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Abstract

The lips are a critical factor in spoken communication and ex-
pression. Accurately tracking and synthesizing their motions
from arbitrary head poses is essential for high-quality video
coding. Our approach is to build and train 3D models of lip
motion to compensate for the limited information available
during tracking. We use physical models as a prior and com-
bine them with statistical models, showing how the two can
be smoothly and naturally integrated into a synthesis method
and a MAP estimation framework for tracking. Because the
resulting description has a small number of parameters, it is
ideal for coding as well. We show how our methods allow
us to accurately recover the 3D lip shape from raw 2D video
data and resynthesize this shape with a small number of pa-
rameters.

1 Introduction

It is well-known that lips play a significant role in spoken com-
munication. Summerfield’s classic 1979 study [6] showed
how presence of the lips alone (without tongue or teeth) raised
word intelligibility in noisy conditions from 22.7% to 54% on
average and up to a maximum of 71%. Not only can the lip
shape be used to reduce noise and enhance intelligibilty for
human/machine speech understanding, but also as a signif-
icant feature for expression understanding. As result, it is
critical to accurately capture and resynthesize lip motions for
high quality video coding.

However, to realize this in practice, it is necessary to ro-
bustly and accurately track the lips in 3D. Why is 3D so
critical? In natural conversation and expression, we move
our heads constantly, both in translation and rotation. If we
cannot contend with this simple fact, we will never reach the
unconstrained interfaces we desire. Computer vision tech-
niques have been developed that accurately track the head’s
3D rigid motions, leaving the formidable task of tracking the
remaining 3D non-rigid deformations.

In this paper, we develop a method for successfully facing
this difficult problem. One of the most vexing issues sur-
rounding the lip tracking problem has always been the poor
quality of the available data – contours, color, flow, etc., are
all obscured at some point or other by lighting, the speed of
motion, and so on. Our approach is thus to build and rely
on strong models of the lip shape to correct for anomalies in
the data. In essence, our model learns the permissible space
of lip motions. The incoming data from the video stream is

then regularized by this model – we find the permissible lip
shape that could best account for the data. In this way, we
remain robust to the unavoidable noise in the raw features.
To build and train this model, we start by giving a lip-shaped
mesh generic physical characteristics using the Finite Element
Method (FEM). This acts a physically based “prior” (i.e., lo-
cally elastic behavior) on how things move. We then train this
model with 3D data of real lip motions and blend the physical
prior with the statistical characteristics of this data. Finally,
we use this physical-statistical model in a MAP estimation
framework to find the locally most probable lip shape that
can account for the incoming data. Along the way, we have
developed a full-fledged synthesis model as well – by moving
the model through the permissible lip space, we can generate
images of the 3D lips in motion. In addition, this space is
parametrized by only ten parameters (which have a great deal
of interframe correlation), allowing for efficient coding of the
lip shape.

Through this method, we have been able to robustly and
accurately track lip shapes in 3D from arbitrary head poses
in a video stream. We will demonstrate our results with an
illustration of the learned lip subspace, numerical figures on
reconstruction accuracy, examples of static fits of the model,
and audio-visual sequences demonstrating the tracking and
synthesis in action.

1.1 Background

In looking at the prior work on lip modeling and tracking,
there are two major groups of models. The first of these
contains the models developed for analysis, usually intended
for input into a combined audio-visual speech recognition
system. The underlying assumption behind most of these
models is that the head will be viewed from only one known
pose. As a result, these models are only two-dimensional.
Many are based directly on image data [5]; others use such
low level features to form a parametrized description of the
lip shape [1]. Some of the most interesting work done in
this area has been in using a statistically trained model of lip
variations (such as [4]). However, since these are 2D models,
the changes in the apparent lip shape due to rigid rotations
have to be modeled as complex changes in the lip pose. In
our work, we begin by extending this philosophy to 3D.

The other category of lip models includes those designed
for synthesis and facial animation. These lip models are
usually part of a larger facial animation system, and the lips
themselves often have a limited repertoire of motions. To
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their credit, these models are mostly in 3D. For many of the
models, though, the control parameters are defined by hand.
A few are based on the actual physics of the lips: they attempt
to model the physical material and musculature in the mouth
region [7]. Unfortunately, the musculature of the mouth is
extremely complicated and has proved to be very difficult to
model accurately. Even if the modeling were accurate, this
approach would still result in a difficult control problem.

We hope to fill the gap in these approaches with our learned
3D model, which can be used for both analysis and synthesis.

2 The Model

In the following section, we give a brief description of the
choice of the model shape and the physics used. A more
detailed account of the finite element method and the training
method for our model is given in [2].

The underlying representation of our initial model is a
mesh in the shape of the lips. At the initial stage, before
any training has occurred, we have no learned notion of the
lip shape. We thus simply extract the region surrounding the
mouth in a Viewpoint Data Labs model of the human head
and make a few minor changes to aid the physical modeling
steps ahead. The final model has 336 faces and 204 nodes,
resulting in 612 degrees of freedom (three per node).

Similarly, we have no real idea what the inherent degrees
of freedom of the lips are. However, we do know something
about how the lip material behaves, namely that it acts in a
locally elastic way. When one portion of the lips is pulled on,
the surrounding region stretches with it. We express this no-
tion mathematically in our model by using the Finite Element
Method (FEM). We use this method to give this initial mesh
the properties of a generic elastic material – i.e., we treat the
mesh as if it were formed from a rubber sheet. The resulting
first-stage model is a “physical prior” for our training stages
to come.

3 The Observations

To train this model to have the correct 3D variations of the
lips, it was necessary to have accurate 3D data. Seventeen
points were marked on the face with ink: sixteen on the lips
and one on the nose. The placement of these points is shown
in figure 1. The points were chosen to obtain a maximally
informative sampling of the 3D motions of the lips. Once the
points were marked, two views of the points were taken by
using a camera-mirror setup to ensure perfect synchronization
between the two views. The points were tracked over 150
frames at a 30Hz frame rate using supervised normalized
correlation. It was attempted to have as great a variety of lip
motions within this brief period as possible. The two views
were then used to reconstruct the 3D point locations. Finally,
the points were transformed into a head-aligned coordinate
system to prevent the rigid motion of the head from aliasing

Figure 1: Locations of marked points on the face

with the non-rigid motions of the lips. See [2] for further
details on these methods. Methods to continue the training
using other forms of input data (lipstick, unmarked but clean
data, etc.) are discussed in [3].

4 Training the Model

In order to relate the training data to the model, the corre-
spondence between data points and model nodes had to be
defined. This was a simple process of examining a video
frame containing the marked points and finding the nodes on
the lip model that best matched them in a structural sense.
The difference between the observed point locations and their
current locations in the model was then the displacement goal.

4.1 Reaching the Displacement Goals

The issue was then how to reach these displacement goals. The
recorded data points constrained only 48 degrees of freedom
(16 points on the lips with three degrees of freedom each) out
of 612. We need the physically correct solution for the rest:
we want to pin down the constrained points and let the other
points go to their equilibrium locations.

Mathematically, this idea translates to the constraint of
minimum strain. We wish to use the physics of the model to
smooth out the regions where we have no observation data by
minimizing the strain in the model. Fortunately, in the finite
element framework, this solution can be found analytically
and with little computation. Details of this method can be
found in [2].

Using this method, we find the displacement of all the
model nodes for all the frames. We then find the 10 linear
modes that account for the greatest amount of variance in
the input data by performing principal components analysis
(PCA) on the sample covariance matrix. We can then recon-
struct the modal covariance and K�1 matrices using these
modes. We thus have a parametric description of the sub-
space of lip shapes (the modes) and a probability measure for
the subspace (the modal covariance matrix).

Frontal and profile views of the the mean displacement (ū)
and some of the first few modes are shown in figure 2 below.
Though we are only using the first ten modes, it was found
that these account for 99.2 percent of the variance in the data.
We should thus be able to reconstruct most shape variations
from these modes alone.



Figure 2: Front and side views of the mean displacement and
some characteristic modes

5 Tracking the Lips in Raw Video

At this point, we have a parametric model of the permissible
lip shapes and a probability model for the resulting subspace.
The remaining task is to fit this model to the raw video stream
in the absence of special markings on the lips or face. As we
have stated from the beginning,our approach will be to find the
lip shape within the learned subspace that best accounts for the
incoming data. Statistically, this means finding the parameters
with the highest a posterioriprobabilitygiven the observations
and our prior model. Intuitively, though, it simply means
balancing the potentially noisy data from our observations
with our learned notion of what shapes are permissible.

Any of a number of features (or a combination thereof)
could be used as observations in our framework – color clas-
sification, optical flow, contours, tracked points, etc. For
this implementation, we have chosen to use only the color
content of the various regions, as it is a robust and easily com-
putable candidate. Of course, this feature will not directly
give us any kind of shape information – it will only give us
the probabilities of each pixel belonging to the color classes,
fmodel = f(colorjmodel). From our statistical perspective,
though, it is clear how this data should be used. We wish to
find the set of parameters p� for our model that maximizes its
posterior probability given the observations:

p
�

= arg max
p

f(pjO) = arg max
p

f(Ojp)f(p)

f(O)
(1)

we can neglect the denominator in the last expression, since
it will be the same for all p. We can also maximize the log of
the quantity instead of the original form, since the logarithm
is a monotonic function. This leaves us with

p
�

= arg max
p

�
logf(Ojp) + logf(p)

�
(2)

Another piece of information we have is the color class of each
point on our model. As shown in the figures above, the model
contains the lips and some surrounding skin, and we know
a priori which triangular faces belong to which class. If we
now project the model in state p into the camera view, we can
compute the term f(O(x; y)jp) for each point in the visible
surface of the model. This value is simply the probability of
the observed color value at (x; y) belonging to the same class
as the point in the model that is projected onto it. To find the

overall probability of the model in this state, we simply take
the product of the observations, which becomes a sum under
the logarithm.

In order to apply these ideas to our tracking problem, we
first train models of the color classes for the skin and lips.
Next, we compute the probability maps for the image (i.e.,
2D maps whose entries are the probability values of the given
class). The model is then initially positioned based on the
rigid pose and geometry of the head.

From this initial fit, we compute the gradient of the opti-
mization function in the parameter space and take a step in this
direction, iterating this process to climb to a local maximum
of the posterior probability. The gradient we seek is:

d logf(pjO)
dp

=
d logf(Ojp)

dp
+

d logf(p)
dp

(3)

We then use this results to take a step in the direction of the
overall gradient. We continue this ascent process until we have
converged to a local maximum, which typically occurs in less
than twenty iterations. The computations necessary for these
calculations can be minimized by using a few simplifications,
as is shown in a forthcoming paper [3].

6 Results

In this section,we demonstrate the reconstruction and tracking
capabilities of our method. We first show numerical results
that demonstrate the capability of our model to accurately
reconstruct 3D lip shapes from 2D data. We then go on to
show examples of using the tracking method described above
to capture the lip shape from a 2D video stream and reconstruct
the 3D shape. We show this both with example fits in static
frames and with audio-visual sequences. We also discuss the
advantages of the modal form of our model.

6.1 Reconstruction Capabilities

As we have previously discussed, one of the major arguments
behind the 3D representation was that we could use a small
number of observations from any viewpoint to find a good
estimate of the model shape. This is because we have learned
the subspace of permissible lip shapes. Without the model,
the 2D observations would leave far too many degrees of
freedom unconstrained. With the model, as we will show,
we can accurately reconstruct all degrees of freedom. We
demonstrate this by reconstructing the 3D shape using only
x-y (frontal view) data and only y-z (side view) data.

The mean-squared reconstruction errors per degree of free-
dom were then found for two cases of 2D observation scenar-
ios and are shown in the table below. The results are given in
the coordinate system of the model, in which the model is 2.35
units across, 2.83 units wide, and 0.83 units deep. The table
shows the reconstruction error using only the first ten modes.
Note that in both cases (see table 6.1), the reconstruction is
quite accurate in terms of mean-squared error. This shows



that the ten learned modes are a sufficiently strong charac-
terization to accurately reconstruct the 3D lip shape from 2D
data.

Data Used 3D Reconstruction Error

xy (frontal) 6.70e-3
yz (profile) 7.13e-4

6.2 Tracking and Reconstruction Results

In this section, we show several examples of using our al-
gorithm to estimate the 3D lip shape. The figures below
(figures 3, 4, 5, and 6) show some other frames with the initial
image, the final converged fit, and the profile view of the es-
timated model. The audio-visual sequences these frames are
taken from, along with the tracking and reconstruction views,
are available at <http://www.media.mit.edu/˜sbasu/lips>.

Figure 3: Initial image, final fit, and 3D reconstruction

Figure 4: Initial image, final fit, and 3D reconstruction

It is worth noting here the flexibility that we gain from
having a modal representation. As we have already described,
the first few modes account for the greatest variation in lip
shape, whereas the last few contribute the least. The more
modes we use, the more accurately we can fit the shape.
The fewer modes we use, the more robustly we can reject
noise, since we only move along the directions of the greatest
variation. The modal representation thus gives us the powerful
capability of moving smoothly between high accuracy (many
modes) and high robustness (few modes), allowing us to adapt
to the quality of the available data and the bandwidth of the
communication channel.

7 Conclusions and Future Directions

We have presented a method for estimating and reconstructing
the 3D shape of human lips from raw video data. This method
began with a physical model with generic physical properties
– a rubber sheet in the shape of the lips. We then used 3D

Figure 5: Initial image, final fit, and 3D reconstruction

Figure 6: Initial image, final fit, and 3D reconstruction

observations to train this intial model with the true variations
of human lip shapes. This model fit naturally into a MAP
estimation framework, which we then used for tracking and
resynthesis of 3D lip shapes, all with a small (and flexible)
number of parameters. We have shown through static and
video examples how we can accurately track the observations
in raw data, and have also demonstrated the ability of our
model to accurately reconstruct 3D lip shapes from sparse 2D
data.
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