is possible to combine batteries which individually excel
along different axes to deliver an enhanced collective per-
formance when compared to traditional battery packs.

1. INTRODUCTION
The utility of a mobile device is often constrained by the
capabilities of its battery. While integrated circuit perfor-
mance has doubled every 18 months according to Moore’s
law, the same is far from true for battery technology. Battery
performance can be evaluated in many different ways (see
Table 1), but no matter which metric we look at, it has taken
more than a decade to double performance.

Furthermore, the various properties of batteries are often
at odds with each other. For example, batteries with higher

power densities tend to have lower volumetric and gravi-
metric energy densities, and vice versa. Similarly, making a
conformable battery that fits a particular industrial design
compromises its performance characteristics.

Such tradeoffs are present even within a given physi-
cal battery. For example, energy delivered by a battery in a
single charge–discharge cycle (energy capacity) is inversely
related to the rate at which the battery is drained (discharge
rate). This is because the resistance losses inside a battery
are proportional to the square of the current. Similarly, a
battery’s longevity—its ability to perform consistently fol-
lowing many charge–discharge cycles—is inversely related
to the discharge and recharge rates. This is because higher
currents speed up the creation of fissures in the electrodes
that reduce the amount of energy a battery can store.

In summary, no single battery type can deliver the ever-
growing list of requirements of modern devices: fast charg-
ing, high capacity, low cost, less volume, light weight, less
heating, better longevity, and high peak discharge rates.

A growing range of battery chemistries are under devel-
opment, each of which delivers a different set of benefits.
We believe that combining multiple of these heterogeneous
batteries instead of using a single battery chemistry can
allow a mobile system to dynamically trade between their
capabilities and thereby offer attractive tradeoffs.

However, traditional methods of integrating multiple
batteries are not suitable for heterogeneous batteries.
Connecting them in series or parallel does not provide
enough control over usage: batteries connected in series
can only supply the same amount of current; batteries con-
nected in parallel must operate at the same voltage and can
only supply currents that are inversely proportional to their
internal resistances.

We propose a new system, called Software Defined Battery
(SDB), that allows heterogeneous batteries with different
chemistries to be integrated in a mobile system. SDB con-
sists of hardware and software components. The hardware
enables fine-grained control of the amount of power going
in and out of each battery using smart switching circuitry.
The software, which resides in the operating system (OS),
computes how much power to draw from each battery, and
how to recharge each battery.

Deciding how much power to draw from and how to charge
each battery is nontrivial. It depends on the efficiency of each
battery under different workloads, the age of each battery,
and also the usage profile. For example, if a high power work-
load is anticipated in the future, then it could be worth-while

The original version of this paper was published in
Proceedings of ACM SOSP’15.

Table 1: A number of battery characteristics.

Battery characteristics Units

Energy capacity J
Volume mm3

Mass kg
Discharge rate W
Recharge rate W
Gravimetric energy density J/kg
Volumetric energy density J/L
Cost $/J
Discharge power density W/kg
Recharge power density W/kg
Cycle count Number of discharge/recharge cycles
Longevity % of original capacity after N cycles
Internal resistance Ohm
Efficiency % of energy turned into heat
Bend radius mm

These are often in tension with each other, for example, increasing recharge rate
compromises longevity.

http://dx.doi.org/10.1145/3007179

research highlights

112 COMMUNICATIONS OF THE ACM | DECEMBER 2016 | VOL. 59 | NO. 12

conserving charge on the battery that is more capable of
handling such a workload in an efficient manner.

The SDB software component that resides in the OS imple-
ments a set of policies, and uses simple application program-
ming interfaces (APIs) to communicate with the SDB hardware.
The algorithms implemented by this software use various
metrics to decide the ratios in which to discharge and charge
each battery, such that the charge–discharge duration of
the device is increased, and degradation of the batteries is
reduced. We present the details of the APIs and policies in
Section 3.3.

The SDB design is cross-layer and involves new chemis-
tries, additional hardware, and new OS components. This
approach opens up new battery parameters, previously
unavailable to OS designers, for resource optimization. In
existing mobile devices, the battery is usually treated as a
black box, and is simply assumed as a reservoir of charge. As
we show in Section 5, OS techniques yield substantial gains
in battery usage. This design also allows a system designer
to select any combination of batteries for an optimal design,
including new chemistries as they are developed using just
software updates.

Even with existing batteries, SDB enables several new
scenarios, such as: (i) fast-charging devices that can gain a
significant percentage of their charge in just a few minutes
without causing unexpected battery degradation, (ii) long-
lived wearables created by combining flexible bendable
batteries with traditional batteries, and (iii) efficient 2-in-1
laptop-tablet convertible devices with battery usage tailored
to the user’s behavior.

2. BATTERY BACKGROUND
A Li-ion battery contains a negative electrode (the anode),
which is usually made of graphite and a positive electrode (the
cathode), which is typically a metal oxide. A separator ensures
physical separation between the anode and the cathode to
prevent shorting, and the battery is filled with an electrolyte
composed of a lithium-based salt whose ions can easily pass
through the separator. Current is discharged when the elec-
trodes are connected externally over a resistive load while
positive lithium ions flow from the anode to the cathode
through the electrode and the separator. During charging,
Li-ion batteries store energy by trapping positive lithium ions
in the anode when an external potential is applied.

Li-ion battery capabilities, such as longevity, energy den-
sity, and internal resistance, are largely determined by the
materials used for the electrodes and the separator. The
battery’s gravimetric and volumetric energy densities are
affected by the strength of the separator. The resistance of
the battery, and hence its inefficiencies, depend on the resis-
tance of the separator, which typically increases with the
age of the battery. The power density of the battery is also
affected by aging. The structural integrity of the electrodes
determines how much energy they can store—some lithium
ions get permanently trapped in the anode. The anodes can
develop cracks as they age, which can ultimately reduce both
energy and power densities.

Figure 1a demonstrates the capabilities of four differ-
ent Li-ion batteries, which differ in the chemistry of mate-
rials used for the cathode and the separator. Batteries of
Type 1 are typically used in powered tools that need to
charge quickly and provide high power for a short dura-
tion of time. Such batteries are a poor choice for mobile
devices because of their poor energy density—a Type 1 bat-
tery is usually double the volume of a Type 2 battery with
the same energy capacity. Type 2 batteries are commonly
used in most mobile devices today. We measure the loss
in capacity with respect to number of charge–discharge
cycles for a sample Type 2 battery, and observe that the
battery degrades much faster when discharged at higher
current (Figure 1b).

Type 3 batteries are an emerging variation over Type 2 that
have a slightly higher power density at the expense of some
energy density. This is achieved by making the separator less
dense allowing more lithium ions to pass through per unit
time. This usually leads to decreased energy density as sepa-
rators cannot store energy—only the electrodes can. Finally,
Type 4 is another emerging battery that is flexible and bendable
because of the physical properties of the rubber-like (ceramic-
based) separator used—while the electrodes are implemented
by coating material along the cell’s walls. Unfortunately, such
separators increase the resistance to passage of ions and
thereby result in higher inefficiency, as shown in Figure 1c.

2.1. Typical power management
Figure 2 shows a block diagram of the typical power man-
agement hardware. It consists of a (i) battery, (ii) fuel gauge,
(iii) battery charger, and (iv) voltage regulator.

Figure 1. Li-ion battery properties. (a) Li-ion batteries compared. (b) Charging rate affects longevity. (c) Discharging rate versus lost energy.

(a) (b)

1.0 A0.5 A 0.7 A

0 100 200 300 400 500 600

C
ap

ac
it

y
af

te
r

N
 c

yc
le

s
(%

) 105

100

75

80

85

90

95

Cycle count

(c)

10

15

20

25

30

35

Power used to drain battery (C rate)

In
te

rn
al

 h
ea

t
lo

ss
 (%

)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Type 2 Type 4Type 3

5

0

Form-factor
flexibility

Efficiency

LongevityAffordability

Power
density

Energy
density

Type 1: LiFePO4 Cathode, high-density liquid polymer separator
Type 2: CoO2 Cathode, high-density liquid polymer separator
Type 3: CoO2 Cathode, low-density liquid polymer separator
Type 4: CoO2 Cathode, rubber-like solid ceramic separator

DECEMBER 2016 | VOL. 59 | NO. 12 | COMMUNICATIONS OF THE ACM 113

A Battery pack has one or more battery cells. Multiple cells
are used to achieve higher voltage or higher capacity. While
such multi-cell configurations exist today, for example in the
Surface Pro, Galaxy Tab, and iPad, these cells have the same
chemistry and are either connected in series, parallel, or a
combination thereof. They are treated as a single monolithic
battery by the OS. Our aim is to use a heterogeneous set of
cells and achieve wide dynamic characteristics by exposing
the cells directly to the OS.

The Fuel gauge keeps track of the state of charge (SoC)
of the battery by measuring the voltage across the battery
terminals, and the coulombs flowing in and out of it. This
information is exposed to the OS.

The Battery charger charges the battery with an appropri-
ate charging current profile based on the battery’s SoC, the
terminal voltage (the potential difference between the anode
and the cathode), and the capability of the power source.

Due to the battery’s internal resistance R, the battery ter-
minal voltage changes with the load current I due to the IR
voltage drop. The internal resistance and the battery volt-
age themselves change with the SoC. The job of the Voltage
Regulator is to hide these terminal voltage variations due
to changing potentials at the electrodes and the chang-
ing internal resistance and present a constant voltage to
the load. Mobile devices use switched mode voltage regu-
lators due to their high efficiency. As the name implies, a
switch mode power supply contains a switch that opens
and closes to transfer packets of energy (Figure 2). A con-
trol loop maintains a constant voltage under varying load
currents by changing the energy per packet or the packet
switching frequency.

Typically, all these modules are contained in a single
power management integrated circuit (PMIC), which com-
municates with the OS over a serial bus. In current designs,
the interactions between the OS and PMIC are limited to
query operations, such as inquiring about remaining SoC.
However, none of these APIs allow the OS to set the bat-
tery parameters, and in particular to change the amount of
charge to be drawn from or provided to each cell within a
battery pack. Through the SDB system, we propose enabling
fine grain control by exposing a richer software API to the
OS to dynamically change the amount of charge to be drawn
from or provided to each battery.

3. SDB DESIGN
SDB allows a device to use diverse batteries through fine-
grain control of the amount of charge flowing in and out

of each battery. SDB provides APIs to the OS to change the
aforementioned power values based on user workload. We
describe the SDB system in detail in this section.

3.1. System overview
The SDB system spans components across three layers: the
batteries and their chemistry, the battery management cir-
cuit, and the OS. We outline these components and their
interactions in Figure 3.

SDB allows a system designer to combine diverse batter-
ies. The particular batteries chosen depend on the scenario,
such as a fast charging battery and a high energy battery for
a tablet, or a bendable battery and high energy battery for a
smart-watch.

However, combining different battery types is not trivial.
These batteries might have different capacities and different
terminal voltages. Therefore, we design a new power distri-
bution circuit for fine-grain control of how multiple batter-
ies are discharged to support system load. A microcontroller
interfaces between this power distribution circuitry and the
mobile device OS to control the charging and discharging of
batteries accordingly.

To enable flexibility in design, and to allow quick changes
in policy, we only implement the mechanisms in hardware,
and all policies are managed and set by the OS. A runtime
component in the OS monitors the charging and discharg-
ing behavior and accordingly sets policies that meet user
expectations in terms of daily battery life and longevity of
the battery-pack.

3.2. SDB hardware
The SDB hardware needs to support discharging and charg-
ing across multiple, heterogeneous batteries. For discharg-
ing, it has to provide a flexible mechanism for fine-grain
control of how the load current is supplied from each bat-
tery. This should support two things: coarse grain switching
of the load across multiple batteries where the total load is
supplied by a particular battery for an extended period of
time and the fine grain sharing of the load where a certain
fraction of the load is drawn from each battery.

Figure 2. Traditional power management hardware.

Battery
Charger

Fuel
Gauge

Switched
Mode Voltage

Regulator

Battery

OutputInput

Switch Inductor

Switching
Control

Capacitor
Fixed charging profile

I

V

Figure 3. SDB system overview.

Battery 1

OS

Power

Power

Control
Signal

Battery 2

Battery 3

Battery 4

Discharging
Circuitry

Charging
Circuitry

SDB
Discharging

Circuit

SDB Policy
&

Algorithms

SDB
Charging

Circuit

Power Supply Power

µController

research highlights

114 COMMUNICATIONS OF THE ACM | DECEMBER 2016 | VOL. 59 | NO. 12

For charging, the SDB hardware has to support control
over how batteries are charged. In contrast to existing solu-
tions where batteries are charged according to a fixed charg-
ing profile, SDB requires setting of charging currents and
charging profiles dynamically based on OS policies. Under
certain circumstances, it should even be possible to charge
a battery from another one.

Designing these flexible charging and discharging cir-
cuits are challenging for two reasons. First, due to the high
currents that flow in these circuits, any electronic compo-
nent in series with the current flow will cause energy losses.
Hence, these circuit designs should introduce as few of
these components as possible. Second, each extra compo-
nent we introduce can increase the weight, volume, and bill
of material (BoM) cost of the device, which will make the
proposed solution unattractive in the competitive hardware
market.

SDB discharging circuit design. A simple discharging
circuit can be implemented using a combination of an elec-
tronic switch and a capacitor as shown in Figure 4a. The
microcontroller achieves load switching by connecting the
appropriate battery to the load. To achieve load sharing, the
load is switched between the batteries at a high frequency
in round-robin fashion. The ratio of the current draw is de-
termined by the fraction of time the switch is connected to
a particular battery. The capacitor acts as an energy store to
smooth out the discontinuities due to switching. Parasitic
battery capacitance and external capacitors smooth out the
high frequency battery current.

However, this naive implementation has two main
drawbacks. First the switch, typically implemented using
a Field Effect Transistor (FET), has a finite on resistance
that causes significant power loss at high load currents.
Second, a switch with high power handling capability and
the necessary capacitors increase the BoM cost and space
required.

To overcome these shortcomings, we designed a new
switched mode regulator architecture that integrates fine-
grain battery switching into the regulator itself. As shown
in Figure 4c, we restructure the built-in switch to achieve
voltage regulation and support switching between multiple
batteries—by drawing packets of energy from the batteries
in a weighted round-robin fashion. We reuse the storage

capacitor to smooth out the load current variations due to
switching. We have evaluated the correctness of the pro-
posed solution under different battery voltages and load
conditions by running LTSPICE11 simulations.

SDB charging circuit design. The SDB charging circuit
should have the ability to charge batteries at a configurable
rate and also charge them from each other. Given that such
charging should be possible irrespective of the battery volt-
age, the batteries should be connected through a buck-boost
regulator, such that the energy source is at the input and the
energy sink is at the output of the regulator. A buck-boost
regulator is a particular form of switching regulator where
the regulator output voltage can be either less than or great-
er than its input voltage.

Apart from different charging configurations, SDB
requires dynamic fine-grain control over the charging pro-
file. This is achieved by instrumenting each switched mode
regulator with multiple charging profiles where the SDB
microcontroller dynamically selects the appropriate charg-
ing profile based on OS policy decisions.

Figure 4b shows how these modules can be combined
to implement a flexible charging circuit. However, a
major drawback of this configuration is the large number
of switching regulators (O(N2) for N batteries) required,
which negatively impacts the device BoM cost and space
requirements.

Instead, we design an optimized charging circuit as
shown in Figure 4c, which requires only O(N) switched mode
regulators to charge N batteries. When an external supply
is present, the microcontroller configures both R1 and R2 in
buck mode to charge the batteries. When external power is
removed, R1 and R2 are disabled. When B2 is to be charged
from B1, R1 operates in reverse buck mode while R2 operates
in buck mode and vice versa.

3.3. SDB policies and APIs
Our current SDB software architecture is illustrated in
Figure 5. An SDB Runtime encapsulates the SDB microcon-
troller from the rest of the OS. The SDB Runtime is respon-
sible for all scheduling decisions affecting the charging and
discharging of batteries. It takes clues from the rest of the
OS, and communicates the charging and discharging sched-
uling decisions to the SDB controller.

Figure 4. (a) A simple switch and capacitor-based battery switching solution. (b) A naive implementation of a flexible charging circuit
consisting of two buck regulators and two buck-boot regulators with dynamic charging parameters. (c) SDB hardware architecture for an
example two-battery system. The switched mode regulator implements discharge across multiple batteries and the reverse buck regulators
implement charge.

(a) (b) (c)

Battery 1

Capacitor

Electronic Switch

Battery 2

System
Load

Microcontroler

Buck
Regulator

Buck
Regulator

Buck-
Boost
Regulator

Buck-
Boost
Regulator

Charging Profile
Select

Charging Profile
Select

Microcontroller

External
Power

Microcontroller

Synchronous
Reversible
Buck
Regulator (R2)

Synchronous
Reversible
Buck
Regulator (R1)

Modified
Switched Mode
Regulator

Multiple
Charge Profiles

Power Management Bus

B2

B1
Power
In

Power
Out

Fuel Gauge

Fuel Gauge

Charging
Circuit

Discharging
Circuit

DECEMBER 2016 | VOL. 59 | NO. 12 | COMMUNICATIONS OF THE ACM 115

APIs: For a system with N batteries, the SDB Runtime
maintains two N-tuples (c1, . . ., cN) and (d1, . . ., dN) of non-
negative values, one for charging and one for discharging.
In both cases, the N values add up to one and represent
power ratios, that is, the numbers represent the fraction
of power that must go in and out of each of the N batteries.
The runtime communicates with the SDB microcontroller
using the following four APIs:

•	 Charge(c1, c2, ..., cN): Charge N batteries in pro-
portion to c1, c2, . . ., cN, when being charged from an
external source.

•	 Discharge(d1, d2, ..., dN): Discharge N batteries
in proportion to d1, d2, . . ., dN, when being discharged.

•	 ChargeOneFromAnother(X, Y, W, T): Charge bat-
tery Y from battery X with a power of W for time T.

•  QueryBatteryStatus(): Returns an array with SoC,
terminal voltages and cycle counts for each battery.

The SDB Runtime affects changes in the charging and
discharging behavior by adapting the 2N numbers and
sending them to the microcontroller using the above APIs,
which enforces the ratios. Such changes can be triggered for
example by a change of the user’s needs, the battery state,
workload patterns, or external factors such as a change
in device temperature, etc. Determining optimal battery
charging/discharging policies, is nontrivial, and the under-
lying algorithmic problems are deep and interesting. Often,
various battery properties are in tension with one another.
For example, fast-charging a battery all the time can greatly
accelerate its aging. In this paper, we only scratch the sur-
face of these algorithmic problems and instead describe a
set of natural policy heuristics that exhibit good albeit non-
optimal performance.

Metrics: Two key metrics any charging/discharging
policy seeks to optimize are Cycle Count Balance (CCB) and
Remaining Battery Lifetime (RBL). The RBL metric simply
captures the remaining battery lifetime of the device, as-
suming that no further charging occurs in the future. In
other words, RBL is the amount of useful charge in the bat-
teries. The CCB metric reflects that—ideally—the charging
and discharging policies should maximize longevity of the
device, by balancing the charging cycles of each battery. In

a heterogeneous battery system, each battery is a unique
precious resource that excels on a few metrics of interest
described in Table 1. Therefore, having a metric-like the
CCB ensures that these batteries are aging such that the
properties of a battery that the user is most interested in
are preserved over time. For example, a battery that has the
ability to charge fast must be treated as a precious resource
for a user who relies on fast charging during low-battery
situations.

Concretely, let χi be the number of charging cycles tol-
erable by battery i before its capacity drops below some
acceptable threshold, and let cci be the number of charging
cycles of battery i. The wear-ratio λi = cci/χi describes what
fraction of the tolerable recharge cycles have already been
consumed by battery i. We define CCB as the ratio CCB =
maxi λi/ minj λj, that is, the ratio between the most and least
worn-out battery, normalized to each battery’s total toler-
able cycle count. A device’s longevity is maximized by bal-
ancing CCB.

Charge/discharge algorithms. The heuristics currently
driving our SDB Runtime are simple and driven by the fol-
lowing observation: It is possible to derive charging and
discharging algorithms that, in isolation, optimize the
CCB and the instantaneous RBL metric. We use these four
“optimal” algorithms (CCB-Charge, RBL-Charge, CCB-
Discharge, and RBL-Discharge) and weigh them by means
of two parameters—Charging and Discharging Directive
Parameters—handed to the SDB Runtime by the rest of the
OS. Essentially, these parameters guide the SDB Runtime to
weigh one of the algorithms more heavily at any moment in
time. For example, a low value of the Charging Directive Pa-
rameter indicates that the user is in no hurry (e.g., charging
at night), and that the Runtime should prioritize the use of
the CCB-Charge algorithm. On the other hand, a high value
of this parameter would lead the Runtime to prioritize the
RBL-Charge algorithm in order to increase the useful charge
(and thus the remaining battery lifetime) in the batteries as
quickly as possible—say just before boarding an airplane.
The discharge scenario is similar.

The CCB-Charge and CCB-Discharge algorithms are
simple. These policies essentially enforce the controller to
schedule the batteries (either for charging or discharging)
in such a way that the resulting CCB is minimized, that is,
is as close to 1 as possible. Our RBL-algorithms are more
complex. Consider the discharge case, and let y1, . . ., yN be
the amount of current drawn from each of the batteries.
The key underlying insight is that we can maximize the
instantaneous RBL of the battery system by minimizing
the total resistance losses across all the batteries. This can
be achieved if the resistances of the batteries are proportional
to the square-root of their DCIR-to-SoC ratios. Thus, the RBL-
Discharge algorithm seeks to allocate the currents y1, . . ., yN
in such a way that the effective resistances of batteries are
as much as possible proportional to the square-root of
their DCIR-to-SoC rates minimizing the total energy wasted
through resistive losses. Mathematically speaking, let δi be
the instantaneous derivative of battery is DCIR curve, and
let Ri be the current resistance. Then, the RBL-Discharge
algorithm balances , where and λ is a

Figure 5. SDB software architecture.

Charging
Directive

Parameter

Discharging
Directive

Parameter

OS Power Manager

Convey
Power

Requirement

Other OS Components Operating System

SDB Runtime

Discharging
Parameter to Policy

Database

Charging
Parameter to

Policy Database

Set Policies SDB
Controller

External
Power

Battery 2
Battery 1

Map

Map

research highlights

116 COMMUNICATIONS OF THE ACM | DECEMBER 2016 | VOL. 59 | NO. 12

Lagrangian multiplier constant. Again, the case for charging
(RBL-Charge) is similar. The SDB runtime calculates these
power values at coarse granular time steps and updates the
ratios based on the DCIR-SoC curves given by the manufac-
turer of the batteries.

A word of caution is necessary. The above RBL-algorithms
are “optimal” only in an instantaneous sense. They mini-
mize the instantaneous decrease of RBL (when discharg-
ing), or maximize the instantaneous increase of RBL (when
charging). However, they are not globally optimal. Across
the length of an entire workload, these algorithms might not
actually maximize battery lifetime as we show in Section 5,
that is, if we had knowledge of the future workload, we could
improve upon the above instantaneously optimal algorithms
by making temporarily suboptimal choices from which the
system can profit later, for example, keeping a battery fully
charged, if we know that this battery will be particularly
helpful in the way of CCB or RBL for a future workload. For
example, the overall cycle life or daily battery life may be
improved when compared to using instantaneous mecha-
nisms all the time.

Exploring these and other algorithmic nuances is inter-
esting, but beyond the scope of this paper. We just note
that the SDB resource optimization problem differs from
traditional resource scheduling mechanisms, such as for
Big.Little processors, hybrid storage, and SSD wear level-
ing, because of the resource in question—batteries. The
main focus of traditional resource management algo-
rithms is to multiplex a resource efficiently across a num-
ber of entities, such as users, processes, virtual machines,
or erase blocks in case of SSDs over some fixed periods
of time. The challenge of battery resource scheduling is
threefold: daily battery life cannot be simply extended by
minimizing instantaneous power losses; their long-term
cycle life cannot be simply extended by balancing cycle
life across batteries. Knowledge of impending workload
can be used to improve the latter two metrics by picking
strategies that may not be an instantaneous optimums as
we demonstrate in Section 5. We hope that exposing the
appropriate APIs will help system and algorithm designers
to customize the scheduling algorithms for their battery
configuration, and user workloads based on predicted as
well as expected user behavior.

4. PROTOTYPE AND MICROBENCHMARKS
In this section, we describe the implementation of SDB and
present microbenchmarks to evaluate it.

We built a hardware prototype of the SDB hardware archi-
tecture in Figure 4c. Figure 6 shows the components of our
prototype.

We built a custom controller board with a ARM Cortex M3
microcontroller and a low-loss switching circuit. We also built
a custom fuel gauge module that consists of a coulomb coun-
ter and a controller. We modified an off-the-shelf battery-char-
ger evaluation board to enable dynamic charge current setting
by the microcontroller on the control board. These hardware
modules were interconnected as shown in Figure 6.

We used an ideal diode to switch between the batter-
ies. The switching between batteries is extremely fast, and

hence the battery sees a constant, smooth current draw.
We note that the small power-loss due to this switch under-
estimates the efficiency achievable by the proposed solu-
tion. As mentioned in Section 3, the extra power-loss and
the high component cost can be eliminated by augment-
ing existing switching regulators to switch across multiple
batteries.

The boards were designed with Altium Designer,1 a cir-
cuit board development package. The firmware was written
in C using the IAR for ARM V7.40 tool chain. The board firm-
ware contains 3500 lines of code. We also developed the
prototype SDB Runtime shown in Figure 5 with 1200 lines
of code.

We conducted simulations and microbenchmark experi-
ments to evaluate the efficiency and accuracy of our hard-
ware design, as well as to evaluate the correctness of the
firmware and the runtime. Circuit simulations were done
in LTSPICE,11 a simulation program with integrated circuit
emphasis (SPICE). We generated the circuits as shown in
Figure 4, in LTSPICE, and conducted extensive simulations
at various power loads to validate system correctness, stabil-
ity, and responsiveness.

4.1. SDB emulator
We build a model for batteries based on Thevenin’s model
as built by other battery researchers3–6, 9 to simulate batteries
used in production devices. The simplified Thevenin model
is reproduced in Figure 7a. The model has four parameters:
open circuit potential, internal resistance, concentration
resistance, and plate capacitance.

The open circuit potential of a battery is the voltage
across the terminals of the battery when no load is applied. It
increases with the amount of energy left in a given battery. The
internal resistance of a battery is the resistance across the ter-
minals of the battery when a load is applied. It decreases with
the amount of energy left in a given battery. In Figure 7b and c,
we plot the open circuit potential and resistance, respectively,
of a few batteries as the energy left in them increases.

The concentration resistance and the plate capacitance
of a battery are fixed values for a given battery. We measure
the open circuit potential, internal resistance, concentra-
tion resistance, and the plate capacitance for several kinds
of batteries. We use the industry standard Arbin BT-20002

Figure 6. SDB prototype implementation.

Fuel Gauge Microcontroller

Power
Out

BlueTooth
Module

Efficient
Power Switch

Battery

Battery Charger

Power
In

DECEMBER 2016 | VOL. 59 | NO. 12 | COMMUNICATIONS OF THE ACM 117

and Maccor 420012 battery cycling and testing hardware for
measuring the battery properties.

The model takes the initial SoC, OCP versus SoC, resis-
tance versus SoC, concentration resistance, and plate
capacitance to emulate a battery. At each time step, based
on the SoC, it estimates OCP, and resistance. Using the
updated values, it calculates the values for the SoC after
the time step.

We build the battery model using a few batteries and vali-
date the models against other batteries of the same type. The
validation results for one of the batteries are shown in Figure 8.
The results show that our model is accurate to 97.5%. We mod-
eled 15 batteries in total: two of Type 4, two of Type 3, eight of
Type 2, and three more of other types (refer to Figure 1a).

We implement a simple software layer that takes the
input power requirement and splits it across a given num-
ber of batteries according to the power policies set by an OS.
The model and the SDB emulator are integrated into the OS
using 4800 lines of code across modules written in C#.

We focus on two hardware platforms: a tablet and a watch.
The tablet is a “2-in-1” development device with Intel Core
i5 CPU, 4GB DRAM, 128GB SSD, and 12 inch display. The
watch is a Qualcomm Snapdragon 200 development board
with hardware similar to several smart-watches.devices are
instrumented to obtain fine grained (100 Hz) power-draw
measurements. The power-draw is then fed into the emula-
tor to calculate the energy drawn from the batteries.

5. SDB APPLICATIONS
In this section, we describe two scenarios that benefit from
using SDB with heterogeneous batteries. We also show how
SDB policies can be customized for the different scenarios,
and demonstrate the benefits of integrating future workload
knowledge in the SDB system.

5.1. Adopting flexible batteries
Flexibility and bendability are important structural prop-
erties for wearable devices, for example, a watch-strap
that is flexible and bendable tends to be easier to wear.
Coincidentally, there are a few emerging battery chemistries
that enable bendability. The bendability, unfortunately,
comes at the cost of other battery properties. Such batter-
ies use a solid (rubber-like) electrolyte in place of a tradi-
tional liquid (polymer) electrolyte. Unfortunately, the solid

(elastic) state of the electrolyte increases the resistance for
the Li-ions and therefore, such batteries have higher inter-
nal losses. Several prototype bendable batteries we tested
are excellent at handling low power workloads but often are
very inefficient for high power workloads.

SDB can enable a scenario where a small traditional
Li-ion battery in smart-watches is augmented with bend-
able batteries. This helps design better wearables that uti-
lize the strap space to increase capacity but are still able
to execute high power workloads like GPS tracking while
running and cycling. The reduction in the size of the rigid
Li-ion battery also allows for the design of a less bulky
watch body.

The bendability of the battery in the strap is a boon, but
its low efficiency is a bane that has to be intelligently man-
aged to maximize effective battery life of the device. It is
important to preserve energy in the efficient battery for
times when the user is expected to perform power-intensive
tasks. For example, the user may exercise, run or bicycle dur-
ing certain times of the day, which all require high power.
Therefore, the SDB policies should preserve the efficient
battery for such times.

Since smart-watch usage will vary across users, we com-
pare two extreme parameter values to demonstrate the ben-
efits of SDB: One that minimizes instantaneous losses by
drawing appropriate amounts of power from both the bat-
teries and one that draws higher amounts of power from the
inefficient battery to conserve the efficient battery.

Figure 9 demonstrates the setting and the results.
We use a 200mAh Li-ion battery in combination with a

Figure 7. Battery simulator: (a) Battery modeled with four variables that are learned using experimentation: open circuit potential, internal
resistance, concentration resistance, and plate capacitance. This model allows us to conduct experiments in a scalable manner. (b) The open
circuit potential of a battery increases with the state of charge (amount of energy left) of the battery. (c) The internal resistance of a battery
decreases with the state of charge.

(a) (b) (c)

Open circuit
Potential

Internal
Resistance

Concentration
Resistance

Plate
Capacitance

Current

A B

4.3
4.1
3.9
3.7
3.5
3.3
3.1
2.9
2.7

0 10 20 30 40 50
State of charge (%) State of charge (%)

60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Battery 1 Battery 2 Battery 3 Battery 4 Battery 5
Battery 1 Battery 2 Battery 3 Battery 4

Battery 8Battery 7Battery 6Battery 5

O
pe

n
ci

rc
ui

t
po

te
nt

ia
l (

V
)

R
es

is
ta

nc
e

(O
hm

s)

10.00

1.00

0.10

0.01

0.2A Experiment 0.5A Experiment 0.7A Experiment

0.2A Model 0.5A Model

State of charge

0.7A Model

Te
rm

in
al

 v
ol

ta
ge

 (V
)

2.8
0 0.2 0.4 0.6 0.8 1

3.3

3.8

4.3

Figure 8. Validating the model against battery testing hardware
reveals that our model is 97.5% accurate.

research highlights

118 COMMUNICATIONS OF THE ACM | DECEMBER 2016 | VOL. 59 | NO. 12

The OS sets a low parameter value for times when the
external battery is expected to be plugged in for longer dura-
tion while high parameter values are for times when the
external battery is plugged during battery crises.

Figure 10 shows the comparison of two extreme param-
eters for various application workloads on a development
2-in-1 device with two equal sized traditional Li-ion batter-
ies. Results show that the parameter causing simultaneous
power draw from both batteries provides 22% more battery
life than the parameter that causes one battery to charge
another. However, this gain is not realizable for a user who
only keeps the base with the secondary battery plugged in for
short periods of time. The OS must, therefore, learn, predict
and adapt to user behavior to set appropriate parameters.

6. CONCLUSION AND FUTURE WORK
Device requirements are typically hard to meet with a single
battery since these requirements are often in conflict with
each other. We present the SDB system that allows a device
to use multiple heterogeneous batteries, and get the best of
all of them. The SDB hardware is designed to be low cost,
and provides rich functionality to the OS. The SDB APIs
allow an OS to dynamically route charge to, and from the
batteries based on application workload such that the over-
all goals (battery life, cycle count, fast charge, etc.) are met.
We show several new scenarios that can be enabled with
SDB, and demonstrate its feasibility using a prototype, and
detailed emulations.

Moving forward, we are taking the SDB work in two
main directions. First, we are tying personal assistants
like Siri, Cortana, and Google Now understand user
behavior and the user’s schedule and by using this infor-
mation, an OS can perform better parameter selection.
For example, if the user’s profile suggests that the user
plays video games in the evening, then it SDB could pre-
serve a higher power-density battery for that workload.
Second, we are working on additional devices that would
benefit from this technology, such as drones, smart
glasses, and electric vehicles (EVs). Each would require
a different combination of battery chemistries, and the
SDB logic might be different too. For example, we are
building on the techniques proposed for Hybrid Energy
Storage in the Grid7, 10 or hybrid power sources in Data
Centers,8 to improve the lifetime of EVs. An EV’s NAV
system could provide the vehicle’s route as a hint to the

200mAh bendable battery for the setting. For a typical
user who spends the entire day checking messages on his
smart-watch and goes for a run in the evening, we plot the
workload and the instantaneous losses in the batteries.
We find that the latter method minimizes the total losses
and therefore increases overall battery life by over an hour.
These results provide evidence that mobile OSes that are
aware of a user’s day-to-day schedule may be able to pro-
vide better battery life by setting the right parameter. On
the other hand, it is interesting to note that if the user
had not gone for a run then the first policy would have
given better battery life suggesting that the knowledge of
an impending workload can help save energy in heteroge-
neous battery settings.

5.2. Battery management for 2-in-1s
2-in-1 devices are tablets that have a detachable keyboard.
Some such devices have another battery under the keyboard.
In such a setting, there are two batteries exposed to the
OS, often with different capacities but the same internal
chemistry—traditional Li-ion. However, efficiency of the
battery in the base is less as it is used solely to charge the
battery in the tablet. Significant amount of energy is lost in
charging the internal battery with the external one, yet the
reason why device manufacturers have chosen this route is
to simplify design.

SDB via the OS can improve the battery life of a com-
bined internal and external battery by understanding
user behavior and expectations. The power drawn from
an external battery can either be used toward running the
system, for charging the main battery or both. For a user
who rarely unplugs an external battery, the better solu-
tion would be to draw power simultaneously from both
batteries as the internal losses are proportional to the
square of the current (resistive losses = I2R). Splitting the
power draw across the two batteries, therefore, reduces
the internal losses and increases the energy delivered to
the system.

However, this strategy may not be ideal for a user who
mostly operates in tablet-only mode. For such users, it makes
more sense to draw as much power for as long as possible
from the external battery to handle system load and also for
charging the internal battery.

Figure 9. Fixed priority levels are bad. Priority levels have to be
changed according to expected user schedules and workloads.

Total energy used by the device in each hour

Policy 2: Losses with parameter designed to preserve Li-ion battery
Policy 1: Losses with parameter designed to minimize instantaneous losses

Running workload
initiated (Hour 9)

Li-ion discharged
completely for
Policy 1 (Hour 9.5)

Bendable battery
discharged
completely for
Policy 1 (Hour 18)

Batteries discharged
completely for Policy 2
(Hour 19.2)

100,000

10,000

1000

100

10

1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour of the day

J
ou

le

Figure 10. Drawing power simultaneously from internal and external
batteries is more energy efficient than depleting the external battery
for conserving and charging the internal one.

Id
le

HD vi
deo

Em
ail

Fa
ce

bo
ok

M
ap

s

Sky
pe

Lyn
c

Yo
utu

be
Cam

er
a

25

23

21

19

17

15

Workload

B
at

te
ry

 li
fe

im
pr

ov
em

en
t

(%
)

DECEMBER 2016 | VOL. 59 | NO. 12 | COMMUNICATIONS OF THE ACM 119

SDB Runtime, which could then decide the appropriate
batteries based on traffic, hills, temperature, and other
factors. Our preliminary analysis shows that SDB might
help these systems achieve tradeoffs that until now were
considered to be at odds with each other.

Acknowledgments
Insightful comments from Jon Crowcroft, Srinivasan Keshav,
Matthew Lentz, and Vasuki Narasimha Swamy greatly
improved the final version of this paper.�

Anirudh Badam, Ranveer Chandra,
Jon Dutra, Julia Meinershagen, and
Bodhi Priyantha ({anbadam, ranveer,
jodutra, juliam, bodhip}@microsoft.com),
Microsoft, Redmond, WA.

Anthony Ferrese (anthony.ferrese@
gmail.com), Tesla Motors, Palo Alto, CA.

Steve Hodges (shodges@microsoft.com),
Microsoft, Cambridge, U.K.

Pan Hu (lghupan@gmail.com), University
Massachusetts Amherst, MA.

Thomas Moscibroda (moscitho@
microsoft.com), Microsoft, Beijing, China.

Evangelia Skiani (valia@ee.columbia.edu),
Department of Electrical Engineering,
Columbia University, New York, NY.

© 2016 ACM 0001-0782/16/12 $15.00

References
	 1.	 Altium Designer. http://www.altium.

com/altium-designer/overview.
	 2.	 Arbin BT-2000 Battery Testing

Equipment. http://www.arbin.com/
products/battery.

	 3.	 Chen, M., Rincon-Mora, G.A. Accurate
electrical battery model capable
of predicting runtime and IV
performance. IEEE Trans. Energy
Conver. 21, 2 (2006), 504–511.

	 4.	 Chiasserini, C.-F., Rao, R.R. Energy
efficient battery management. IEEE
J. Sel. Areas Commun. 19, 7 (2001),
1235–1245.

	 5.	 Erdinc, O., Vural, B., Uzunoglu, M.
A dynamic lithium-ion battery
model considering the effects of
temperature and capacity fading.
In Proceedings of the IEEE
International Conference on Clean
Electrical Power (Capri, Italy, June
2009).

	 6.	 Gao, L., Liu, S., Dougal, R.A. Dynamic
lithium-ion battery model for system

simulation. IEEE Trans. Compon.
Pack. Technol. 25, 3 (2002), 495–505.

	 7.	 Ghiassi-Farrokhfal, Y., Rosenberg, C.,
Keshav, S., Adjaho, M.-B. Joint optimal
design and operation of hybrid energy
storage systems. IEEE J. Select.
Areas Commun. 34, 3 (Nov. 2016),
639–650.

	 8.	 Govindan, S., Sivasubramaniam, A.,
Urgaonkar, B. Benefits and limitations
of tapping into stored energy for
datacenters. In International
Symposium on Computer Architecture
(2011).

	 9.	 He, H., Xiong, R., Zhang, X., Sun, F.,
Fan, J. State-of-charge estimation
of the lithium-ion battery using and
adaptive extended Kalman filter
based on an improved Thevenin
model. IEEE Trans. Veh. Technol. 60,
4 (2011), 1461–1469.

	10.	 Kim, Y. Chang, N. Hybrid Electrical
Energy Storage Systems
Design. Springer International

Publishing, Cham, Switzerland,
2014, 19–25.

	11.	 LTSpice: Linear Technologies
Simulator Program with Integrated
Circuit Emphasis.

	12.	 Maccor 4200 Battery Testing
Equipment. http://www.maccor.com/
Products/Model4200.aspx.

A personal walk down the
computer industry road.

BY AN EYEWITNESS.
Smarter Than Their Machines: Oral Histories
of the Pioneers of Interactive Computing is
based on oral histories archived at the Charles
Babbage Institute, University of Minnesota.
These oral histories contain important messages
for our leaders of today, at all levels, including
that government, industry, and academia can
accomplish great things when working together in
an effective way.

http://www.altium.com/altium-designer/overview
http://www.altium.com/altium-designer/overview
http://www.arbin.com/products/battery
http://www.arbin.com/products/battery
http://www.maccor.com/Products/Model4200.aspx
http://www.maccor.com/Products/Model4200.aspx

