
Synthesizing Switching Logic using Constraint
Solving?

Ankur Taly1, Sumit Gulwani2, and Ashish Tiwari3

1 Computer Science Dept., Stanford University ataly@stanford.edu
2 Microsoft Research, Redmond, WA 98052, sumitg@microsoft.com
3 SRI International, Menlo Park, CA 94025, tiwari@csl.sri.com

Abstract. A new approach based on constraint solving techniques was
recently proposed for verification of hybrid systems. This approach works
by searching for inductive invariants of a given form. In this paper, we
extend that work to automatic synthesis of safe hybrid systems. Starting
with a multi-modal dynamical system and a safety property, we present
a sound technique for synthesizing a switching logic for changing modes
so as to preserve the safety property. By construction, the synthesized
hybrid system is well-formed and is guaranteed safe. Our approach is
based on synthesizing a controlled invariant that is sufficient to prove
safety. The generation of the controlled invariant is cast as a constraint
solving problem. When the system, the safety property, and the con-
trolled invariant are all expressed only using polynomials, the generated
constraint is an ∃∀ formula in the theory of reals, which we solve using
SMT solvers. The generated controlled invariant is then used to arrive
at the maximally liberal switching logic.

1 Introduction

Formal verification is beginning to play an important role in the process of build-
ing reliable and certifiable complex engineered systems. A different approach to
building correct systems is to automatically synthesize safe systems. The synthe-
sis approach is attractive since it generates correct systems by design. However,
computationally, the synthesis problem appears to be much harder than the
verification problem and there are few general approaches for solving it.

Recently, Gulwani and Tiwari [7] introduced an approach for verification of
(hybrid) systems that reduces the safety verification problem to satisfiability of
∃∀ formulas over some theory (the theory of reals). Their method is based on
finding an inductive invariant that proves the safety of the system. The “un-
bounded” search for invariants is “bounded” by fixing some templates for the
invariants. The existence (∃) of an appropriate instance of the template that
is also an inductive invariant (∀) naturally maps to an ∃∀ formula. If the ∃∀
? Research supported in part by the National Science Foundation under grant CNS-

0720721 and by NASA under Grant NNX08AB95A. Work done when the first author
was visiting SRI International.



formula is valid (over the underlying theory), then it means that there exists an
inductive invariant (of the form of the chosen template) that proves safety.

In theory, the constraint-based approach for verification described in Gulwani
and Tiwari [7] can be generalized to solving the synthesis problem as well. Given
an under-specified system, we can choose templates for the unknown parts of the
system and the unknown inductive invariant. We can then obtain a ∃∀ formula
where all the unknowns are existentially quantified. The constraint solver then
searches for instances of all these unknowns so that the resulting system is proved
safe by the resulting invariant. In practice, however, this naive approach does not
work well for synthesis because the constraint solver often chooses values that
result in a degenerate system (such as, a zeno system, or a deadlocked system)
where the safety property is vacuously true. Moreover, the above method does
not take advantage of the correlations that exist between the various unknowns
and uses a separate template for each unknown. Having too many templates
contributes to the incompleteness and reduces the effectiveness of the approach.

In this paper, we define a specific instance of the synthesis problem, called
the switching logic synthesis problem. We present a constraint-based approach,
inspired by [7], to solve the switching logic synthesis problem. The novelty in
our approach here is that we do not search for the switching conditions di-
rectly. Instead we use constraint solving to find an inductive controlled invariant
set. Hence we only have to choose a single template – for the inductive control
invariant – and none for the unknown switching conditions. In a final postpro-
cessing step, we use the generated controlled invariant to synthesize the actual
switching logic. This postprocessing step generates the weakest (most general)
possible controller from the controlled invariant. Our approach is guaranteed to
synthesize a non-blocking hybrid system that is also safe.

Inductive Controlled Invariant. An invariant for a system is any superset of
the set of reachable states of that system. Safety properties can be proved by
finding suitable invariants. However, invariance is difficult to check in general.
A better alternative is to search for inductive invariants. Inductive invariants
are attractive because inductiveness is a “local” property – for each state in
the inductive set, we only need to check that the immediate next states reached
from that state (rather than all reachable states) are also in the inductive set.
Fortunately, the set of reachable states is always inductive and hence, the use of
inductive invariants is a sound and complete method for safety verification.

In this paper, we consider systems that contain controllable choices, that is,
the user/controller can make selections to achieve some safety goal. For such
systems, the notion corresponding to invariant sets is called controlled invariant.
A controlled reach set is the set of reachable states obtained for some choice
of the controller. A controlled invariant is a superset of some controlled reach
set. As before, the computationally interesting notion is that of an inductive
controlled invariant. We can, therefore, synthesize safe controllers by generating
the correct inductive controlled invariant. In this paper, we pursue this idea in
the context of hybrid systems, though the idea of inductive controlled invariant
is applicable more generally.



Contribution and Outline of the Paper. In this paper, we present a formaliza-
tion of the notion of inductive controlled invariants for multi-modal systems and
describe a sound and complete approach for synthesizing switching logic from
an inductive controlled invariant. (Section 3). Our synthesis technique relies on
the deductive verification approach and does not use the usual game theoretic
approach for controller synthesis, or the controlled reachability approach (See
Section 7 for more discussion). We also describe several sufficient conditions for
a set to be an inductive controlled invariant set. These conditions enable practi-
cal implementations for synthesizing controllers using template-based techniques
(Section 4). Finally, we describe some heuristics to generate large controlled in-
variant sets, that lead to synthesis of the weak controllers (Section 5). We have
performed preliminary experimental evaluation of our approach and presented
some of the results as examples in the paper. We start by formally describing
and motivating the problem in Section 2.

2 The Switching Logic Synthesis Problem

In this section, we describe the synthesis problem considered in this paper. We
motivate our formal definitions with informal descriptions of the problem.

We are interested in controlling multi-modal continuous dynamical systems.
A dynamical system is defined by its state-space, which is the set of all possible
configurations/states of the system, and its dynamics, which defines how the
system changes states (with time). Formally, a continuous dynamical system is
a tuple 〈X, f〉 where X is a finite set of real-valued variables that define the
state space RX and f : RX 7→ RX is a vector field that specifies the continuous
dynamics (as dx

dt = f(x)). We assume that f is Lipschitz, which guarantees the
existence and uniqueness of solutions to the ordinary differential equations.

Proposition 1 (Theorem 2.3.1, p80 [4]). Consider a Lipschitz vector field
f and the differential equation dF (t)

dt = f(F (t)), F (t) = x0. The solution of this
differential equation, denoted by F (x0, t), always exists and is unique. Moreover,
F (x0, t) depends continuously on the initial state x0.

Often a single ordinary differential equation is insufficient to describe the
system. Many systems have multiple modes and they have different dynamics
in each mode. This happens, for example, when we introduce actuators inside
physical devices that change the device’s dynamics. In such cases, the dynamics
of a system is described by a collection of differential equations. We call such
system multi-modal dynamical systems. A multi-modal system has a finite num-
ber of different modes and in each mode, it behaves like a different continuous
dynamical system. For instance, consider the water level in a tank with an inflow
valve. Such a system has two dynamics – one when the valve is closed and one
when it is open. Formally, we define a multi-modal continuous dynamical system
and its semantics as follows.

Definition 1 (Multi-modal Continuous Dynamical System). A multi-
modal continuous dynamical system MDS is a tuple 〈X, f1, f2, . . . , fk, Init〉, where



〈X, fi〉 is a continuous dynamical system (representing the i-th mode) and Init ⊆
RX is the set of initial states. Given an initial state x0 ∈ Init, we say that a
continuous function x(t) : [0,∞) → RX is a trajectory for MDS, if there is an
increasing sequence 0 ≤ t1 < t2 < · · · (either finite or diverging to ∞) such that

– x(0) = x0 and
– for each interval (ti, ti+1), there is a mode j ∈ I such that x(t) is smooth

and dx(t)
dt (t′) = fj(x(t′)) for all t in the range ti < t < ti+1. When i = 0,

then we require j = 1; that is, mode 1 is the initial mode.

Following Definition 1, a multi-modal system can nondeterministically switch
between its modes. However, switching between the different modes in a multi-
modal dynamical system is often controllable. The goal of controlling a system
is to achieve safe operation with some desired performance. For instance, in the
water tank example, the transition between the two modes can be controlled by
opening and closing the valve. The controller may be required to guarantee that
the water level in the tank remains between two thresholds. There are several
controllers that can achieve this property. A controller that opens the valve just
when the water level reaches the lower threshold and closes it soon thereafter,
will keep the level closer to the lower threshold, but it is very restrictive as it
prevents the system from reaching several possible safe states. We are interested
in designing controllers that guarantee safety, but that also do not unnecessarily
restrict the system from reaching safe states.

A controller for a multi-modal system is specified as a switching logic.

Definition 2 (Switching Logic). Given a multi-modal dynamical system MDS :=
〈X, (fi)i∈I , Init〉, a switching logic, SwL := 〈(gij)i 6=j;i,j∈I , (Invi)i∈I〉, contains
guards gij ⊆ RX and state (location) invariants Invi ⊆ RX .

Informally, the guard gij specifies the condition under which the system could
switch from mode i to mode j and the state invariant Invi specifies the condition
which must be respected while in mode i.

A multi-modal system MDS can be combined with a switching logic SwL to
create a hybrid system HS := HS(MDS, SwL) in the following natural way: the
hybrid system HS has ‖I‖ modes with dynamics given by dX

dt = fi in mode i,
and with gij being the guard on the discrete transition from mode i to mode j
and Invi being the state invariant in mode i. The initial states are {1} × Init.
The discrete transitions in HS have identity reset maps, that is, the continuous
variables do not change values during discrete jumps. The semantics of hybrid
systems that define the set of reachable states of hybrid systems are standard [1].

Though semantically well-defined, some hybrid systems have undesirable be-
haviors. For example, it can happen that a hybrid system, in mode i, reaches a
point x on the boundary of Invi, but there is no valid trajectory from x; that is,
there is no discrete transition enabled at x, and following mode i dynamics takes
the system out of Invi. The non-blocking requirement disallows such cases. We
are interested in synthesizing non-blocking hybrid systems.



Definition 3. A hybrid system HS is said to be non-blocking if for every mode
i, and for every point x on the boundary of the state invariant for mode i, there
exists a mode j (may be same as i) and ε > 0 such that (i) x ∈ gij whenever
i 6= j, and (ii) the dynamics of mode j keeps the system within the state invariant
of mode j for at least ε time.

A hybrid system HS is safe with respect to a safety property Safe ⊆ RX if
the set of its reachable states is contained in Safe. Formally, we define the logic
synthesis problem as follows:

Definition 4 (Switching Logic Synthesis Problem). Given a multi-modal
dynamical system MDS := 〈X, f1, f2, . . . , fk, Init〉 and a safety property Safe ⊆
RX , the switching logic synthesis problem seeks to synthesize a switching logic
SwL such that the hybrid system HS(MDS, SwL) is safe with respect to Safe.

3 The Synthesis Procedure

In this section we present a high-level procedure for solving the switching logic
synthesis problem described in Definition 4. We fix our notation and denote the
given multi-modal dynamical system by MDS, its initial set of states by Init and
the given safety property by Safe.

We first define the notion of a controlled invariant set.

Definition 5 (Controlled Invariant). A set CInv is said to be a controlled
invariant for a MDS := 〈X, (fi)i∈I , Init〉 if for all x0 ∈ Init, there exists a
trajectory (Definition 1) x(t) such that x(0) = x0 and for all t ≥ 0, x(t) ∈ CInv.

Note that an invariant requires that every trajectory (starting from an ini-
tial state) remains inside the invariant. In contrast, a controlled invariant only
requires some trajectory remains inside the controlled invariant.

Example 1. Let ẋ denote dx
dt . Consider a multi-modal system with two modes.

In mode 1, ẋ = 1, ẏ = 0, while in mode 2, ẋ = 0, ẏ = 1. If x = 0, y = 0 is the
only initial state, then x ≥ 0 ∧ y ≥ 0 is an invariant, whereas x ≥ 0 ∧ y = 0 is a
controlled invariant that is not an invariant. The set x+y ≤ 0 is not a controlled
invariant.

Definition 5 does not suggest any easy way to compute nontrivial controlled
invariants. Hence, we define the notion of inductive controlled invariants. Since
the dynamics are continuous here, we first need to define a few notions. Recall
that the vector fields fi’s are Lipshitz and hence, by Proposition 1, we have
a unique trajectory Fi(x0, t) in mode i. By Fi(x0, (0, ε)) we denote the set of
all points reached in the time interval (0, ε); that is, Fi(x0, (0, ε)) := {x | x =
Fi(x0, t), 0 < t < ε}. For a set S ⊆ Rn, let ∂S denotes the boundary of S in the
topological sense. We are now ready to define inductive controlled invariants.

Definition 6 (Inductive Controlled Invariant). A closed set CInv is an
inductive controlled invariant for MDS := 〈X, (fi)i∈I , Init〉 if

(A1) Init ⊆ CInv and
(A2) ∀x ∈ ∂CInv : ∃i ∈ I : ∃ε > 0 : Fi(x, (0, ε)) ⊆ CInv



SynthSwitchLogic(MDS, Safe) :

1. Find a closed set CInv that satisfies Conditions (A1) and (A2)

from Definition 6 and Condition (A3) below

(A3) CInv ⊆ Safe

If no such set is found, return failure

2. Let bdryi := {x ∈ ∂CInv | ∃ε > 0 : Fi(x, (0, ε)) ⊆ CInv} for all i ∈ I
3. Let Invi := CInv for all i ∈ I
4. Let gij := bdryj ∪ Interior(CInv) for all i 6= j; i, j ∈ I,

Return SwL := 〈(gij)i6=j;i,j∈I , (Invi)i∈I〉

Fig. 1. Procedure for synthesizing switching logic presented at a semantic level

Intuitively, Condition (A2) in Definition 6 says that for every point on the bound-
ary of CInv, there is a vector field fi that points inwards and brings the system
(instantaneously) inside the set CInv, see also [3]. Just as inductive invariants
are also invariants, inductive controlled invariants are also controlled invariants.

Proposition 2. If a closed set CInv is an inductive controlled invariant for MDS,
then it is also a controlled invariant for MDS.

The complete procedure, at a semantic level, for solving the switching logic
synthesis problem is presented in Figure 1. The key idea behind the synthesis
procedure is to find an inductive controlled invariant set CInv and then design
the guarded transitions so that the resulting hybrid system always remains in
CInv. Conditions (A1), (A2), and (A3) imply that CInv is an inductive con-
trolled invariant that proves safety. It follows from the definition of CInv that
its boundary ∂CInv can be written as a union

∂CInv =
⋃
i∈I

bdryi (1)

such that ∀x ∈ bdryi, it is the case that ∃ε > 0 : Fi(x, (0, ε)) ⊆ CInv. This fact
is used to define the sets bdryi in Line 2. In Line 4, we use the sets bdryi and
CInv to define the guards for the various discrete transitions.

We next state and prove some properties of the procedure SynthSwitchLogic
in Figure 1. We show that the synthesized hybrid system is always non-blocking
and safe (soundness). Furthermore, if there is a safe hybrid system, then under
some fairly general conditions, the procedure SynthSwitchLogic will return a
switching logic SwL and synthesize a safe system HS(MDS, SwL) (completeness).

Theorem 1 (Soundness). For every switching logic SwL returned by procedure
SynthSwitchLogic, the hybrid system HS(MDS, SwL) is non-blocking and safe.

We prove completeness under a technical assumption. We say a hybrid system
HS has the min-dwell-time property if there exists a fixed time duration ta such
that for all reachable states x, if the hybrid system permits a mode switch from
i to j at x, then there must exist a mode k such that the hybrid system permits
a mode switch from i to k at x and the system can stay in mode k for at least ta



units of time starting at x. The min-dwell-time property implies that successive
mode switchings can be forced to be ta units apart.

Theorem 2 (Completeness). For any switching logic SwL, if HS = HS(MDS, SwL)
is a safe hybrid system that satisfies the min-dwell-time property and if Safe is
a closed set, then procedure SynthSwitchLogic will return a switching logic.

Although the above procedure is sound and complete, it is not computation-
ally feasible as there is no easy way to check for Condition (A2). In the next
section we will replace Condition (A2) by something stronger that can be easily
computed. This causes loss of completeness, but it preserve soundness.

4 Implementing the Procedure

The procedure for solving the switching logic synthesis problem was described
at a semantic level in the previous section. In this section, we show how that
procedure can be concretely implemented.

Recall that a set CInv is an inductive controlled invariant if it satisfies Con-
ditions (A1) and (A2). Condition (A2) is not easy to check as Fi’s are solutions
of differential equations. We solve this problem by replacing this condition by a
stronger condition, (B2), which, as we show later, can be tested without explic-
itly computing Fi. Let Interior(CInv) := CInv− ∂CInv. We ensure that CInv
is an inductive controlled invariant (that proves safety) by checking:

(B1) Init ⊆ CInv

(B2) ∀x ∈ ∂CInv : ∃i ∈ I : ∃ε > 0 : Fi(x, (0, ε)) ⊆ Interior(CInv)
(B3) CInv ⊆ Safe

We will now present a condition that is equivalent to (B2) and that can be easily
computed. We first need to fix a representation for CInv.

We use semi-algebraic sets as candidates for CInv ⊆ RX . Since CInv is un-
known, we use the idea of templates. A template is a formula (in the theory of
reals) with free variables X ∪ U . Here U are the (real-valued) unknown coeffi-
cients that need to be instantiated to yield the desired CInv. We use boolean
combinations of polynomial equalities and inequalities (semi-algebraic sets) as
the formulas. Once a template is fixed, we can write Conditions (B1), (B2)
and (B3) as an ∃∀ formula over the theory of reals [7]. Concretely, let p(U,X)
be a polynomial and p(U,X) ≥ 0 be the chosen template for searching for CInv.
We restrict ourselves to the case of a single inequality p(U,X) ≥ 0 for simplicity
of presentation. For example, u1x1 + u2x2 ≥ u3 is a linear template over 2 vari-
ables X = {x1, x2} and 3 unknown coefficients U = {u1, u2, u3}. The following
formula states that there is a choice of values for U such that the resulting set,
p(U,X) ≥ 0, is a controlled invariant sufficient to prove safety.

∃U : ∀X : (X ∈ Init⇒ p(U,X) ≥ 0) ∧ (p(U,X) ≥ 0 ⇒ X ∈ Safe) ∧
(p(U,X) = 0 ⇒

∨
i∈I

Lfip(U,X) > 0) (2)



SynthSwitchLogicImpl(MDS,Init,Safe)

0. Choose template for controlled invariant, say p(U, X) ≥ 0
1. Generate ∃∀ constraint for template to be a controlled invariant

∃U : ∀X : (X ∈ Init⇒ p ≥ 0) ∧ (p ≥ 0 ⇒ X ∈ Safe) ∧ (p = 0 ⇒
W

i∈I Lfip > 0)
1. Solve the ∃∀ constraint and get values u for U
2. Let bdryi := (p(u, X) = 0 ∧ Lfip > 0) for all i ∈ I
3. Let Invi := (p(u, X) ≥ 0) for all i ∈ I
4. Let gij := bdryj ∨ (p(u, X) > 0) for all i 6= j; i, j ∈ I,

Return SwL := 〈(gij)i6=j;i,j∈I , (Invi)i∈I〉

Fig. 2. A sound procedure for solving the switching logic synthesis problem.

Here Lfip denotes the derivative of p with respect to time t and is called the
Lie derivative of p with respect to the vector field fi. It can be symbolically
computed using the chain rule as,

Lfip :=
∑
x∈X

∂p

∂x

dx

dt
.

Note that we have used a test on the Lie derivatives to encode Condition (B2).
This test is equivalent to (B2) and allows us to verify it without requiring Fi.

Remark 1. It is tempting to think that replacing > by ≥ in Formula (2) will
make the formula equivalent to checking Condition (A2), but this is not true.

If each of the vector fields, fi, is specified using polynomials (i.e., in each
mode, dX

dt is a vector of polynomials), then Lfip is simply a polynomial. If
Init and Safe are semi-algebraic sets, then the membership tests (X ∈ Init
and X ∈ Safe) can also be written as formulas using only polynomials. Thus
Formula (2) is a ∃∀ formula consisting only of polynomial expressions.

Corollary 1. If Formula (2) is valid in the theory of reals, then there is a
controlled invariant CInv that proves safety.

Corollary 1 immediately gives us a sound procedure that reduces the switch-
ing logic synthesis problem to solving of an ∃∀ constraint in the theory of reals.
We illustrate the procedure on the following example.

Example 2. Consider a train gate controller with two modes: In the about to
lower mode (1), distance x of the train from the gate decreases according to
ẋ = −50 and the gate angle g does not change. In the gate lowering mode (2),
we have ẋ = −50 and ġ = −10. The initial state is g = 90∧x = 1000. We wish to
synthesize the switching logic so that the system always stays in the safe region
x > 0∨ g ≤ 0. We assume a template of the form x+a1g ≥ a2 for the controlled
invariant. Writing out Formula (2), we get:

∃a1, a2 : ∀x, g :
(x = 1000 ∧ g = 90 ⇒ x + a1g ≥ a2)∧ (Condition (B1))
(x + a1g ≥ a2 ⇒ x > 0 ∨ g ≤ 0)∧ (Condition (B3))
(x + a1g = a2 ⇒ −50 + 0 > 0 ∨ −50− 10a1 > 0) (Condition (B2))



Our solver returns a1 = −10, a2 = 50; that is, we get x − 10g ≥ 50 as the
controlled invariant. The resulting hybrid system has x− 10g ≥ 50 as the state
invariant for each mode. The guards for transitions are g12 = x − 10g ≥ 50 (as
dynamics for mode 2 points inwards everywhere on the boundary) and g21 =
x− 10g > 50 (dynamics for mode 1 never points inwards on the boundary, so no
boundary point gets assigned to g21). So, if the system starts in mode 1, it can
continue in 1 until x− 10g = 50 is true, whence the system will have to shift to
mode 2. The resulting hybrid system is safe and non-blocking.

4.1 A Variant Procedure

In the previous section, we approximated the semantic condition (A2) by the
constraint p = 0 ⇒

∨
i∈I Lfip > 0. As Corollary 1 shows, this is a sound approx-

imation. However, the requirement that a vector field points strictly inwards,
which is captured by Lfi

p > 0, is too strong and leads to incompleteness, which
leads to failure in finding suitable controlled invariant sets in practice. In this
section, we weaken Formula (2) so that it can be used to handle more examples.

We weaken Condition (B2) and use the following weaker version of For-
mula (2) to test if p(X, U) ≥ 0 is an inductive controlled invariant:

∃U∀X : (X ∈ Init⇒ p(U,X) ≥ 0) ∧ (p(U,X) ≥ 0 ⇒ X ∈ Safe) ∧
p(U,X) = 0 ⇒

∨
i∈I

(Lfi
p > 0 ∨ (Lfi

p = 0 ∧
∧
j 6=i

Lfj
p < 0)) (3)

Formula (3) says that at the boundary (p = 0) of the controlled invariant (p ≥ 0),
either some vector field, say fi, points strictly inwards (Lfip > 0), or exactly one
vector field is tangential (Lfip = 0) and all others point strictly outside (Lfj p <
0). The counterintuitive condition – vector fields pointing strictly outwards –
helps in proving that the tangential vector field will keep the system inside the
controlled invariant.

We can now replace the constraint in Step (1) of the procedure in Figure 2 by
Formula (3) and get a new and more powerful procedure for solving the switching
logic synthesis problem. We can again prove soundness of the technique.

Corollary 2. If Formula (3) is valid in the theory of reals, then there is a
controlled invariant CInv that proves safety provided ‖I‖ > 1.

Remark 2. The procedure could be unsound when ‖I‖ = 1. This unsoundness
is related to the comment in Remark 1.

We illustrate the advantage of weakening the constraint for the inductive test
by using the following example.

Example 3. Consider a system with continuous variable x and y and two modes.
In mode 1, ẋ = 0, ẏ = −1 and in mode 2, ẏ = 0, ẋ = −1. The initial state



is x = 10, y = 10 and the desired safety property is y ≥ 0. We start with the
template a1x + a2y ≥ a3. Formula (3) then becomes:

∃a1, a2, a3 : ∀x, g :
(x = 10 ∧ y = 10 ⇒ a1x + a2y ≥ a3)∧ (Condition (A1))
(a1x + a2y ≥ a3 ⇒ y ≥ 0)∧ (Condition (A3))
(a1x + a2y = a3 ⇒ −a1 > 0 ∨ (−a1 = 0 ∧ −a2 < 0)∨

−a2 > 0 ∨ (−a2 = 0 ∧ −a1 < 0)) (Condition (A2))

We get a solution a1 = 0, a2 = 1, a3 = 1. So the invariant obtained is y ≥ 1.
Note that on the boundary of the controlled invariant, the dynamics in mode 2
moves along the boundary and that of mode 1 points outwards. The previous
method fails to find a controlled invariant for this example.

Example 4. Consider the train gate controller model from Example 2. Observe
that the controller synthesized is very conservative and forces the system to
switch from mode 1 to 2 in t ≤ 1 units. Applying the variant procedure on this
example, we get the following ∃∀ formula:

∃a1, a2 : ∀x, g :
(x = 1000 ∧ g = 90 ⇒ x + a1g ≥ a2)∧ (A1)
(x + a1g ≥ a2 ⇒ x > 0 ∨ g ≤ 0)∧ (A3)
(x + a1g = a2 ⇒ −50 > 0 ∨ (−50 = 0 ∧ −50− 10a1 < 0)∨

−50− 10a1 > 0 ∨ (−50− 10a1 = 0 ∧ −50 < 0)) (A2)

This time the solver returned a1 = −5, a2 = 50 as the solution, which gives
x − 5g ≥ 50 as the controlled invariant. So the resulting hybrid system has
x−5g ≥ 50 as the state invariant for each mode and the guards g12 = x−5g ≥ 50
and g21 = x − 5g > 50 are computed. In this case, the switch from mode 1 to
mode 2 could be delayed by as much as 10 units.

5 Synthesizing a Good Controller

In the previous section, two sound approaches were presented for solving the
switching logic synthesis problem. Neither method gives any guarantee on the
quality of the generated controller. A controller that minimally restricts the
dynamics – and consequently results in a system with a maximal reach set – is
preferable since it provides more opportunities for being refined later for other
requirements. In this section, we present heuristics that improve the quality of
solution generated by the two approaches presented in Section 4.

The size of the generated controlled invariant is a good measure of the quality
of the solution. We desire to synthesize the largest possible inductive controlled
invariant CInv because this would allow the maximal possible behaviors. It is
not immediately clear how this can be achieved in our approach. Intuitively, the
problem of finding the largest inductive controlled invariant is naturally seen
as an optimization problem, whereas in our approach of using constraints, we
are casting the problem as a satisfiability problem that asks for some solution
and not the “best” solution. We now present three different ways to address the
above problem.



5.1 Binary Search

The first solution for finding good controllers is based on iteratively searching for
larger controlled invariants. In the first iteration, we use one of the methods from
Section 4 to compute CInv. In each subsequent iteration, we add an additional
constraint that forces search for a larger set CInv. For example, if we use the
template p(U,X) ≥ 0, and the first iteration returns the controlled invariant
p(u, X) ≥ 0, then in the next iteration we use the template p′(v,X) := p(u, X) ≥
v (containing only one parameter v) and add an additional constraint v ≤ −1.
If the second iteration is successful, then the controlled invariant generated in
the second iteration will necessarily contain the controlled invariant generated
in the first iteration. In the case when we know a lower bound on v, say lb < 0,
then we can search for the optimal v by using a binary search in the interval
[lb, 0]. This approach can be used to find the largest controlled invariant in the
set {p(u, X) ≥ v | v ∈ [lb, 0], v an integer} in O(log ‖lb‖) iterations.

5.2 Encoding Optimality Constraints Directly

We now present a different technique for capturing the optimality requirement.
It is based on adding more constraints to the ∃∀ formula. Intuitively, the new
constraints say that at least one of the implications in the ∃∀ formula is tight.

A reasonable heuristic for identifying if CInv is maximally large is to test if
the boundary of CInv touches the boundary of the unsafe set Safe. Hence, we
introduce the following additional constraint in the original ∃∀ formula:

∂CInv ∩ ∂Cl(Safe) 6= ∅

This constraint can be written as an ∃ formula. Since we assume the sets CInv
and Safe are given using polynomial inequalities, the boundaries of these sets can
be expressed using polynomial equations and inequalities. The above constraint
corresponds to tightening Condition (A2).

Example 5. Consider the train gate controller from example 4. The controlled
invariant obtained by using the variant procedure on this example is x−10g ≥ 50.
Observe that this is not the largest controlled invariant possible because when
x = 0, this invariant implies g ≤ −5, whereas safety just requires g ≤ 0. If we
add an additional constraint for tightening condition A2, which in this case is
∃x1, g1 : x1 +a1g = a2∧x = 0 ⇒ g = 0, to the ∃∀ formula, we get x−10g ≥ 0 as
the controlled invariant. This is the largest controlled invariant for the template
x− 10g ≥ v.

Tightening Condition (A3). Before we describe the constraint for encoding
tightness of Condition (A3), we need a few details on the procedure we use to
solve the ∃∀ formulas from [7]. The ∃∀ formulas are solved in two steps. In the
first step, the ∀ quantifier is eliminated and replaced by new ∃ quantifiers. The
result of the first step is a purely existentially quantified formula which is solved
using SMT solvers in the second step. The first step is achieved using a variant
of Farkas Lemma – which is a technique for replacing ∀ by ∃ quantification.



Lemma 1. It is the case that Formula (4) is implied by Formula (5).

∃U : ∀X : ((
∧
j

pj = 0) ∧ (
∧
k

qk > 0) ⇒ p ≥ 0) (4)

∃U, νj , λk, λ, µ : λk ≥ 0 ∧ λ ≥ 0 ∧ µ > 0 ∧

(∀X : (
∑

p

νjpj +
∑

k

λkqk + λ− µp = 0)) (5)

Lemma 1 can be used to eliminate the internal ∀X quantifier by noting that the
polynomial in Formula (5) is zero for all X, if and only if, all coefficients of all
power products of X in that polynomial are identically 0. We note that the term
λ in Formula (5) is a “slack” term. If Formula (5) is satisfied when λ = 0, then
we say that the implication of Formula (4) is tight.

Now consider Condition (A3) which encodes the boundary condition. In
Section 4, this condition was approximately captured in Formula (2) and For-
mula (3). Using elementary logical manipulations, we can rewrite these formulas
in the form

∃U :
∧
i

(∀X : (
∧
j

pij = 0) ∧ (
∧
k

qik > 0) ⇒ pi ≥ 0). (6)

Apply Lemma 1 to each outer conjunct and let λi be the slack term for the i-th
conjunct.

Now we are ready to state the constraint that enforces tightness on Condi-
tion (A3). This new constraint is not added to the ∃∀ formula. It is added to the
existential formula generated after the ∀ quantifiers have been eliminated using
Lemma 1. The constraint we add is the following:

φopt :=
∨
i

(λi = 0) (7)

If the existential formula, with φopt added, is satisfiable and we get a controlled
invariant p(u, X) ≥ 0, then we can show the obtained controlled invariant is the
“best possible” among the set {p(u, X) ≥ α | α ∈ R}.

Theorem 3 (Correctness). Let u be a set of values for variables U that satisfy
the existential formula φ∃ ∧ φopt , where φ∃ is the existential formula generated
from Formula (2) (or Formula (3)) using Lemma 1. Then, there is no controlled
invariant p(u, X) ≥ α for any α < 0 that also satisfies the existential formula
generated from Formula (2) (or Formula (3)) using p(u, X) ≥ α as a template.

6 Extensions and Future Work

In our presentation so far, we have restricted all discussion, for simplicity, to sim-
ple templates of the form p(U,X) ≥ 0. However, the two procedures described in



Section 4 can be generalized to the case when the template is a boolean combi-
nation of nonstrict polynomial inequalities. When the template is a conjunction,
say p1 ≥ 0 ∧ p2 ≥ 0, then Formula (2) generalizes to

∃U∀X : (X ∈ Init⇒ p1 ≥ 0 ∧ p2 ≥ 0) ∧ (p1 ≥ 0 ∧ p2 ≥ 0 ⇒ X ∈ Safe) ∧
(p1 = 0 ∧ p2 > 0 ⇒

∨
i∈I

Lfip1 > 0) ∧ (p1 > 0 ∧ p2 = 0 ⇒
∨
i∈I

Lfip2 > 0) ∧

(p1 = 0 ∧ p2 = 0 ⇒
∨
i∈I

Lfip1 > 0 ∧ Lfip2 > 0)

When the template is a disjunction, say p1 ≥ 0 ∨ p2 ≥ 0, then Formula (2)
generalizes to

∃U : ∀X : (X ∈ Init⇒ p1 ≥ 0 ∨ p2 ≥ 0) ∧ (p1 ≥ 0 ∨ p2 ≥ 0 ⇒ X ∈ Safe) ∧
(p1 = 0 ∧ p2 < 0 ⇒

∨
i∈I

Lfip1 > 0) ∧ (p1 < 0 ∧ p2 = 0 ⇒
∨
i∈I

Lfip2 > 0) ∧

(p1 = 0 ∧ p2 = 0 ⇒
∨
i∈I

Lfip1 > 0 ∨ Lfip2 > 0)

We can similarly generalize Formula (3) for the case when the template is a
disjunction or conjunction of polynomial inequalities. The following example
illustrates this case.

Example 6. Consider a thermostat controller with two continuous variables tem-
perature (t) and power (p) and two modes on and off. In the on mode, the dy-
namics is ṗ = +1 ∧ ṫ = p − 10 and in the off mode, it is ṗ = −1 ∧ ṫ = p − 10.
The initial state is p = 10, t = 75 and the mode is on. The desired safety prop-
erty is 70 ≤ t ≤ 80. We start with the following conjunctive template for the
controlled invariant: a1p

2 + a2p + a3t + a4 ≥ 0 ∧ b1p
2 + b2p + b3t + b4 ≤ 0.

Using the generalization of Formula (3) to conjunctive templates, we get a ∃∀
formula. Solving this formula, we get a1 = −1, a2 = 20, a3 = 2, a4 = −172, b1 =
1, b2 = −20, b3 = 100, b4 = 23 as one possible solution. This gives the invariant
−(p−10)2

2 + t ≥ 72 ∧ (p−10)2

2 + t ≤ 77. The switching conditions can be obtained
from the controlled invariant by using the procedure SynthSwitchLogic. It is
easy to see that this is a safe controller. However it is not the most liberal con-
troller. If we add an additional constraint to tighten the Condition (A2) (make
the controlled invariant touch the boundary of the unsafe set), then we obtain
−(p−10)2

2 + t ≥ 70 ∧ (p−10)2

2 + t ≤ 80 as the controlled invariant. In fact, this is
the most liberal controller for this system.

The methods discussed in Section 5 can also be extended to the case of
conjunctive and disjunctive templates, but we do not discuss the details here.

Our basic approach can be adapted to handle natural variants of the switch-
ing logic synthesis problem. First, note that we have assumed that each mode
of the multi-modal system has the complete state space as its given state invari-
ant. If the given modes have nontrivial state invariants, we can use them in our



constraints and the synthesized controller can potentially refine them. Second,
our synthesized controller could have zeno behaviors. It appears that making
the constraints stronger (as done in Section 4) already reduces the possibility of
synthesizing zeno hybrid systems. This aspect needs further investigation.

We have a preliminary implementation of the approaches described in Sec-
tion 4, along with the optimality variants of Section 5. The input is a multi-modal
system, a safety property, and a template – all specified using only polynomi-
als – and the output is a switching logic, if it exists. This implementation was
used to solve the examples in the paper and their variants. We currently use the
technique from [7] for solving the ∃∀ constraints. Future work involves improving
this technique using a symbolic nonlinear solver. This will enable applicability to
larger and more complex examples. Our constraint-based technique relies heav-
ily on the choice of the template. We currently start with linear or quadratic
templates that have 1 to 4 conjuncts or disjuncts. It will be interesting to find
classes of systems for which a given class of templates is complete.

7 Related Work

Constraint-based techniques have been used for safety verification of hybrid sys-
tems [7, 12, 11], wherein ∃∀ constraints are generated from the user-provided
invariant templates. The various approaches differ in the form of the invariants
considered, the technique used to generate the ∃∀ formula, and the approach for
solving it. In this paper, we present a constraint-based technique for the synthesis
problem that also involves generating and solving a ∃∀ formula from template
controlled invariants. The novelty of our work lies in the formalization of in-
ductive controlled invariant approach for solving synthesis problem and showing
that it can be reduced to solving ∃∀ constraints.

There is a lot of work on synthesis of controllers for hybrid systems, which
can be broadly classified into two categories. The first category finds controllers
that meet some liveness specifications, such as synthesizing a trajectory to drive
a hybrid system from an initial state to a desired final state [9, 8]. The second
category finds controllers that meet some safety specification. Our work falls in
this category. For a detailed discussion on the related work in this category, we
refer the reader to Asarin et.al. [2]. There are two main approaches for synthesis:
direct approaches that compute the controlled reachable states in the style of
solving a game [2, 13], and abstraction-based approaches that do the same,
but on an abstraction or approximation of the system [10, 6]. Some of these
approaches are limited in the kinds of continuous dynamics they can handle.
They all require some form of iterative fixpoint computation. Our work here,
based on synthesizing inductive controlled invariants, is an entirely different
approach for controller synthesis that does not require any fixpoint computation.

There is a large body of work in the area of program synthesis. These works
differ in the kind of program synthesized and the techniques used. The only
work that uses a constraint-based approach is that of Colón, who synthesizes



imperative programs computing polynomial functions from partially specified
programs and their invariants [5].

8 Conclusion

This paper formalized the notion of inductive controlled invariants and showed
that inductive controlled invariants can be used to synthesize controllers that
satisfy some safety requirements. Theoretically, this approach is sound and com-
plete. We adapted this approach to the problem of synthesizing switching logic
for multi-modal systems. We presented several sufficient conditions for a set to be
an inductive controlled invariant set for a multi-modal dynamical system. These
sufficient conditions were used to synthesize controllers using template-based
techniques, which were then adapted to generate optimal controlled invariants.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(3):3–34, 1995.

[2] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli. Effective synthesis of
switching controllers for linear systems. Proc. IEEE, 88(7):1011–1025, 2000.

[3] F. Blanchini. Set invariance in control. Automatica, 35:1747–1767, 1999.
[4] K. Burns and M. Gidea. Differential Geometry and Topology: With a view to

dynamical systems. Chapman & Hall, 2005.
[5] M. Colón. Schema-guided synthesis of imperative programs by constraint solving.

In LOPSTR, pages 166–181, 2004.
[6] J. Cury, B. Brogh, and T. Niinomi. Supervisory controllers for hybrid systems

based on approximating automata. IEEE Trans. Aut. Control, 43:564–568, 1998.
[7] S. Gulwani and A. Tiwari. Constraint-based approach for analysis of hybrid

systems. In CAV, volume 5123 of LNCS, pages 190–203. Springer, 2008.
[8] T. Koo and S. Sastry. Mode switching synthesis for reachability specification. In

Proc. HSCC 2001, LNCS 2034, pages 333–346, 2001.
[9] P. Manon and C. Valentin-Roubinet. Controller synthesis for hybrid systems with

linear vector fields. In Proc. IEEE Symp. on Intell. Control, pages 17–22, 1999.
[10] T. Moor and J. Raisch. Discrete control of switched linear systems. In Proc. Eur.

Control Conf. ECC’99, 1999.
[11] S. Prajna and A. Jadbabaie. Safety verification of hybrid systems using barrier

certificates. In HSCC, volume 2993 of LNCS, pages 477–492, 2004.
[12] S. Sankaranarayanan, H. Sipma, and Z. Manna. Constructing invariants for hybrid

systems. In HSCC, volume 2993 of LNCS, pages 539–554, 2004.
[13] C. Tomlin, L. Lygeros, and S. Sastry. A game-theoretic approach to controller

design for hybrid systems. Proc. of the IEEE, 88(7):949–970, 2000.


