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Automatic Color Calibration for Large Camera Arrays
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Figure 1: Image composites using blocks from different cameras.
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Blocks along a diagonal are from one camera. Three such blocks

are highlighted in the first image. (a) Data from cameras at default gain and offset. (b) Cameras calibrated using software auto-gain and
white-balance. Color inconsistency is significant. (c) Calibration of all cameras to a single standard - SRGB. Color artifacts are less
perceptible although still noticeable in the white, yellow, and light green patches. (d) Our method, which calibrates cameras to each
other, rather than to a standard. There are minimal artifacts. Note: Artifacts on the edges of color patches are due to demosaicing and

geometric misalignment.

Abstract

We present a color calibration pipeline for large camera arrays.
We assume static lighting conditions for each camera, such as
studio lighting or a stationary array outdoors. We also assume we
can place a planar calibration target so it is visible from every
camera. Our goal is uniform camera color responses, not absolute
color accuracy, so we match the cameras to each other instead of
to a color standard. We first iteratively adjust the color channel
gains and offsets for each camera to make their responses as
similar as possible. This step white balances the cameras, and for
studio applications, ensures that the range of intensities in the
scene are mapped to the usable output range of the cameras.
Residual errors are then calibrated in post-processing. We present
results calibrating an array of 100 CMOS image sensors in
different physical configurations, including closely or widely
spaced cameras with overlapping fields of views, and tightly
packed cameras with non-overlapping fields of view. The process
is entirely automatic, and the camera configuration runs in less
than five minutes on the 100 camera array.

CR Categories: 1.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture.Camera Calibration;
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1 Introduction

As digital cameras become cheaper and more easily managed,
more and more researchers are investigating the potential of large
camera arrays. For example, the 3D Room at CMU captures
video from 49 cameras spread around a room [Rander et al. 1997].
They use the data for 3D scene reconstruction and view
interpolation -- creating virtual views corresponding to camera

positions not in their captured set of images. Their cameras are
relatively high-quality, but recently several groups have begun
working with large arrays of inexpensive cameras. Yang et. al
constructed an array of 64 commodity webcams for live rendering
of video light field [2002]. Zhang and Chen built a system of 48
Ethernet cameras equipped with horizontal pan and translation
controls, also for view interpolation [2004]. We have also
constructed a large array of inexpensive sensors. Our system
captures video from 100 CMOS sensors and has been used for
view interpolation, high-performance imaging, and synthetic
aperture photography [Wilburn et al. 2005].

Users of camera arrays generally take great care to
geometrically calibrate their cameras, but often neglect color
calibration entirely or rely on manually adjusting their cameras.
This is not because color calibration is unimportant. Wilburn et
al. [2004], for example, presented a high-speed video capture
method using multiple cameras with staggered trigger times.
Because sections of images from many cameras are interleaved to
produce the final images, minimizing color variations between
cameras is critical to creating the illusion of a single, high-speed
video camera. Similarly, view interpolation algorithms suffer in
the absence of color calibration. Vedula, for example, observed
artifacts using images from the 3D Room for view interpolation
because the cameras were not color calibrated [2001]. The users
of the self-reconfigurable camera array calibrated their cameras
geometrically but not radiometrically, causing view-dependent
color variations in their results [Zhang 2005].

Although standard geometric calibration methods exist for
calibrating arrays of cameras [Zhang 1999; Bouguet; Tsai 1987],
much less attention has been paid to color calibration for multi-
camera systems. A common approach for configuring cameras
lets each one self-calibrate using automatic gain and white
balance algorithms, but this method produce varying results
depending on what portion of the scene each camera views.
Because we assumed fixed illumination but changing scene
content, we would prefer a method that calibrates based on scene
illumination. In general, single-camera color calibration methods
are useful for characterizing response functions, but they are not
optimal for matching multiple cameras.

The only multiple camera color calibration work we are aware
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Configuration Method Characterization Method RMS Error Max Error
Auto-gain and white-balance None 7.98, 7.98, 8.30 89.59, 82.99, 84.63
Cameras set to identical gains and offsets | None 9.97, 8.15,9.06 78.88, 47.66, 58.61
Cameras set to identical gains and offsets | Matching to a standard color model - SRGB | 3.40, 2.44, 4.23 36.84, 27.65, 47.59
Our configuration method None 2.45,1.43,1.90 33.94,12.67, 18.25
Our configuration method Matching to a standard color model - SRGB | 2.17, 1.00, 3.55 18.52,9.72, 25,41
Our configuration method Our characterization method 1.23,0.72, 1.08 8.75,5.16,9.43

Table 1: Analyzing calibration methods with a 95-camera array. These error metrics show the root-mean-squared error and maximum
error computed across all cameras and all Macbeth color patches broken down by color channel. There are large errors at initial
settings. For auto-gain and white-balance, the error is worse. Matching to a standard color model — sSRGB is better, but the maximum
error is still high. Using our configuration method the error drops significantly. Matching to sSRGB after configuration improves the
error in red and green. With our full method, configuration and characterization, the error is minimal.

of is the automatic gain and white-balance method presented by
Nanda and Cutler for their five-camera omni-directional RingCam
[2001]. Their system addresses three needs that we do not: omni-
directional viewing, a mobile array (and thus highly variable
illumination conditions), and real-time operation. They color
calibrate using image statistics in overlapping regions of their
cameras' fields of view. This works well for their conditions, but
as we will see, it is not optimal for the situations we address in
this paper: stationary camera arrays under relatively static lighting
conditions.

Our system is tailored for large arrays of inexpensive cameras.
Thus, it is fully automatic and assumes controls over gains,
offsets, and electronic shutter durations that are common in low-
end CMOS sensors. In the rest of this paper, we describe the
goals and operation of our multi-camera color calibration
algorithm. Section 3 shows results calibrating our 100 camera
array for different applications.

2 Automated Color Matching

We have implemented a calibration method for the camera
array described by Wilburn et al. [2005]. The array consists of
custom video cameras constructed from low-cost CMOS image
sensors and inexpensive optics. We record raw, linear sensor data
for our applications as it can be easily calibrated using the method
we will now present.

2.1 Calibrating Overlapping Fields of View

Our method consists of two distinct stages: configuration and
characterization. ~ The configuration automatically adjusting
camera gains and offsets prior to acquisition. Characterization
consists of three parts: correcting for sensor non-linearity,
correcting for radiometric falloff, and globally minimizing color
error. After performing these steps we can acquire color calibrated
data by filming with the calibrated gains and offsets, then
applying our non-linearity correction and global error
minimization to the acquired data. We will now walk through the
calibration steps enumerated above.

Automatic Location of Color Checker Patches. Because the
fields of view of our cameras overlap, we can calibrate using a
Macbeth color chart viewable from all cameras. To avoid the
necessity of searching for the color patches in each camera's view,
we piggyback color calibration onto geometric calibration, by
affixing the Macbeth chart atop a planar geometric calibration
target. Once we have found the location of this second target, we
also know the location of the color patches in the Macbeth chart.
We store these locations for later use.

Gain and Offset Configuration. This step calculates the
current gains and offsets of the sensor response and adjusts them

to match a target response function. We take images of the
Macbeth chart at several different exposures in the linear middle-
range of our sensors. Using the stored patch locations from the
previous step, we record the RGB values for the white patch from
these exposures. We then fit a line to this data to recover each
channel’s current gain and offset. We compute adjustments to
these values such that at zero exposure the camera returns 12 in
each channel and when viewing the white patch at our chosen
exposure it returns 220 in each channel. We perform four
iterations of this configuration step on each camera.

Response Linearization. After the previous step, the sensor
response is linear, except at the low and high end of the range;
thus we model and correct for this non-linearity. We take images
of the Macbeth chart at every exposure setting, and we record the
RGB values for the white patch in these images. As long as the
scene is bright enough that the white patch will saturate at some
exposure setting, this process allows us to map the entire sensor
response function. We then compute a reverse mapping from
RGB to exposure using linear interpolation on this data, we scale
the output range of this mapping to match the 0 to 255 image
range. This result is a look-up table that maps the original camera
data to a linear 0 to 255 image range. We save these look-up
tables for later use.

Falloff Correction. Before globally minimizing error, we
must address the effect of radiometric falloff on images of the
Macbeth color chart. As falloff is different for each camera, it
introduces inconsistency between each camera’s view. Often, we
can limit falloff over a color checker image by placing the color
checker at the center of each camera’s view. If we place the chart
so that it covers less than 25% of the field of view at the center of
the falloff, there is only a 2% falloff across the chart. If we
cannot place the chart as described, or if the center of falloff is
unknown, we correct for it by imaging a photographic gray card at
the location of the Macbeth color checker. Pixel data from the
gray card is used to compute scale values to correct for falloff.

Global Error Correction. This final step minimizes color
error globally. We image the Macbeth color checker with each
camera at the initial chosen exposure, and we store RGB data for
each patch. If we are performing a falloff correction, we scale the
RGB data with the values from the previous step. We then
average these values across all cameras. For each camera, we
then compute a 3x4 transform to match its recorded color patch
values to the averaged values. We use averaged values to avoid
accidentally picking an outlier camera as a reference. We save
these 3x4 transforms to apply on filmed data.

2.2 Partially-Overlapping Fields of View

When calibrating a multi-camera setup with partially-
overlapping views, we cannot place a color chart such that it can
be seen by all cameras at one time. In this regime, we choose to
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perform only the configuration stage with no sensor
characterization. Instead of using the white patch on the Macbeth
chart for gain and offset configuration, we recorded data from the
center of each camera’s image when viewing a large white target
placed close enough to the cameras to fill their fields of view.

3 Results

We calibrated 95 cameras with overlapping fields of view
using three different methods:

1. Using software auto-gain and auto-white balance to set
camera gains and offsets [Nanda and Cutler 2001]

2. Setting identical (default) color gains and offsets for all
cameras, followed by 3x4 transform from camera RGB to the
XYZ color space. This is computed in a least squares sense
based on the known XYZ values for the Macbeth color
checkers.

3. Our method.

Table 1 shows the results for these methods. We show the
RMS error across all color checkers and all cameras, as well as
the maximum pixel value difference between any two cameras for
any patch on the color checker. To relate matching errors in the
XYZ color space to RGB, we convert to sSRGB, a standardized
color space. This introduces errors due to gamut clipping.

We see that using automatic gain and white balance controls
performs the worst. These controls are based on each camera's
image statistics, so differences in each camera's view of the scene
causes variations in their color settings. Configuring all of the
cameras with the same default gain and offset settings, even
without matching to the XYZ reference values from the color
checker, is much better. Naturally, matching with the reference
values reduces the RMS error to roughly three gray levels for this
dataset. Our iterative gain and offset adjustment, even without
post-processing, significantly outperforms both of these methods.
Our post-processing pipeline reduces the residual error by another
30 %.

To visually evaluate the consistency of color calibration
results, we created single composite images of the Macbeth color
checker from multiple cameras. These composites are
representative of image reconstructions in image-based rendering;
however, they are a harsher test as there is no interpolation or
blending between camera contributions. Figure 1 shows
composites from uncalibrated data and data calibrated with three
methods with software auto-gain and white-balancing,
individually matching each camera to the MacBeth XYZ values,
and our method. There are significant artifacts in the composites
from uncalibrated data and from auto-gain and white-balanced
data. Matching individually to XYZ reduces the errors, and with
our method they are nearly imperceptible. These visual results
mirror the errors statistics in Table 1.

Figure 2a shows the same test applied to six cameras in a
natural scene. There are slight color differences on the face,
outstretched arm, and centered green part of the soccer jersey. The
greater mismatches in the lower left are due to the highly specular
jersey. In figure 2b, we show a different combination of the input
images. The image is assembled by interleaving 10-pixel wide
rows from the source images with 50% overlap and blending the
results. This is the same resampling Wilburn et al [2004] used for
overcoming artifacts in their high-speed video work. Blending the
images renders the color variations invisible.

Figure 3 shows results using our calibration for cameras with
non-overlapping fields of view. Here, we have created a mosaic

using images a densely packed 12x8 camera array. The cameras
have 50% overlapping fields of view and telephoto lenses, so any
point in the scene is viewed by at most four cameras. The
panorama constructed from uncalibrated data without image
blending has low contrast, poor color balance, and obvious color
differences between cameras. Blending makes the transitions from
camera views less noticeable, but the color differences are still
visible. With color calibration and blending, the results are more
pleasing. The color calibrated images have much more uniform
color responses, and the variations are less noticeable in the
blended image.

4 Conclusions

We have presented a simple, automated color calibration
pipeline for large camera arrays. We describe how to handle both
overlapping and non-overlapping fields of view. We take care to
avoid introducing errors due to radiometric falloff, non-uniform
illumination, and sensor non-linearity. Calibrating the sensors to
match each other, rather than a standard, yields better color
matching between cameras, and using calibration targets prevents
scene reflectance from biasing our camera calibration. Our results
indicate that our method is accurate enough for image-based
rendering applications. The process is completely automatic and
runs on an array of 100 cameras in just a few minutes.

One remaining question is how much of our color calibration
errors are fundamental. One source of error in our computed 3x4
color correction matrices is the non-zero specularities of some of
the Macbeth color patches. We have observed that many of our
worst-case errors occur for the more specular patches on the color
checker. For example, the white and bright orange patches, which
show some of the most noticeable artifacts in figure 1, are two of
the most specular patches according to our measurements. One
way to reduce these errors is to average images of the color
checker taken with varying illumination. Although our color
response characterization is relatively robust to radiometric falloff
because we calibrate the center of our images, we will not be able
to match colors in the periphery of our images without
characterizing falloff.

Our color calibration works well for applications that blend
images together and for more sensitive methods, such as those
that use optical flow. Some applications, however, transform
small color variations between cameras into coherent patterns that
are more obvious. Color variations in figure 2b are barely
discernable, even though the rows are resampled from different
pairs of images. If we were to make a video in which the
mapping of rows to cameras move in a coherent fashion (sliding
down the image as in the resampling shown by Wilburn et al.
[2004]), the variations would become immediately obvious as a
moving pattern superimposed on the static image. Some of these
errors are due to residual calibration errors, but others are
unavoidable. Specular surfaces will look different from different
positions. This suggests that in addition to improving our color
calibration, we must also develop algorithms that prevent color
variations from being presented coherently to the user.
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Figure 2: Image reconstruction. (a) Image composite using 5x5 pixel blocks from 9 cameras. Just as in Figure 1, blocks along a
diagonal are from one camera. There are minimal errors on the face, outstretched arm, and center green part of the jersey. Errors are
visible in the lower-left due to specularity and falloff. (b) An image from high-speed video using the same dataset. This image is
constructed from a slice through a video cube. With our calibration and interpolation in the slicing, color variations are almost

imperceptible within the image.
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Figure 3: High-resolution image mosaics. Top Left: No color calibration and no blending. Top Right: With blending between
images from each camera, the image seams disappear. Bottom Left: Using our method for gain and offset configuration, some image
seams are visible, although they not very harsh. Bottom Right: Blending between camera images removes the remaining seams.
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