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Abstract:
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representations. I also develop an e�cient approximate mechanism for initially �nding the
\correct" values for the basis coe�cients ajk at the �nest scale (as opposed to using the

sample values as coe�cients). I then present applications of these techniques to two impor-
tant image coding/computer vision tasks: motion estimation and multiple model matching

(model recognition).
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1 Introduction

In many signal processing applications, the task of template matching is an important one.

The basic idea is simple: we have some piece of signal r(t) (the template), and we want to �nd

where (or whether) it occurs within another signal x(t) (see �gure 1). In 1D, this problem
appears in radar, where we want to �nd the known \pulse" signal after it has been re
ected

by an obstacle. It appears in communications channels, where we want to distinguish various

symbols from each other [3]. It also shows up in simple speech recognition systems, where
we wish to match an input signal with a set of known utterances [4]. In 2D, the problem

comes up in motion estimation/tracking tasks, where we want to see where a piece of an
image in one frame goes to in the next frame. It is also seen in model matching, when an

image (or piece thereof) is to be matched with a series of known images (models).

Unfortunately, performing the template match at every point in a target signal is very

expensive. In this study, I present a multiresolution approach to template matching using
orthogonal wavelet representations of the signal and the template. I develop a coarse to �ne
scheme which �nds a rough match at the coarsest scale of representation and then re�nes the

estimated position/match value by moving through increasing levels of resolution. This is far
cheaper computationally than searching the entire space at the �nest scale. This is certainly

not the �rst instance of a multiresolution approach to template matching. However, there are
three signi�cant advantages to using orthogonal wavelets over other decompositions (e.g. the
Laplacian pyramid of [1], which is another compact-support multiresolution representation).

First, the computations performed at the coarse scale can be reused at �ner scales. The
second advantage is that the wavelet representation may be available for free if a given
video/audio device is using a wavelet representation for coding as well. Last but certainly
not least, there is a precise interpretation of the operations performed at the di�erent scales,
as I will later explain.

After presenting the theory behind my approach, I will also show the applications of
the technique to two image processing/computer vision problems: motion estimation (in an
egomotion task) and model matching (in a simple facial expression recognition task).

1.1 Template Matching with Normalized Correlation

In all of the applications described above, the signal processing technique most often used for

template matching is the \matched �lter" [3]. The matched �lter is simply a time-reversed

version of the template:

r
0(t) = r(�t) (1)

This �lter is then convolved with the input:

d(t) = r
0(t) � x(t) (2)

This technique derives from the properties of the autocorrelation function: when r(t) is

convolved with r(�t), the output is maximized at the origin. As a result, we expect to see a

peak in d(t) where x(t) contains r(t). The autocorrelation signal and the convolution with

the test sequence for the example in �gure 1 is shown in �gure 2. We see the expected peak
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Figure 1: The template matching problem with template r(t) and signal x(t)

at the origin for the autocorrelation function and a peak in the convolution with the test
signal at t = 240. This is also expected, as the template for this example was chosen as the

piece of x(t) from t = 240 to t = 340 (see 1).
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Figure 2: The autocorrelation of r(t) and the convolution of r(�t) with the test sequence
x(t)

Another way to view this operation is in terms of an inner product integral. We can

rewrite the convolution result d(t) at time T as the integral of the inner product of the

signal and the shifted template:

d(t) =
Z
1

�1

x(t)r(t� T )dt (3)

or in discrete time,

d[N ] =
1X

k=�1

x[k]r[k �N ]dt (4)

Because the template is typically �nite support, the product signal inside the inte-

gral/summation is as well. This inner product view of template matching will be critical in

the development of my wavelet-based template matching scheme.

There is a signi�cant problem with this approach as it stands: it does not account for the
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relative magnitudes of the signal and the template. If r(t) is always positive, then the larger

(more positive) the values of x(t), the greater the inner product integral will be, regardless

of how well the signal matches the template. To account for this, the following \normalized

correlation" form is often used:

d(T ) =
hx(t); r(t� T )i

kxr(t)kkr(t)k
(5)

Where xr(t) is the relevant piece of x(t), i.e., that piece which lies within the support of

r(t�T ). This is the inner product of the two signal pieces divided by their norms, which can

be interpreted as the cosine between the signals in vector space. The value is thus bounded

at 1 and -1. Because of the normalization, this result is invariant to the relative scaling of

the signals. The closer signals are to each other, the closer the result will be to 1. We can

rewrite this expression more explicitly as

d(T ) =

R
x(t)r(t� T )dtqR
x2r(t)dt

qR
r2(t)dt

(6)

In discrete time, the vector space interpretation is the same, and we can rewrite equation 6

as

d[N ] =

P
k x[k]r[k�N ]qP
k x

2[k]
qP

k r
2[k]

(7)

Though this is a simple expression, it can be very expensive to compute. In the track-
ing/detection applications described above, we must compute the expressions in equations 6
and 7 for all T in the test signal x(t). Only then can we take the maximum of the resulting

d(t) to �nd the best match. We would like to have a computationally more e�cient way of
�nding this match. As the reader may expect by now, wavelets will provide the better way.

2 The Wavelet Advantage

The wavelet decomposition breaks a function down into a basis of function pieces. For

orthogonal wavelets, it begins by �nding the projections aNk of the function onto the shifts of
the �nest resolution scaling function �(2N t�k) (we will get to how we �nd these projections

in the next section). This is the representation of the function in the basis V
N . Using

Mallat's technique, we can then break these coe�cents into the coe�cients for V N�1 and

W
N�1. We then continue to break down the coe�cients until we reach V

0, which will be

the coarsest level of representation. The basis for V 0 is �(t � k). By combining this basis
and W

0, we can reconstruct the function in basis V 1 (i.e., we can recover the a1k's). The

breakdown and the paths for splitting and recombining bases is shown in �gure 3 below.
Because the basis functions are compact support, we can represent a �nitely supported

function in V
j for any j with a �nite number of coe�cients. This is because the projections

onto the basis functions outside the support of the target function will always be zero.

Notice that this breakdown gives us a multiresolution representation of our signal. By

appropriately recombining coe�cients, we can �nd the representation of the signal in terms
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Figure 3: A breakdown of two signals into a wavelet basis

of �(2jt�k) for any j between 0 and N . This is where template matching can become easier.
Since we can have a representation of the signal and the template at multiple resolutions
(from coarse to �ne), we can �nd an approximate match between the small, coarse images

and then re�ne our estimate at the higher levels. The key point here is that since we will
already have a coarse estimate of the position (in a detection task), we only need to search
in a small neighborhood in the next �ner resolution. The global search is necessary only at

the coarsest (and computationally cheapest!) scale.
This still leaves us with a problem. We still need to compute the inner product integral

of equation 3. In general, if two functions f(t) and g(t) are built up of function pieces s0(t),
s1(t), etc., so that

f(t) = c0s0(t) + c1s1(t) + � � � (8)

g(t) = d0s0(t) + d1s1(t) + � � � (9)

then the inner product will contain all the pairwise inner products of all of the function

pieces:

f(t)g(t) = c0d0s
2

0
(t) + c0d1s0(t)s1(t) + � � � (10)

=
N�1X
m=0

N�1X
n=0

cmdnsm(t)sn(t) (11)

This results in n
2 inner products for a basis with n functions. For the �rst few levels

(V 0,V 1, etc.), this is still a relatively small amount of computation. But by the time we

get to V
N , which has as many coe�cients (n) as our original signal had samples, the inner

product in an arbitrary basis takes n2 computations whereas it only takes n computations
in the original signal representation!
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2.1 Orthogonality Has Its Privileges

Of course, we will not be using an arbitrary basis. We will not even be using arbitrary

wavelets! We will use only orthogonal wavelets. Orthogonal wavelets have the wonderful

property that they are orthogonal to everything else in their basis family. Not only are the
�(2jt� k)'s orthogonal to their integer shifts, they are orthogonal to the w(2lt� k)'s for all

l and the �(2lt � k)'s for all l 6= j. As a result, most of the terms in equation 11 are now

zero! The only terms that remain involve the inner products of a basis piece with itself:

f(t)g(t) = c0d0s
2

0
(t) + c1d1s

2

1
(t) + � � � (12)

=
N�1X
n=0

cndns
2

n(t) (13)

This takes us from n
2 terms to only n terms! Let us now return to the quantity we are

trying to compute (equation 3. We need to �nd the integral of the inner product function.

In terms of our basis, this is

Z N�1X
n=0

cndns
2

n(t)dt (14)

=
N�1X
n=0

Z
cndns

2

n(t)dt (15)

If we choose an orthonormal wavelet basis, we have the further advantage that the norm
of each basis function is unity:

Z
s
2

n(t)dt = 1 (16)

As a result, we can rewrite equation 15 as a simple summation:

N�1X
n=0

cndn (17)

At the �nest resolution V
R (where a shift in k corresponds to a shift of one sample), this

involves the same number of computations as the time domain implementation (in discrete

time), and at each lower resolution, the number of operations is cut by a factor of 2 for 1D

signals and a factor of 4 for 2D.
What does it mean to use the coe�cents at a lower resolution (i.e., using ajk where

k < R? For the wavelet basis, there is a precise and pleasing answer: it simply means
that we are computing the exact inner product integral of the function and the template as

represented in the space V
j. In fact, it is also the exact inner product integral of the two

functions with one represented exactly (i.e., in V
1) and the other represented in V

j. This

is because the \higher order" components of the former would be completely orthogonal

to the latter, so their contribution to the inner product integral would be zero. This is
a very powerful interpretation. We are using a numerical method (summing mutiples of
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coe�cients) to compute an inner product integral exactly. This is not ordinary approximate

signal processing - in this case, we know exactly what the approximation to the signal is. In

addition, Parseval (orthogonality strikes again) allows us to express exactly what fraction of

power a given level of representation holds. If either the signal or the template does not have

any power above a certain level (i.e., if it is \band-limited" in the wavelet sense as opposed

to the Fourier sense), we can compute the inner product integral exactly by just doing the
computation at this level.

Furthermore, since the wavelet bases we are interested in are orthogonal, we have

V
0
M

W
0 = V

1 (18)

V
1
M

W
1 = V

0
M

W
0
M

W
1 = V

2 (19)

This leads us to an elegant computational e�ciency. Essentially, we can �nd the inner

product integral at a �ner degree of resolution V
j+1 by taking the result in V

j and adding
on the contribution from the \detail basis" W

j. This contribution is of course the sum of
the products of the corresponding coe�cients for W j between the signal and the template.

This brings us to a key point: we can use the results of computations at the coarse level in

computing results at �ner levels. For 1D, this means we need to do only half the work to
re�ne our estimate. If we have an N coe�cient representation in V

j , the representation in

V
j+1 will have 2N coe�cients resulting in 2N computations for the inner product. However,

we can simply add on the products of the N coe�cients in W
j to get the same result! The

gains are not quite as dramatic for 2D, since for an N by N coe�cient representation in V
j,

there are three times as many coe�cients for the W j [2]. As a result, we have to do 3

4
of

the computation that would have been necessary if we were starting from scratch.
There is a bit of a problem with this last insight. Though we can certainly re�ne our inner

product integrals using the above method, it only makes sense if we already have the result
at the lower level. Unfortunately, we can only have this result at dyadic points (multiples

of two), as this is the only place the coe�cients are de�ned for the lower level. In V
j+1, the

shifts of �(2jt � k) correspond to shifts by 2. In V
j, we simply cannot �nd the \coarse"

estimates at the odd points of V j+1. There are two possible workarounds. The �rst is to shift

one of the signals (most practically the template) by integers in V R and then decompose each
of these down to V j. We can't shift by 1

2j
in V

j, so we use the shifted representation instead.
Unfortunately, I found this technique somewhat impractical in practice, as the number of

\shifted templates" that must be kept quickly grows large (32 version of the template for

R=5). The other (more practical) workaround is to use the coe�cients for V j and W
j to

rebuild the coe�cents for V j+1 and then perform the sum of products with the resulting

coe�cients. In a practical implementation, it makes sense to keep around the ajk's as well

as the bjk's so that this rebuilding does not have to performed at each step.

2.2 Comparison to Other Multiresolution Approaches

An appropriate question at this point is how this method fares against a more traditional

multiresolution representation, such as the Gaussian/Laplacian pyramid image represen-

tation of Burt and Adelson [1]. In their technique, the original image forms the highest
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resolution representation. The next level is then a quarter of the size (half the size in each

dimension). The values for this next level come from \a weighted average of the surrounding

pixels" (this averaging is typically a �ve by �ve point approximation of a 2D Gaussian). The

succeeding levels are de�ned analagously.

Why not simply compute this representation of the image and the template and compute

the inner products at the various scales? The answer lies in the interpretation, or the
lack thereof. Basically, we can make none of the statements of the section above for this

representation. There is no precise meaning to an inner product of the \low-resolution"

image and template. Parseval does not apply, so we have no precise idea how much of a

signal's power is represented at a given level. Lastly (and perhaps most importantly in

the minds of engineers), we cannot reuse computations from coarse levels in compute inner

products at �ner levels. The second application I will present will show why this can be an

expensive drawback.

3 Getting the \Right" Coe�cients from Discrete Time

The signals we will be dealing with are in discrete time, which brings up an important
question: how are we to get the initial coe�cients aRk from our discrete-time signal x[n]?

If we are to talk about meaning, we cannot now turn around and simply take the sample
values of the signal as the coe�cients. We begin with the requirement that in the �nest level
of resolution using basis �(2Rt � k), integer shifts of k correspond to shifts of one sample.
We then have approximately as many coe�cients as we have samples. The continuous time

signal represented by these coe�cients is

f(t) =
X

aRk�(2
R
t� k) (20)

As Strang points out in [6], a minimal requirement is for the samples of f(t) above to
equal the samples x[n]. This condition can be rewritten as:

aR[n] � �[n] = x[n] (21)

where �[n] is the samples of �(t) at the integers and aR[n] = aRn. To �nd aR[n], we must

convolve x[n] with ~�[n], the inverse of �[n]. �[n] is an FIR sequence since �(t) is compact
support, and thus its inverse is always IIR. In addition, the stable form of the IIR �lter

may contain both causal and anti-causal components. For �nite length signals, such an IIR

�lter is a feasible (but still unattractive) option to pursue. For in�nite length signals and
\real-time" applications, an anti-causal IIR �lter is simply not an option.

As a result, I decided to �nd an FIR approximation y[n] to the IIR inverse ~�[n]. Instead
of simply truncating the IIR inverse, I made a least-squares formulation of the desired result.

We want to construct a \pseudoinverse" that gets us as close as possible to the delta function:

y[n] � �[n] � �[n� k] (22)

where the error criterion is the norm of our distance to this goal:

E = ky[n] � �[n]� �[n� k]k (23)
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We wish to optimize over y[n] and k (a delay of k does not hurt us; we can simply shift

the output back by k samples). An example setup with �[n] of length three and y[n] of

length three and k = 0 is shown below:

2
6664

�[0]
�[1] �[0]

�[2] �[1]

�[2]

3
7775

2
64
y[0]

y[1]

y[2]

3
75 =

2
6664

1
0

0

0

3
7775 (24)

We can rewrite this symbolically as

�y = d (25)

Because this will always be an overconstrained problem, we can only �nd an approximate

solution. The solution minimizing the norm of equation 23 can be found by projecting the

goal point into the subspace spanned by � [5]:

ŷ = (��T)�1�Td (26)

This gives us the optimal y[n] for each k. We then optimize over k by �nding this solution

over all relevant k (a �nite number, since �[n] and y[n] are both FIR) and taking the one
with the minimum norm.

Some examples of this technique are shown below. The �rst example uses the orthogonal

wavelet `sym4', a non-minimum-phase factorization of D8. The �lter coe�cients h0[n], the

continuous scaling function �(t) and the waveletw(t), and the samples of the scaling function
�[n] are all shown in �gure 4 below. Note that the other �lters h1[n],f0[n], and f1[n] are
derived from h0[n] using the \alternating 
ip" technique described on p.110 of [6].

For this �lter, the best position for the delta was at 8 (k = 8). This resulted in an

error norm of 0.0035 or 2.92e-4/sample. The resulting FIR approximate inverse y[n] and the
convolution result �[n] � y[n] are shown in �gure 5 below.

Another example is shown in �gure 6 using the D3 wavelet (six coe�cients) with the

optimal k value. In this case, an eight sample FIR pseudoinverse was necessary to reduce
the error to the same level as in the previous example.

The error norm in this case was 0.0013 or 8.84e-5/sample. From these examples, it is

clear that a relatively short FIR �lter can provide a very good approximation to the desired
IIR response. The main reason for this is that the poles of 1

�(z)
are often well behaved:

though there are both causal and anti-causal components, they tend to drop quickly to zero,

allowing for an e�ective FIR inverse.

Because the 2D wavelets we will be using are separable (i.e., the tensor products of 1D

wavelets), we can use the outer products of our 1D pseudoinverse y2D[n][m] = y[n]y[n]T as

the pseudoinverse of �2D[n][m] = �[n]�[n]T, the samples of the tensor product of �(t) with

itself. An example showing �2D[n][m], the pseudoinverse y2D[n][m], and the convolved result
(the approximation to the shifted 2D delta function) for the `sym4' wavelet is shown below.

The error norm in this case is 0.0049 or 3.40e-5/sample.

Again, we have an e�cient, e�ective approximation to the desired IIR �lter. As in the

1D case, we can now apply this �lter y2D[n][m] to our image and use the resulting values

as our coe�cient values aRk. These coe�cients can then be broken down to the coe�cients
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Figure 4: The �lter coe�cients h0[n], the continuous scaling function �(t) and the wavelet
w(t), and the samples of the scaling function �[n] for the `sym4' wavelet
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Figure 5: FIR approximate inverse y[n] and the convolution result �[n] � y[n]

a(R�1)k,b(R�1)k, : : :We can do this with a clear conscience, knowing that the samples of the

reconstructed signal using these values will be (almost exactly) the original sample values.

4 Applications

Now that we have the correct coe�cient values at each scale, we can move forward to the

applications. I will demonstrate how the techniques described above can be applied to two
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Figure 6: The �lter coe�cients h0[n], the continuous scaling function �(t) and the wavelet
w(t), and the samples of the scaling function �[n] for the `d3' wavelet
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Figure 7: FIR approximate inverse y[n] and the convolution result �[n] � y[n]

important problems in image processing/video coding/computer vision: motion estimation

and multiple model matching. For all of the examples below, we will be using separable
2D wavelets built up from the `sym4' wavelet described above. We apply these in 2D as

described by Daubechies in Chapter 10 of [2].
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Figure 8: �2D[n][m], the pseudoinverse y2D[n][m], and the convolved result (the approxima-

tion to the shifted 2D delta function)

4.1 Motion Estimation

Motion estimation is one of the most fundamental problems in video coding. The basic
issue is to take a piece of an image in a video sequence and see where it came from in the
previous frame. This is exactly the template matching problem I described earlier: we have
a template (the piece of the current frame) and we want to �nd it within another signal (the

previous frame). Of course, this assumes that the piece of the image (or a large portion of it)
will actually have appeared in the previous frame. For most frames in a video sequence, this
is a reasonable assumption. Once we've found the optimal location of the template in the
previous frame, we can describe the piece of the current frame by simply referring back to

the previous frame. In practice, we code the error between the motion-predicted version of

the current frame and the actual current frame. If the current frame is composed of simple
motions of pieces of the previous frame, this error will be zero | thus the advantage for

coding.
The case of motion estimation I will deal with is egomotion or self-motion. This corre-

sponds to the motion of the camera itself rather than objects in the scene. If there is no

motion in the scene, our objects are all at in�nity, and our camera moves by pure translation,

this scheme could perfectly explain the majority of the new frame (all but the new portion
which is uncovered by the camera motion). Unfortunately, this is rarely the case. There is
always motion in the scene, the camera is often rotating as well as translating, and objects

are close enough to the camera for perspective e�ects to be signi�cant. All of these problems
occurr in the examples I will show below. However, as we will see, the majority of the scene is

fairly well behaved, allowing the scheme to be e�ective in estimating the optimal alignment
between the frames and providing a coding advantage.

The algorithm for this task closely follows the general multiresolution matching scheme

that I have described. The target signal is the previous frame and the template is the entire
current frame. The previous frame is zero-padded so that we can compute inner products

with the template that overlap only part of the current frame. We start o� by comparing the

images at the lowest resolution (�gure 9) at all possible alignments. Choosing the lowest

resolution is an important step | if it is not low enough, the computations at this scale will
still be quite expensive. If it is too low, though, the description will be too coarse | there
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may be many spurious matches. For this example, we began with 320 by 240 images and

went down 4 levels, resulting in images about 1/256th of the original size. An image showing

the values of the normalized correlation at all points is shown in �gure 10. Because the coarse

representations of the images are so small, the global search is quite cheap computationally.
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Figure 9: Original images (top) and coe�cients at the coarsest scale.

We then take the location of the best match at this resolution and compute the cor-

responding location at the next higher resolution (i.e., we multiply each coordinate by 2).

We then compute the normalized correlation at this higher resolution but only in a 3x3

neighborhood surrounding the previous match (see �gure 11).

We can reduce the size of the search because we are fairly certain we are near the target
from our lower-resolution computation. At this point, we simply need to re�ne the search.

We choose a 3x3 region in order to capture the open interval between the dyadic points at

the previous level. One of the nine points in this region (the center) is a dyadic point from

the previous level, so we can reuse the computations in re�ning the estimate there. At the
remaining eight points, the computations have to start from scratch. Figure 12 shows the

estimated alignment for the two frames.

To show the bene�ts of this technique for coding, I have taken the current frame and
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Figure 10: Normalized correlation values of the second frame against the padded �rst frame

for the coarsest scale. Note the clear maximum signifying the best match.
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Figure 11: Normalized correlation at next �ner scale.

subtracted the previous frame shifted by the estimated translation. The result can be seen
in �gure 13 below.

It is clear from from the result that there is more than pure translation going on. However,
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Figure 12: Estimated alignment of frames. The box shows where frame 2 lies in relation to
frame 1.
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Figure 13: Result of subtracting overlapping portion of frame 1 from frame 2

the majority of the power (brighter region of the image) is concentrated in the new region
uncovered by the camera motion and where there was motion in the scene (the phantom arm
behind the monitor made a sudden move in this case). As a result, we expect the di�erence

of the new frame and the prediction to be much cheaper to code than the entire new frame.
Another application of this motion estimation technique is shown below. Instead of using

the estimation for coding, we wish to now �t several frames together to form a panoramic

shot of the scene. This is known in image processing as \image mosaicing." The estimation
technique is the same as before. Once we have the estimates, we composite the two frames
using the o�set. If our estimate is perfect, the resulting image should look seamless. An
example of mosaicing four frames together is shown in �gure 14 below. Again, the various
non-ideal factors described above are at play, so the �nal image is not entirely seamless.

Note that the background alignment is almost perfect while there are several mismatches in
the foreground. This is because the e�ect of perspective (which is not accounted for in our
pure translational model of motion) is much more pronounced in the foreground. A more

sophisticated scheme would smooth the transition regions between frames. However, this
simple example illustrates my motion estimation algorithm's applicability to this task.

4.2 Multiple Model Matching

Recognition is a very important problem in computer vision. Often in a recognition problem,
we have several possible models that a candidate may match against, and we must test each

one to see which �ts the data best. Normalized correlation is again a powerful tool for

determining the quality of the match. The way in which we are using it is di�erent, though.

Instead of moving around a template to �nd the best �t (the detection/estimation task), we
are comparing multiple templates to the same part of the signal (the recognition/classi�cation
task).

In this case, the orthogonal wavelet inner product algorithm truly shines. Because we

are only computing the correlations at one location in the test signal, we can reuse all of
our computations in re�ning our estimates. To perform the recognition, we start o� by

computing the inner products of the test signal with all of the model templates at the

coarsest scale. We then re�ne each estimate to the next �ner scale, reusing the coarse scale's

computations. We continue this process until one model clearly wins out over the others
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Figure 14: Five frames in a motion sequence and the mosaiced result.

(i.e., it has a signi�cantly higher correlation score than any of the other models).

I will demonstrate this algorithm on a simple facial expression recognition task. I begin

with a series of expression models (the training set). These are shown in �gure 15 below.
I then took two test expressions (the test set), shown in �gure 16. It is important to note

that these images were not in the training set.
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Figure 15: The model templates

Tables 1 and 2 show the correlation values at each level. Note that the basis becomes

�ner with increasing rows. In the �rst example, it is clear by the calculation in V
3 that e2 is

the victor. Similarly, in the second example, by V
3, e3 has won out. In the examples shown

above, we could stop the computation at this point. However, one can imagine cases where

two templates might look very similar. In such a case, the correlation scores for these two
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Figure 16: The test signals

Table 1: Reconstruction error per DOF (in normalized coordinates)

k (match in V
k) e0 e1 e2 e3

0 0.9955 0.9950 0.9991 0.9789

1 0.9877 0.9815 0.9953 0.9611

2 0.9491 0.9425 0.9868 0.8214

3 0.8782 0.8834 0.9662 0.7193

4 0.7874 0.8158 0.9366 0.6059

5 0.7157 0.7565 0.9068 0.5144

6 0.6485 0.7019 0.8805 0.4367

templates will clearly be greater than that of all the other templates very quickly, but it

might take another scale step to see which of the two better matches the target. We must
thus re�ne all (and only) the best matches at every scale (where best implies signi�cantly

better performance than the competitors). Making use this insight and the reusability of
coarse-scale computations, we can �nd the best model match very e�ciently.

Table 2: Reconstruction error per DOF (in normalized coordinates)

k (match in V
k) e0 e1 e2 e3

0 0.9955 0.9849 0.9867 0.9990

1 0.9875 0.9686 0.9766 0.9954

2 0.9231 0.8674 0.8653 0.9815

3 0.8603 0.7518 0.7778 0.9470

4 0.7972 0.6437 0.6845 0.9117

5 0.7461 0.5569 0.6082 0.8844

6 0.7025 0.4827 0.5422 0.8633
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5 Conclusions and Future Directions

Through this study, I have shown that an orthogonal wavelet representation of a signal and

a template can be used in a very e�cient multiscale approach to template matching. I

have shown how expensive signal processing operations (inner products in particular) can
be performed in a meaningfully approximate way using a wavelet basis. In addition, I have

demonstrated that �nding the \correct" coe�cients for the �nest scale of resolution is not

so di�cult a task if we are willing to accept extremely small errors in the samples of the
reconstruction. This makes a powerful case for wavelet representations in video and audio

coding. If we have such representations coming from our I/O cards, we get the ability to use
these multiscale algorithms for free! We wouldn't need to use Mallat's algorithm to compute

the lower scale coe�cients: the coder on the other end would have done it for us.

To extend this work, I would like to return to the beginning of our discussion. There I

showed how a correlation could be rewritten as an inner product. I apologize if I am restating
the obvious, but I was very pleased to recently realize that convolution with an arbitrary

FIR �lter can be rewritten as an inner product. We can thus apply the multiscale techniques

presented in this paper to any FIR �lter in 1D or 2D. This still leaves us with a question:
which �lters are the most interesting to pursue? Ideally, they are �lters whose responses we

would want to re�ne adaptively (as in the multiple model application above). This would
give us the greatest computational win. They may also be �lters whose approximate outputs
are su�cient for a given task. If other such �lters and their applications (in addition to the

examples above) can be found, it will further strengthen the arguments for wavelets in signal
coding.

I hope to pursue this question and to apply the results to my research in the modeling
and tracking of nonrigid facial motions. I also hope to re�ne the thoughts, conjectures, and
example applications above for use in my work, reusing (of course) the computations from

this coarsest scale.
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