Synthesizing Switching Logic using Constraint Solving

Ankur Taly

Dept. of Computer Science, Stanford University

(Joint work with Ashish Tiwari and Sumit Gulwani)

- What are Hybrid systems?
 - Formal framework
 - Example : Train gate controller
 - Desired Properties

- 2 Synthesis
 - Semantic procedure
 - Practical implementations
 - Illustration : Train gate controller

Conclusions and Future work

What are Hybrid systems?

- Dynamical systems with both discrete and continuous behavior.
- Multiple modes each with its own differential equation which governs the dynamics in that mode.
- A switching logic which governs the discrete mode changes.
- Example : Thermostat on and off mode.
- Interested in safety and stability properties of such systems.
 Does the thermostat maintain the temperature between 70 F and 80 F?

HS(MDS, Init, SwL)

- Set of variables $X = \{x_1, \dots, x_n\}$, each x_i taking values in \mathbb{R} . The vector of values $\vec{x} \in \mathbb{R}^n$ at any instant represents the continuous state of the system.
- Multi-modal Dynamical System (MDS) : A set of modes $I = \{1, ..., k\}$ representing the discrete state.
 - Dynamics in mode i, $\frac{d\vec{x}}{dt} = f_i(\vec{x})$ (where f_i is a lipschitz field)
 - $F_i(\vec{x}_0, t)$ denotes the solution of the above differential equation with initial state \vec{x}_0 .
- Set of initial states Init $\subseteq \mathbb{R}^n$
- Switching Logic (SwL) : SwL := $\langle (g_{ij})_{i \neq j; i, j \in I}, (StateInv_i)_{i \in I} \rangle$ where
 - StateInv_i: state invariant for mode i (closed set).
 - g_{ij} : guard for transition from mode i to j. Identity resets

Example: Train gate controller

Consider a train approaching a railroad crossing.

- Let x be the distance of the train from the gate and g be the gate angle.
- Three modes: Normal, About to lower and Lowering.

Normal About to lower
$$\frac{dx}{dt} = -50, \frac{dg}{dt} = 0 \qquad \frac{dx}{dt} = -50, \frac{dg}{dt} = 0$$
 StateInv := $x > 1000$ StateInv := $1000 \le x \le 500$

Lowering
$$\frac{dx}{dt} = -50, \frac{dg}{dt} = -10$$
 StateInv := $x < 500$

• Init: $x = 1000 \land g = 90, g_{12}: x = 1000 \text{ and } g_{23}: x = 500.$

Safety

A hybrid system is safe with respect to a safety property $SafeProp \subseteq \mathbb{R}^n$ if all reachable continuous states $\vec{x} \in SafeProp$.

Non Blocking

For every mode i, for all $\vec{x} \in \partial \text{StateInv}_i$, there should be a mode j (may be same as mode i) such that

 $\exists \epsilon > 0 : (F_j(\vec{x}, [0, \epsilon]) \in \mathtt{StateInv}_j \bigwedge \vec{x} \in g_{ij}).$

Min. Dwell time

There exists a fixed time duration t_a such that on entering a mode, the continuous flow can evolve within that mode for at least time t_a .

Two Problems

Verification Problem

Given a hybrid system HS(MDS, Init, SwL) and a safety property SafeProp, the problem is to verify that HS is safe with respect to SafeProp.

Synthesis Problem - This talk

Given a MDS, Init and a safety property SafeProp, the problem is to synthesize the switching logic SwL so that the resulting hybrid system HS(MDS, Init, SwL) is safe and non-blocking with respect to SafeProp.

Two Problems

Verification Problem

Given a hybrid system HS(MDS, Init, SwL) and a safety property SafeProp, the problem is to verify that HS is safe with respect to SafeProp.

Synthesis Problem - This talk!

Given a MDS, Init and a safety property SafeProp, the problem is to synthesize the switching logic SwL so that the resulting hybrid system HS(MDS, Init, SwL) is safe and non-blocking with respect to SafeProp.

Synthesizing switching logic

Related Work: Fixed point based approaches:

- Involves computing a safe subset of the"reachable states" closed under reduction.
- Cannot handle non trivial continuous dynamics as there is no effective notion of "next" state unless suitable abstractions are applied.

Our Approach: Deductive Verification + Constraint Solving.

- Catch: Direct constraint solving with templates for the unknowns in the switching logic and for the safety invariant for each mode, may lead to degenerate systems (zeno or deadlocked).
- Idea: Synthesize Inductive Controlled Invariants instead of safety invariants.

Synthesizing switching logic

Related Work: Fixed point based approaches:

- Involves computing a safe subset of the" reachable states" closed under reduction.
- Cannot handle non trivial continuous dynamics as there is no effective notion of "next" state unless suitable abstractions are applied.

Our Approach : Deductive Verification + Constraint Solving.

- Catch: Direct constraint solving with templates for the unknowns in the switching logic and for the safety invariant for each mode, may lead to degenerate systems (zeno or deadlocked).
- Idea: Synthesize Inductive Controlled Invariants instead of safety invariants.

Trajectories

Figure: Trajectory of $\vec{x}(t)$

Given an initial state \vec{x}_0 , $\mathbf{x}(t)$ is a trajectory of an MDS if

- $\mathbf{x}(0) = \vec{x}_0$ and $\mathbf{x}(t)$ is continuous.
- There exists an increasing sequence $0 \le t_1 < t_2 < \dots$ such that for each t_i , there is a mode j such that $\frac{dx}{dt} = f_j(x(t))$ for all $t_i < t < t_{i+1}$.

Inductive Controlled Invariant

Inductive Controlled Invariant

A closed set CInv is said to be an inductive controlled invariant iff for each point $\vec{x} \in \partial \text{CInv}$, there exists a vector field f_i such that $\exists \epsilon > 0 : F_i(\vec{x}, (0, \epsilon)) \in \text{CInv}$.

Illustration:

State variables : x, y Dynamics :

•
$$f_1: \dot{x}=0, \dot{y}=-1$$

•
$$f_2: \dot{x} = 1, \dot{y} = 0$$

•
$$f_3: \dot{x} = -1, \dot{y} = 0$$

Figure: Trajectory of $\vec{x}(t)$

The synthesis procedure (at a semantic level)

SynthSwitchLogic(MDS, SafeProp) :

- 1. Find a closed set CInv such that the following conditions hold
 - (A1) Init \subseteq CInv
 - (A2) $CInv \subseteq SafeProp$
 - (A3) for all $\vec{x} \in \partial \text{CInv}$, there exists an $i \in I$ such that $\exists \epsilon : F_i(\vec{x}, (0, \epsilon)) \subseteq \text{CInv}$
- 2. Let $\operatorname{bdry}_i := \{ \vec{x} \in \partial \operatorname{CInv} \mid \exists \epsilon > 0 : F_i(\vec{x}, (0, \epsilon)) \subseteq \operatorname{CInv} \}$ for all $i \in I$,
- 3. Let StateInv_i := CInv for all $i \in I$,
- 4. Let $g_{ij} := \operatorname{bdry}_j \cup \operatorname{Interior}(\operatorname{CInv})$ for all $i \neq j; i, j \in I$, Return $\operatorname{SwL} := \langle (g_{ij})_{i \neq j; i, j \in I}, (\operatorname{StateInv}_i)_{i \in I} \rangle$

Properties

Theorem 1

For every switching logic SwL returned by SynthSwitchLogic, the hybrid system HS(MDS, SwL) is non-blocking.

Soundness and Completeness under a technical side condition.

Theorem 2

If SynthSwitchLogic returns the switching logic SwL, then the hybrid system HS(MDS, SwL) is safe. If HS = HS(MDS, SwL) is a safe hybrid system that satisfies the min-dwell-time property and if SafeProp is a closed set, then procedure SynthSwitchLogic will return a switching logic.

Second order quantifier

The procedure SynthSwitchLogic(MDS,SafeProp) naturally gives a $\exists \mathtt{CInv} : \forall \vec{x} : \mathsf{formula}$. Need to get rid of the second order quantifier.

Solution

- Restrict to Polynomial hybrid systems.
- Use a template for CInv. Simple case : CInv := $P(u, \vec{x}) \ge 0$ ∂ CInv := $P(u, \vec{x}) = 0$. This gives the first order formula $\exists u \forall \vec{x}$.
- Write effective logical formulas for conditions A1 (easy),
 A2(easy) and A3 (tricky!)
- Check if the ∃∀ formula is valid over the theory of reals (Decidable). Also Gulwani et al propose sound heuristics for efficiently deciding validity of such formulas.

Issues

Second order quantifier

The procedure SynthSwitchLogic(MDS,SafeProp) naturally gives a $\exists \mathtt{CInv} : \forall \vec{x} :$ formula. Need to get rid of the second order quantifier.

Solution:

- Restrict to Polynomial hybrid systems.
- Use a template for CInv. Simple case : CInv := $P(u, \vec{x}) \ge 0$ ∂ CInv := $P(u, \vec{x}) = 0$. This gives the first order formula $\exists u \forall \vec{x}$.
- Write effective logical formulas for conditions A1 (easy),
 A2(easy) and A3 (tricky!)
- Check if the ∃∀ formula is valid over the theory of reals (Decidable). Also Gulwani et al propose sound heuristics for efficiently deciding validity of such formulas.

Encoding A3 is tricky

How do we decide $\exists \epsilon : F_i(\vec{x}, (0, \epsilon)) \subseteq \texttt{CInv}$ without computing the closed form solution F_i of the differential equation ?

Solution:

- Sound Approximation (A3'): $\exists \epsilon : F_i(\vec{x}, (0, \epsilon)) \subseteq \text{Interior}(\text{CInv})$
- Make use of Lie Derivates to encode the above condition
- $\mathcal{L}_{f_i}p := \frac{dp}{dt} = \sum_{x \in X} \frac{\partial p}{\partial x} \frac{dx}{dt}$.
- $(\bigvee_{i \in I} \mathcal{L}_{f_i} P(u, \vec{x}) > 0)) \Longrightarrow (A3')$

Issues

Encoding A3 is tricky

How do we decide $\exists \epsilon : F_i(\vec{x}, (0, \epsilon)) \subseteq \texttt{CInv}$ without computing the closed form solution F_i of the differential equation ?

Solution:

- Sound Approximation (A3'): $\exists \epsilon : F_i(\vec{x}, (0, \epsilon)) \subseteq \text{Interior}(\text{CInv})$
- Make use of Lie Derivates to encode the above condition.
- $\mathcal{L}_{f_i}p := \frac{dp}{dt} = \sum_{x \in X} \frac{\partial p}{\partial x} \frac{dx}{dt}$.
- $(\bigvee_{i \in I} \mathcal{L}_{f_i} P(u, \vec{x}) > 0)) \Longrightarrow (A3')$

A sound and practical procedure

$$(ec{x} \in \mathtt{Init} \Rightarrow P(u, ec{x}) \geq 0) \ \land \ (P(u, ec{x}) \geq 0 \Rightarrow ec{x} \in \mathtt{SafeProp}) \ \land \ (P(u, ec{x}) = 0 \Rightarrow \bigvee_{i \in I} \mathcal{L}_{f_i} P(u, ec{x}) > 0)$$

- Above procedure is sound but incomplete for polynomial hybrid systems.
- Incomplete for cases where controlled invariant has a point on \vec{x} on the boundary where $\mathcal{L}_{f_i}P(u,\vec{x}) \leq 0$ for all i.
- Relatively more complete (and sound) encoding of A3 :

$$\bigvee_{i\in I}(\mathcal{L}_{f_i}p(U,X)>0\vee(\mathcal{L}_{f_i}p=0\wedge\bigwedge_{j\neq i}\mathcal{L}_{f_j}p<0).$$

A sound and practical procedure

$$(ec{x} \in \mathtt{Init} \Rightarrow P(u, ec{x}) \geq 0) \ \land \ (P(u, ec{x}) \geq 0 \Rightarrow ec{x} \in \mathtt{SafeProp}) \ \land \ (P(u, ec{x}) = 0 \Rightarrow \bigvee_{i \in I} \mathcal{L}_{f_i} P(u, ec{x}) > 0)$$

- Above procedure is sound but incomplete for polynomial hybrid systems.
- Incomplete for cases where controlled invariant has a point on \vec{x} on the boundary where $\mathcal{L}_{f_i}P(u,\vec{x}) \leq 0$ for all i.
- Relatively more complete (and sound) encoding of A3:

$$\bigvee_{i\in I}(\mathcal{L}_{f_i}p(U,X)>0\vee(\mathcal{L}_{f_i}p=0\wedge\bigwedge_{j\neq i}\mathcal{L}_{f_j}p<0).$$

Synthesizing the Train Gate controller

Synthesize the switching logic

$$\begin{array}{ll} \text{Init}: g = 90 \land x = 1000 \text{ and SafeProp}: x > 0 \lor g \leq 0. \\ \text{About to lower} & \text{Gate lowering} \\ \frac{dx}{dt} = -50 \land \frac{dg}{dt} = 0 & \frac{dx}{dt} = -50 \land \frac{dg}{dt} = -10 \end{array}$$

Assume a template of the form $x+a_1g\geq a_2$ for CInv.

```
\exists a_1, a_2 : \forall x, g : \\ (x = 1000 \land g = 90 \Rightarrow x + a_1g \ge a_2) \land \\ (x + a_1g \ge a_2 \Rightarrow x > 0 \lor g \le 0) \land \\ (x + a_1g = a_2 \Rightarrow -50 + 0 > 0 \lor -50 - 10a_1 > 0)
```

Synthesizing the Train Gate controller

Synthesize the switching logic

Init:
$$g = 90 \land x = 1000$$
 and SafeProp: $x > 0 \lor g \le 0$.
About to lower Gate lowering
$$\frac{dx}{dt} = -50 \land \frac{dg}{dt} = 0 \quad \frac{dx}{dt} = -50 \land \frac{dg}{dt} = -10$$

Synthesis

Assume a template of the form $x + a_1g \ge a_2$ for CInv.

$$\exists a_1, a_2 : \forall x, g : \\ (x = 1000 \land g = 90 \implies x + a_1 g \ge a_2) \land \\ (x + a_1 g \ge a_2 \implies x > 0 \lor g \le 0) \land \\ (x + a_1 g = a_2 \implies -50 + 0 > 0 \lor -50 - 10 a_1 > 0)$$

Synthesizing the Train Gate Controller

Solver returns $a_1 = -10, a_2 = 50.$

- Therefore, controlled invariant is $x 10g \ge 50$.
- At all points on the boundary of the state invariant : x-10g=50, dynamics of mode 2(gate lowering) points inwards and that of mode 1(About to lower) points outwards.
- Therefore $g_{12} := x 10g \ge 50$, $g_{21} = \phi$ and StateInv₁ = StateInv₂ := $x 10g \ge 50$ is an admissible switching logic.

Synthesizing a good controller

- Larger CInv = more liberal controller
- Tighten condition A2.

$$\partial \mathtt{CInv} \, \cap \, \partial \mathtt{SafeProp} \, \neq \, \emptyset.$$

Gives the largest possible controlled invariant $(x - 10g \ge 0)$ for the train gate example !

- Binary Search to optimize the constant term α in invariants of the form $P(u, \vec{x}) \geq \alpha$.
- More heuristics in the paper

Conclusions and Future work

Conclusions:

- We propose a sound and complete (in theory) procedure based on inductive controlled invariants for synthesizing switching logic for Hybrid systems.
- We propose several sound practical implementation of this procedure for polynomial hybrid systems.
- We propose heuristics for generating optimal controlled invariants.

Future Work

- Extend the synthesis procedure to more complicated systems with implicit state invariants.
- Strengthen the constraints so that the synthesized systems have non-zeno behavior.
- Synthesize systems that have certain liveness and stability properties: Synthesize Lyapunov functions?

Conclusions:

- We propose a sound and complete (in theory) procedure based on inductive controlled invariants for synthesizing switching logic for Hybrid systems.
- We propose several sound practical implementation of this procedure for polynomial hybrid systems.
- We propose heuristics for generating optimal controlled invariants.

Future Work:

- Extend the synthesis procedure to more complicated systems with implicit state invariants.
- Strengthen the constraints so that the synthesized systems have non-zeno behavior.
- Synthesize systems that have certain liveness and stability properties: Synthesize Lyapunov functions?

Thank You!