NetClinic: Interactive Visualization
to Enhance Automated Fault Diagnosis in Enterprise Networks

Zhicheng Liu*

Microsoft Research, Georgia Institute of Technology

ABSTRACT

Diagnosing faults in an operational computer network is a frustrat-
ing, time-consuming exercise. Despite advances, automatic diag-
nostic tools are far from perfect: they occasionally miss the true
culprit and are mostly only good at narrowing down the search to
a few potential culprits. This uncertainty and the inability to ex-
tract useful sense from tool output renders most tools not usable
to administrators. To bridge this gap, we present NetClinic, a vi-
sual analytics system that couples interactive visualization with an
automated diagnostic tool for enterprise networks. It enables ad-
ministrators to verify the output of the automatic analysis at dif-
ferent levels of detail and to move seamlessly across levels while
retaining appropriate context. A qualitative user study shows that
NetClinic users can accurately identify the culprit, even when it is
not present in the suggestions made by the automated component.
We also find that supporting a variety of sensemaking strategies is
a key to the success of systems that enhance automated diagnosis.

Keywords: Sensemaking, Semantic Graph Layout, Visual Ana-
lytics, Network Diagnosis, Information Visualization

Index Terms: H.5.m [Information interfaces and presentation
(e.g., HCI)]: Miscellaneous;

1 INTRODUCTION

Network diagnosis is the task of finding the root cause of observed
faults. The complexity of modern computer networks makes di-
agnosis a difficult, frustrating, and time-consuming exercise. To
help system administrators, much research and commercial work
has gone into building automatic diagnostic tools [1, 3, 6, 9, 17].

Despite recent advances, due to the difficulty of the diagnosis
problem, automated tools do not always provide an accurate diag-
nosis. They occasionally miss the true culprit and commonly can
only reduce the search space to a small number of likely culprits. To
complete the diagnostic task, system administrators need to make
sense of the output (i.e., probable causes) of the automated tools
and, when the output is incorrect, they have to manually identify
the correct culprit. The large amount of data and the sophistica-
tion of the required analysis make both these manual tasks chal-
lenging. The administrators need to examine the underlying raw
data (e.g., various performance indicators of individual applica-
tions) for anomalies and correlations in addition to the diagnostic
engine’s analysis. As we explain in §2, such analysis typically op-
erates at multiple levels of detail, with higher levels building on the
results of lower levels.

As a “deliberate effort to understand events” for the purpose of
detecting problems and explaining anomalies [16], network fault

*e-mail: zliu6@gatech.edu
Te-mail:bongshin @microsoft.com
*e-mail:srikanth @microsoft.com
$e-mail:ratul @microsoft.com

Bongshin Lee'
Microsoft Research

Srikanth Kandula®

Microsoft Research

Ratul Mahajan®
Microsoft Research

diagnosis is a sensemaking activity. It is argued that interactive vi-
sualization combined with computational data analysis more effec-
tively supports the sensemaking process [27]. A few existing sys-
tems integrate data analysis with interactive visualizations [21, 26].
However, they employ computational techniques, such as entity ex-
traction, clustering and dimensionality reduction, to reduce data
complexity and provide better inputs for visualization. Users still
have to perform exploratory analysis over the visualization.

In a departure from prior work, this paper explores the com-
plementary relationship between visualization and a sophisticated
computational analysis. In particular, we ask how useful visual-
ization would be when an automated reasoning engine that solves
the sensemaking problem is available? How should we design such
a visual analytics system, and in what ways does it shape human
sensemaking strategies.

We address these questions in the context of diagnosing faults
in an enterprise network, which is a particularly complex type of
computer network. By coupling interactive visualization with prob-
abilistic multi-level diagnosis [13], we show that users are better
able to use uncertain automated output and identify true culprits.

Our main contributions are:

1. Designing NetClinic, a novel visualization of directed graphs
integrated with a multi-level automated analytic reasoning en-
gine for network fault diagnosis. Its design is based on a se-
mantic graph layout that lets users verify the correctness (or
incorrectness) of the analysis at any level and move seam-
lessly across levels while retaining appropriate context.

2. Presenting results of a user study which shows that users use
different sensemaking strategies and that the strategy of an in-
dividual evolves with experience. The flexibility of NetClinic
in supporting these strategies allowed users to complete the
diagnostic tasks with a high success rate even though they had
no knowledge of the underlying diagnostic algorithms.

3. Articulating the lessons from our experience in the broader
context of domains that combine interactive visualization with
sophisticated computational analysis. These lessons have im-
plications for the design of the visualizations, the automatic
analysis, and their integration.

2 FAULT DIAGNOSIS IN ENTERPRISE NETWORKS

Enterprise networks consist of machines interacting with each
other. Users often experience faults as anomalies in application
behavior. For example, an email client (e.g., Outlook) is unable
to send email. The root cause may be any one of the network
components that influence the client application directly or indi-
rectly (e.g., router firewalls, lossy links, bad server configuration
or another client overloading the server). Diagnosis is the task of
using available information to identify the true culprit.

Diagnostic systems model the interaction between network com-
ponents as a dependency graph [6, 13]. Figure 1 illustrates a subset
of such a graph, with several types of network components. Direct
impact is depicted as an edge betwen components. It shows, for
example, that an email server (depicted as ‘emailserver.exe’) de-
pends on its client applications; a client that sends too many emails

M, firewall emailserver.exe r
rules configurations Client |
‘l’ g on M,
\—> emailserver.exe .
I Client n
on M
l—’ machine 1 (M,) ’(—l

Process 1 (M) see Process j (M)

Figure 1: The dependencies of an email server application. Arrows
indicate direction of potential impact.

may slow down the server. Similarly, changes in the server’s con-
figuration or on the machine it runs on directly impact its behavior.
Indirect impact happens between components that are farther away
in the graph. For example, other processes that run on the same ma-
chine can impact a process indirectly via changes in the machine.
Thus, given a faulty network component, the culprit need not be an
immediate neighbor. In fact, impact often propagates along a path
of causal changes that can contain many components.

2.1 Diagnosis as Sensemaking

As a sensemaking activity, network diagnosis is a reciprocal pro-
cess between data and mental structures. These explanatory mental
structures, often called frames or schemas, are based on one’s ex-
perience of the world, and are constructed from long-term memory
to predict explanations and shape interpretations [16, 23, 25]. For
example, given that none of the clients in the network could send
email, system administrators may suspect some issues with the net-
work connectivity. This frame leads them to look for data that ei-
ther confirms or rejects it, e.g., incoming and outgoing packets at
the machines. If they find that network traffic has been otherwise
normal, they search for new data as anchors for a better frame. Di-
agnosis continues as the interplay between top-down and bottom-up
processes, where they search for data that suggests a relevant frame,
and the frame in turn determines what data to find for verification.

Abductive reasoning is believed to dominate the sensemaking
process [18]. If the data matches a frame better than any other
frame, that frame will be accepted as the likely explanation and
sensemaking stops henceforth. Such reasoning, however, is a log-
ical fallacy from a deductive point of view: given the premise that
if the frame is true, the data is true, it does not hold that the data
being true implies that the frame is true. In practice, sensemaking
is more effective when people speculate about causes and rely on
plausibility and reasonableness [18, 28].

A successful strategy for network diagnosis is to follow possible
courses of events backwards from the observed anomalous effect
[24]. Starting with the faulty component, diagnosticians may ex-
amine its state and look for directly impacting components that may
cause the observed problem. Determining the state of a particular
component is often non-trivial and requires examining a large infor-
mation space. For example, the state of an application manifests in
various aspects ranging from resource consumptions to error codes
of its interactions. Further, tracing backwards from the component
that is experiencing the fault involves repeatedly branching-off to
observe other possible candidates. As a result, the search space
quickly becomes too big to handle manually.

2.2 Automating Diagnosis

Due to this prohibitive search space, the development of automated
tools to assist with diagnosis has been a subject for much research
activity [5, 6, 9, 17]. These tools tend to use the backwards tracing

strategy outlined above. Starting from raw information, they de-
rive logical assumptions that are used for successively higher level
reasoning until the conclusions are reached. The raw information
for a network component is captured using one or more variables
(also called performance counters) that describe its behavior. Dif-
ferent components have different variables. Examples include CPU
usage, memory usage, and the amount of outgoing network traffic.
The reasoning process can be divided across four semantic levels of
detail with diagnostic systems differing in the algorithms they bring
to bear at each level.

o Variable Level: At the lowest level, the diagnostic system de-
termines which variables indicate abnormal behavior, often
based on how different statistically the current values are to
historical values.

o Component Level: Based on the analysis of individual vari-
ables of a component, the diagnostic system determines if the
component as a whole is abnormal.

e Edge Level: Given two components in the dependency graph
with an edge connecting them, the diagnostic system com-
putes the edge weight, i.e., the likelihood of the source com-
ponent actually impacting the target component. This compu-
tation is based on the state of both components.

e Network Level: Given a faulty component, a search in the en-
tire network is conducted to find likely culprits, which are
connected to the faulty component through a series of high
weight edges. Based on these path level weights, the culprits
are ranked from most likely to the least likely in the output.

Due to the complexity of the problem, unless a narrow set of
faults are targeted, no diagnostic system can always provide an
accurate diagnosis. Inaccuracies occur at all levels. At the vari-
able level, for instance, if abnormality is statistically determined, a
variable that behaves better than before may be deemed abnormal.
As inaccuracies propagate to higher levels, they may be amplified
when being combining with other inaccuracies. NetMedic [13], a
recent automated diagnostic system that we build on in this work,
has about 80% accuracy of identifying the true culprit.

3 NETCLINIC

The possibility of inaccurate diagnosis, even if it happens only oc-
casionally, requires human users to verify the correctness of auto-
matic suggestions and to identify the correct culprit when the sug-
gestions are incorrect. Simply showing the output of the automated
reasoning system without a human understandable version of the
underpinning analysis limits the value of these tools. Rather we
would like to show the basis of that output (e.g., network topology,
component state) in a form that lets users explore data and make
sensible decisions [15].

To this end, we advocate combining automatic diagnostic sys-
tems with visualization for effective sensemaking exploration.
There are several design considerations based on our earlier dis-
cussions of human sensemaking and machine reasoning. First, the
outputs of automated engines, albeit not always accurate, should be
used whenever possible as they serve as useful frames to guide the
sensemaking process. Visualization can show the analysis outputs
for all the levels so that users can start sensemaking at any level of
abstraction. Secondly, the abductive and reciprocal nature of human
sensemaking should be supported. The visualization thus must not
impose constraints on navigating across levels of abstraction. Top-
down exploration lets users quickly verify the output of automated
analysis at each higher level by looking at the information at the
lower level. For instance, users can verify the edge level analysis,
by looking at the states of the components on either end of the edge.
Bottom-up exploration, going from lower to higher levels, lets users
form and evaluate their own hypothesis. For instance, users can es-
timate which neighbor impacts a component the most by looking

Network View

Show Outgoing Edges on Mouseover Finds Go

Selected

Neighbors parveenpl (25 / 73)

Currently Diagnosing
In Path

O Focusin Path

jdunagan3 (15 / 74) //

johnm1 (16 / 64)

srikanth_test1 (15 / 38)

. -
0051

netres172 (23 / 47) 25800 0400 40800

Diagnoses

Diagnosed Components

Possible Causes |Show All|

firewall : netres172
app171 suchost.exe -k localservice iparveenpl
4 app ailmonkey.exe 9000 9000 2 1 :srikanth_testl
app171 svehostexe -k localservice iparveenpl
enpl
50 sglmonkey.exe 18000 18000 2 1 ;parveenpl
pp 250 [oarveenpl]

glsenviexe -smssglserver netresi72

netres167 (12 / 41)

2pp224 edgetransportexe -piperl572 -stopkeyglobahexchange!
Clients app 224 [netres172]

app267 sqlservrexe -smssglserver netresl72

Performance Counter View
sagarwal_desk0L (9 / 62)

Rank by Abnormality ~ Group by Category

app186 emailmonkey.exe 9000 9000 2 1 :srikanth_testl

Process » page faults/sec 100 °
5138

24,02 0000 9174

-53

m

=% processor time

00.00 0108

4% privileged time
0013

00.13 00,00
207%

! e emailMonkey : numberofsmtpmessapessentok

05.21
04.80 00,00 07.00
74

00.59 00,00 0091
15.96%

APP_PKTSIN 090
28439

-9.28%

APP_BYTES IN 086
79061004

66829220 11700
-1547%

APP_PKTS OUT 054 "

Figure 2: NetClinic consists of three parts: 1) A Network View on the left visualizes the network at component, edge and network levels; 2) the
Diagnosis View on the upper right presents suggested diagnoses at the network level; and 3) the Performance Counter View on the lower right
displays variable level data. The graph shows a network with 7 machines; one cause—fault path is highlighted.

at the states of these neighbors. Thirdly, raw information must be
available for verifying machine generated outputs and supporting
users’ self-exploration.

We designed NetClinic (Figure 2), a visual analytics system for
network fault diagnosis based on these considerations. The Net-
Clinic interface consists of three areas: the main Network View on
the left visualizes the network components and presents the infor-
mation at component, edge and network levels; the Diagnosis View
on the upper right shows NetMedic’s diagnosis results at the net-
work level; and the Performance Counter View on the lower right
displays variable level and raw information about various perfor-
mance counters associated with a component.

While we use NetMedic as the underlying analytic engine, Net-
Clinic can be generalized to other diagnostic engines for enterprise
networks because they share a common overall framework. We
believe that its underlying techniques apply to other types of com-
puter networks (e.g., Internet service providers) as well; enterprise
networks represent the more complex setting as they tend to have a
higher density of dependency edges.

3.1 Semantic-based Graph Layout

Diagnosis across even a handful of machines can involve hundreds
of components, which makes the layout task challenging. To dis-
play a large number of components in a manner that users can relate
to easily, we appeal to the semantics of the components and their
relationships. For users, a machine is the most common grouping

unit for network components. Applications belong to the machines
that they run on, and communication between applications depends
on the communication infrastructure between machines. We thus
use a machine-oriented metaphor as the basis for our layout.

Visualizing links is a concern that is not independent from the
graph layout. Due to the rich interaction between network com-
ponents, the number of links is high — three times as many links
as the number of network components in the examined enterprise
network [13]. Showing all the links clutters the view due to edge
crossings and occlusions. While edge bundling reduces clutter, it
takes away attention from edges that represent high abnormality.
Hence, rather than show every link all the time, NetClinic dynam-
ically shows only links relevant to current user explorations. Fur-
ther, it provides an easy interface for the users to customize the edge
view (e.g., turn on/off different logical groups of edges).

Figure 2 shows a global view of the layout. Network compo-
nents are grouped into machine clusters. Figure 3 shows a machine
cluster in more detail. The circular node at the center represents
the machine, and segments on a ring around the machine denote ap-
plications running on this machine. The sizes of the segments are
normalized for visibility (e.g., in Figure 2, the machine at the top,
parveenpl, has the most applications and hence the largest ring).
Square boxes represent configurations: the machine configuration
is placed at the center of the machine’s circle, application config-
urations are placed adjacent to the application’s segment on the
ring (Figure 3). Machine clusters are grouped into a circular lay-

out (Figure 2). Applications with connections to applications on
other machines are oriented to face the center of the layout, and a
visual gap separates them from local applications.

a local application

/

a networking application

4
\ \\\\‘\\

neighbor set

b machine
— .\

t

application

config
machine
config

firewall rule

Figure 3: A machine cluster depicting the layout of various compo-
nents. Colors represent the abnormality values of the components.

In addition to components that correspond to real network enti-
ties, diagnostic systems have some logical components. NetMedic
uses a neighbor set to represent the interaction of an application
with its peers. Neighbor sets of networking applications are laid
out as segments along an additional outer arc so that when edges
are shown, they will cross through the center of the circular layout
and avoid occluding potentially relevant nodes.

Finally, firewall rules at each machine are represented as arcs
that satellite the machine clusters. Since firewall rules impact ev-
ery communication to and from the machine, these nodes have a
high degree and we place them close to the center of the circular
layout. Some diagnostic systems may have additional component
types (e.g., routers, which NetMedic does not diagnose). We can
extend the white-space in the center of our layout to include them.

For this design, the layout algorithm computes two important
parameters: the normalized application segment length and the co-
ordinates of the center of each cluster. With these two parameters,
we can calculate the distance from the application segments to the
cluster center for each machine. Algorithm 1 shows how we com-
pute the parameters. Overlaps between components happen rarely
and we found them to not severely impact user exploration. Hence,
we focus on efficiencys; this algorithm has linear time complexity.

Algorithm 1 Semantic Layout

Define N; : number of applications on machine M;
Define C(X;,Y;) : Cartesian coordinates of the center of M;
Define P(0,r) : Polar coordinates with angle 6 and radius r
0=-—m;
for each machine M; do
o= 27r*N,-/ZiNi
Lengthgegmen: = ©/Max(N;)*canvas_width*sin(r/N;)
Radius jyser = canvas_width/2 - Lengthsegment * Ni /270
C(X;,Y;) = ConvertToCartesian(P(0 + ot /2, Radius j,ser))
C(X;,Y;).offset(center of the canvas)
0+=q
end for

A remaining challenge is scaling the visualization to a large num-
ber of machines. Some enterprise networks may have hundreds
of machines. Our experience in large enterprise networks [6, 13]
indicates that most machines are redundant for the purpose of di-
agnosing any particular fault. Any diagnostic task has only a few
machines pertinent to the fault (the server(s), some clients(s) expe-
riencing the problem and the likely culprits). Since machine-level
diagnosis is an easier problem [6], automated tools can discover the

set of machines pertinent to a fault. As future work, we are examin-
ing ways that allow users to add or remove machines interactively
and support semantic zooming that scales the amount of visual de-
tails per machine. On a 21 inch monitor, we find that the detailed
layout scales easily to ten machines, which was sufficient for all the
examined faults in a substantial dataset.

3.2 Contextual Exploration Across Analysis Levels

Given a set of machines under investigation, the semantic graph
layout in NetClinic stays stable and supports both top-down and
bottom-up exploration across multiple levels of information.

3.2.1 Top-down Exploration

A common starting point for diagnostics is the topmost network
level. At this level, users see the diagnosis results computed by
NetMedic as an impact path, that is, a path from the culprit to the
component being diagnosed. This is achieved through the coordina-
tion between the Network View and the Diagnosis View (see Fig-
ure 1 for definitions). When users double-click on a component,
NetClinic shows diagnostic results in the Diagnosis View. To al-
low diagnosing multiple components in one session, this view has
a list at the top that tracks the components being diagnosed; the ac-
tive component (victim) is highlighted in green (Figure 2). Another
list at the bottom shows the top 5 likely culprits of the active vic-
tim. By default, the first culprit is selected and the path from the
culprit to the victim is highlighted in the Network View; the com-
ponents on this path stay in full opacity, while the others fade into
the background. This path visualization immediately tells users the
nature of the hypothesis, without worrying about the exact com-
ponents involved. For example, in Figure 2, a culprit application
on srikanth_test] is impacting the victim application on parveenpl
through two applications on netresi72 and one on parveenpl.

To analyze a path in detail (e.g., to verify its accuracy), users
can access the relevant edge and component level information. Di-
rection is shown as an arrowhead atop a straight line for edges
inside a machine cluster and a tapered representation for edges
across machines. Edge color encodes the weight value computed
by NetMedic’s edge level analysis. The darker the red, the more
likely the source impacts the target. Mouse-over an edge brings up
a tooltip that shows the names of the two surrounding components
and the computed weight value. Similarly, the color of a compo-
nent encodes the abnormality computed by NetMedic’s component
level analysis. When the values are missing for certain components,
which may happen because the application is no longer running
or in rare cases due to data loss, we color the component nodes
gray. Mouse-over a component shows a tooltip with the compo-
nents’ name and the computed abnormality value.

Users can drill down into the variable level and raw information
to verify and understand what is abnormal at a component or why
an edge has a high impact by using the Performance Counter View.
Each row represents one observed variable for the component and
rows are sorted by the abnormality values of the variables. A row
has the name of the variable on the left, its abnormality value (the
result of variable level analysis) on the right and raw information
(e.g., performance counter values) in the middle. Raw information
from two periods —the current diagnosis period and a historical no-
fault period— for comparison, is plotted as a histogram. The hori-
zontal axis represents the range of the values, divided into a number
of bins, and both minimum and maximum values are shown. The
vertical bars represent the frequency of values in each bin. We use
different colors, blue for historical data and brown for the current
data, for easy visual comparison. NetClinic also shows averages of
the historical and current values and the percentage change in av-
erage on the left of the histogram. Together, the numerical values
and histogram, let users quickly determine if the deviation between
historical and current values is semantically meaningful.

For example, Figure 2 shows the variable level and raw infor-
mation about the application emailmonkey.exe in the Performance
Counter View. Note the second row where NetMedic assigns a high
abnormality value (0.99 out of 1) to the variable process :: %
processor time through its statistical abnormality detector, yet the
histogram shows little discrepancy between the historical and cur-
rent distributions with the maximum of the raw data at 1.08%. Se-
mantically, this is too low to be abnormal for CPU utilization and
can be safely ignored. In this way, users can quickly sort through
the multitude of counters, determine which variables are indeed ab-
normal and which neighbors are worthy of blame.

3.2.2 Bottom-up Exploration

Based on the description above, we can see how the visualization
of raw information lets users reach variable level hypotheses, and
how variable level information lets them reach component level hy-
potheses. To go from component to edge level, at any time, users
can mouse-over a component to highlight both the component and
its adjacent neighbors with directed edges joining them. Clicking
on a component marks it in yellow and highlights its adjacent neigh-
bors (Figure 4). Users can hide outgoing edges from the component
because incoming edges are more important for diagnostic sense-
making when backtracking from the effect.

In this way, users can explore the neighbors of any component
that are not included in the diagnosis paths. By examining the
abnormalities and performance counters of adjacent components,
users can reach edge level hypotheses (i.e., if impact really flows
along an edge). For example, a causal impact is not likely if the
source application is sending too little data and the target applica-
tion is consuming too much memory, even if both components are
independently abnormal. By tracing a chain of high impact edges,
users can reach a network level hypothesis.

jdunagan3 (15 / 74) /

sagarwal_de

johnm1 (16 / 64)

Figure 4: Marking the client set of a server application shows com-
ponents that can potentially impact it, i.e., its clients and firewall con-
figuration along network paths.

3.3 View Coordination and Common Path Encoding

To preserve context as users explore, NetClinic supports a vari-
ety of features that let them keep focus and save cognitive work.
First, substantial coordination between the views minimizes mouse
clicks. Selecting a cause in the Diagnosis View highlights the corre-
sponding cause-effect path in the Network View. The cause can be
expanded to list all the components on this path; traversing the list
highlights the component receiving focus with a thick black border
in the Network View and the Performance Counter View updates
to show counter information about this component. Second, we

observe that the diagnosis paths for the top five suggested causes
often share components and edges. For example, the path of im-
pact for multiple diagnoses may pass through a machine though the
eventual culprits are different applications on that machine. Know-
ing that a path is common, users can save work by not re-verifying
the common part of the path. Hence, NetClinic provides visual
cues about the common path by using a thicker border with thick-
ness corresponding to the frequency of appearance across the top
causes. Third, NetClinic also enables users to see the union of all
top 5 paths simultaneously by providing a “Show All” button in
the Diagnosis View. Finally, when a component appears in mul-
tiple diagnosis paths, if users determine that the component could
not possibly impact the effect while examining one path, they can
mark the component as uninteresting. Such a component is given
a blur effect so that users can quickly rule out other paths that this
component appears on.

4 [EVALUATION

We conducted a qualitative user study to examine the usability of
NetClinic and to understand users’ diagnostic strategies with Net-
Clinic. To our knowledge, NetClinic is the first system that cou-
ples interactive visualizations with an automated reasoning engine
for fault diagnosis. The state-of-the-art visualizations (e.g., Perf-
Mon [4] in WindowsTM) are rather primitive; they allow customiz-
able displays of raw information but do not support analytics. Due
to the lack of equivalent systems, we decided not to run a compara-
tive study but to focus on how well NetClinic achieves the intended
tight coupling between visualizations and analytics.

We used data collected by NetMedic during its one-month de-
ployment in an enterprise network [13]. A diverse set of faults that
is based on an earlier study of problems reported by network opera-
tors [13] was injected into the network. Since the faults are injected,
the ground truth information on culprits is known and is used to
evaluate users’ diagnostic conclusions.

4.1 Methodology

We recruited eleven participants (excluding one pilot), ten of whom
were male. They were graduate students except for one system
engineer. All were working on computer networks or operating
systems. They were not familiar with the diagnostic algorithms
used by NetMedic and had never seen NetClinic before.

We began the session with a broad introduction on network di-
agnosis without specifics of the algorithms used by NetMedic. We
then gave a tutorial on NetClinic and explained its features. To-
gether, these lasted 20 minutes. The participants performed two
training tasks with guidance, each with a small network consisting
of four machines and a graph of 243 nodes and 683 links. In each
task, the goal was to identify the real culprit for a specific victim
component. The real culprit was in the top five causes suggested by
NetMedic for one task and not in the other. It took up to an hour to
finish the training tasks.

The participants then performed three independent test tasks,
with the goal of identifying the culprit for three faults. They were
told that the real culprit might or might not be in the top five causes
suggested by NetMedic. To counter-balance the effect of automated
diagnosis accuracy, the real culprit was in the top five causes for two
(out of the three) tasks for half of the participants and one task for
the other half. The network used in the test tasks consists of 7 ma-
chines, 682 components, and 2045 edges. Table 1 summarizes the
tasks used in the study. The first two tasks are used for training, the
remaining three are used in the actual tests.

The participants were asked to think aloud and we observed and
video-recorded their sensemaking processes. Since domain knowl-
edge is crucial to successfully complete the tasks, the participants
were allowed to ask specific questions on the semantics of the com-
ponents and performance counters. They were asked to prepare a

Symptom of Fault

Cause

The email client on a machine is experi-
encing some errors

The client’s configuration is broken

Some SQL clients are experiencing poor
performance

Another client is overloading the server

An email client cant get up-to-date data
from server

The remote drive is dismounted

Some users were unable to access a spe-
cific feature of a Web-based application

The firewall along the path was blocking
https traffic

Some clients cannot connect to the
database server

A port used by the problematic clients
had been blocked by a change in firewall

rules on the server machine
Table 1: Symptoms and causes of faults used in user study

short reasoning statement for each fault they diagnosed. At the end
of the session, the participants filled out a satisfaction questionnaire
and provided feedback in a semi-structured interview.

4.2 Results

All the participants completed the three test tasks in about one hour.
Eight out of the eleven participants correctly identified the culprits
for all three faults. Overall, the culprits were correctly identified in
29 out of 33 tasks (88%). Recall that the real culprit was present
in the suggestions from NetMedic only 50% of the time (2/3 tasks
for half the users, 1/3 for the rest) and even when present, its or-
der in the list of suggestions was randomized. We find this result
encouraging, given that network diagnosis is a specialized task and
that participants knew little about the algorithms used by NetMedic.
This indicates that effective visualizations free administrators from
needing intimate familiarity with the complex analysis done by the
diagnostic engine while being robust to the uncertainty in the output
of the engines.

4.2.1 Sensemaking Strategies Using NetClinic

In this section we describe the sensemaking strategies used by the
participants to diagnose faults. In general, we observed that the
process of iterating between frames and data still applied when the
participants used NetClinic. However, since most participants had
no prior system admin experience, only some could generate an-
ticipatory frames from the fault description. NetMedic’s diagnoses
helped here: all participants used them to postulate frames. Verify-
ing these diagnoses was a large part of the sensemaking process.

We expected the participants to adopt a “least-effort” strategy,
where they would first look at each of the top 5 diagnoses. Only
when the data did not fit into any of these suggestions did we expect
them to explore on their own. Some participants did adopt this
strategy as evident in this comment:

“I would use [the diagnoses] as the first pass, if they
have anything that looks promising I will pay more at-
tention to it, but I wouldn’t completely just believe in the
results given by the diagnosis.” (P3)

To our surprise, however, a majority of the participants did not
adopt this strategy. Even while verifying a suggested diagnosis,
participants would sometimes go off-track to examine interesting
nearby components (based on their color, thickness of edges leading
to them) along the paths. After looking at just one or two of the
diagnoses, they would go back and forth between top-down and
bottom-up exploration. Effective support for exploration was more
important than displaying the suggested diagnoses well.

“I was trying to first find the problem myself. I started
with the first [diagnosis], [wanna make sure this is def-
initely not the cause or it’s definitely the cause. That’s
why I spent the most time on the first option, and doing
that exploration I had a good feeling of what the actual
cause is, so when [went to the second and the third and
the other ones, I already knew what I was looking for, so
1 didn’t spend much time on that.” (P1)

We also found that the same participant would vary strategy over
time due to the increasing familiarity with NetClinic or based on
their experience diagnosing the earlier tasks and the specifics of
the fault they were diagnosing. Towards the end of the session,
some participants generated frames and began exploration, from
any component at any level, independent of the diagnoses. If the
initial frame was rejected, they would return to use the suggested
diagnoses as anchors for new frames and look for what they missed:

“The first thing I did was to look at how abnormal the
problem node really is, and then given my prior expe-
rience the first thing I also check was, was there any
configuration change on local machine or on the node
itself. These are something that can easily go wrong.
After that I let the diagnoses guide me, though what 1
did very often was deviating from them, going deeper in
one direction that I think might be worthwhile. Though
I always try to check these possible causes just not to
overlook something.” (P10)

One participant did not make use of the diagnoses at all for one
task. This complete bottom-up exploration strategy was less com-
mon. He did not like to see the diagnosis results, partly because he
was not sure how to remove the diagnosis path after examining it:

“If I mouse over I see a whole lot of stuff and I felt that’s
better. Also in one of the [previous tasks] the top 5 did
not seem to have the answer and I said ‘forget it man’
because once I get a hang of the tool I began to feel like
‘ok, I can actually walk through the path myself’.” (P5)

In summary, we find that the participants use a rich mix of strate-
gies. These strategies ranged from complete top-down exploration
(for verifying results), switching between top-down and bottom-
up explorations (for gaining confidence by looking at neighboring
components), starting exploration at intermediate levels (for con-
firming specific hypothesis), and complete bottom-up exploration
(for identifying the culprit without the help of the diagnostic re-
sults). NetClinic effectively supported all these strategies.

4.2.2 User Satisfaction and Usability

The satisfaction questionnaire consists of 11 statements with rat-
ings on a 1-7 Likert scale, 1 being “strongly disagree” and 7 being
“strongly agree.” In general, the participants rated NetClinic favor-
ably. They liked NetClinic (avg. 5.9) and the Network View in par-
ticular (avg. 6.3). Features of the Network View, the focus+context
highlighting (avg. 6.6), the color encoding (avg. 6.4) and the se-
mantic layout (avg. 6) were also considered useful. While most
participants find the Performance Counter View helpful (avg. 6),
their reactions to the histograms in the view were mixed. Some
found them intuitive and could quickly run through the counters and
identify interesting ones. Others did not really understand them and
relied on the numerical values. We think increased familiarity with
NetClinic by more training might help in the latter case.

Two major concerns were related to ease of learning (avg. 5.7
with a minimum of 3) and mistake recovery (avg. 5.4). Not sur-
prisingly, some participants thought it was difficult to learn Net-
Clinic. Participants have to familiarize themselves with not only
the interface but also the diagnostic reasoning related to computer
networks. These two aspects can be inextricably linked especially
for novice users. Learning hence is non-trivial, but we believe that
the increasing ability to diagnose faults faster than otherwise pos-
sible will offset learning cost. Though we lack statistical evidence,
we found users speed up over the duration of their session.

Many participants noted that when they accidentally cleared their
selection by clicking on the background, they could not recover
from the mistake. A sudden change of the context can be detri-
mental; an undo feature would have helped here. Some participants

wanted more visual cues. For example, they could not distinguish
clients from servers and had to resort to reading the tooltips. In
addition, a few participants were confused by neighbor sets (client
sets and server sets) as these virtual components did not match their
mental models. This raises the question of how to represent con-
cepts that are important for computational analysis but are not in-
tuitive to users. We believe this is an interesting problem and it is
worthwhile to explore this further.

It is well known that human working memory is limited. One
participant remarked that he often had to look at the relevant data
again to reconfirm previous findings. Enabling users to offload in-
formation as external representations will be useful, perhaps with a
separate shoebox or an integrated edit option.

4.3 Study Limitations

Due to the resource constraint, we did not to recruit system admin-
istrators as participants. While our participants lack practical ad-
ministrative experience, they have adequate knowledge about com-
puter networks. Considering them as novice system administrators,
we believe they still provide insights into the usability and useful-
ness of NetClinic. Further evaluation with real network administra-
tors (especially a longitudinal study of long term use of NetClinic)
would shed more light on the benefits of NetClinic.

In this study, we focused on how well NetClinic achieves the
tight coupling between the interactive visualization and an auto-
matic diagnostic engine. The coupling of visualization with an an-
alytic engine implies that we could compare NetClinic with dif-
ferent visualizations (e.g., tightly-coupled multiple tables) coupled
with NetMedic or with visualizations that do not have an under-
lying analytic engine. Each of such comparisons would generate
more insights on various aspects of the design.

5 DISCUSSION

In this section, we articulate the key lessons learned from our work
of combining visualization with an automatic diagnostic engine.
Some of them re-confirm findings of prior work in a significantly
more complex domain. We point out the implications of these
lessons for the design of the visualization, the analytic techniques,
and the combination of the two. We believe that these lessons apply
broadly to other domains where visualizations can enhance com-
plex computational analysis.

First, we find that the combination of visualization and the au-
tomatic analysis makes diagnosis systematic yet flexible [21]. Net-
Clinic is systematic in that the multiple suggestions and the data
analysis at each level of detail is independent of human bias to-
wards interpreting data into existing frames and expectations. For
example, P10 used the analysis to make sure nothing important was
overlooked. Automatic analysis alone however is not flexible. Net-
Clinic is flexible in that the visualization supports an opportunistic
mix of top-down and bottom-up exploration by letting users eas-
ily move across different levels of detail. As a result, participants
demonstrated a variety of strategies during fault diagnosis, and de-
spite unfamiliarity with analysis algorithms, achieved a high suc-
cess rate at finding the culprits.

Secondly, automated analysis reduces the cost of assessing and
selecting data for detailed attention. The use of pre-attentive color
and pattern coding to represent analysis results, which were driven
by the automated analysis engine, served as important cues to let
users quickly determine which component, edge or performance
counter was worth examining. An important caveat is worth noting.
Mistakes in the automatic analysis, be they false negatives (e.g.,
abnormal components are deemed normal) or false positives im-
pact sensemaking. For example, the color-coding can hide the true
culprit or force users to examine unnecessary components. 7his
asymmetry in the impact of errors has important implications for

trade-offs in the design of automatic analysis. For one, the analy-
sis tool should favor false positives over false negatives to trade-off
more user work for correctness. Exposing confidence data along
with a decision would also be useful.

Thirdly, in the visualization, maintaining a consistent context
that users can relate to is important for them to track the evidence
and hypotheses being examined. In NetClinic, this is enabled by
the semantic and explicit representation of the graph structure and
the focus+context highlighting of components, edges, and paths on
top of a stable layout. The participants extensively explored the
graph incrementally and commented that it was great to be able to
follow the dependence relations. Spreading out the machines on a
semantic circular layout enhanced visibility and clarity. NetClinic’s
stable layout serves as external memory and makes it easier to re-
member previous findings. As mentioned earlier, the participants
did not use the common path encoding and the “mark as uninter-
esting” functionality much. We believe that this was partly because
the participant’s visuo-spatial memory was sufficient to recognize
components appearing in multiple diagnoses. Visuo-spatial mem-
ory has its limits, however; when the analysis suggested culprits
that were close to each other in the layout, the participants had to
read the labels and tooltips more closely.

Lastly, tight integration of visualization and automatic analy-
sis simplifies the sensemaking process. Currently, the most com-
mon way of integrating automated analysis and visualization is to
use computational techniques to reduce data complexity and cre-
ate better visualization-data mapping; automated analysis and vi-
sualization often constitute disjointed processes. Because humans
often organize their thinking in terms of varying levels of abstrac-
tion, tighter integration through level-specific coupling between au-
tomatic analysis and visualization lowers the cognitive overhead of
sensemaking. Exposing information at different levels of abstrac-
tion is a commonly used technique included in design guidelines for
information visualization [7]; on the other hand, data abstraction
and hierarchical representations are often used in intelligent system
design. Although the levels of abstraction in human sensemaking
and automated reasoning may not always match, we speculate that
they can be reconciled in many domains.

6 RELATED WORK

Much existing work uses visualizations to enable real-time secu-
rity monitoring and intrusion detection in computer networks (e.g.,
[10, 11, 19]). These systems focus on being at or near real-time.
Fault diagnosis is different from monitoring and intrusion detec-
tion tasks. For example, to detect attacks, it is important to iden-
tify temporally related events such as connection initiations and
failures [10]. Fault diagnosis is more concerned with component
states rather than user activities and may require customized de-
sign. SCUBA [12], nCompass [2], and MTreeDX [20] among oth-
ers do provide visualizations to help troubleshoot wireless mesh,
enterprise and multicast networks. Most of these systems however
only enable easy access to the raw data at the variable level without
leveraging much analytics.

Although analytics has been absent in many of the computer
network visualizations, some recent systems integrate data analy-
sis techniques with more general network visualizations and study
how users use such systems. Jigsaw visualizes connections between
entities extracted from text documents [26]. Kang et al. [14] study
how Jigsaw influences investigative analysis strategies by compar-
ing it to traditional interfaces. Social Action uses coordinated views
and attribute ranking to support systematic yet flexible exploration
of social networks [21]. Perer and Shneiderman conduct longitu-
dinal case studies on data analysts’ strategies in using SocialAc-
tion [22]. In these systems, the computational analyses are gen-
erally less sophisticated and do not directly provide hypotheses for
the problems. D-Dupe [8] performs author name resolution and

uses a semantic layout to present analysis results. Resolving author
names, however, is relatively simple and only a sub-task of a larger
sensemaking process.

The novelty of NetClinic lies in the coupling between visual-
ization and a sophisticated reasoning engine. First, since we treat
analytics as an integrative component in the system design, the in-
formation to be visualized in NetClinic goes beyond raw informa-
tion to include analytical outputs available at multiple levels of ab-
straction. Explicit design considerations about the flow of human
sensemaking processes hence are necessary, which are typically ab-
sent in previous work. Secondly, these considerations entail design
requirements on the network layout. For network fault diagnosis, it
is useful not only to know which components an abnormal compo-
nent is connected to, but also to have contextual information such as
whether the neighbor is co-located on the same machine. Such se-
mantic relationship information is crucial as it determines whether
or not the neighbor can impact the component (e.g., high CPU us-
age of a neighbor is not a problem if the neighbor is on a different
machine). NetClinic develops a new semantically meaningful lay-
out, which as we showed above plays a key role in usability.

7 CONCLUSION AND FUTURE WORK

We presented NetClinic, a visual analytics system that couples in-
teractive visualization with an automated reasoning engine. We dis-
cussed the benefits and shortcomings of NetClinic based on the re-
sults and findings from a qualitative study. Drawing from our user
study observations, we argue that introducing an automated reason-
ing engine simplifies the fault diagnosis task. To let users make the
best use of such an analytic engine without sacrificing the flexibil-
ity of self-exploration, it is useful to expose information and support
seamless exploration across all analysis levels.

The initial success of our system opens many avenues for future
research. After refining NetClinic based on user feedback, we plan
to deploy NetClinic in an enterprise. We are especially interested
in the evolution of administrators’ strategies over a longer term.

Another promising avenue that we have begun exploring is un-
derstanding how to support modifying the automatic analysis itself.
For instance, if users find that the edge level analysis for a particular
edge is incorrect, they can modify the weight of that edge using a
slider control. Or when crucial data for a component goes missing,
they could supply hypothetical constructs for analysis. The diag-
nostic engine can take these as input to re-compute a new set of
diagnostic results. Such two-way human-machine interaction im-
proves the capabilities of the diagnostic engine and further simpli-
fies the fault diagnosis task. We learned that using such features
however poses two challenges. First, it places a high expertise re-
quirement on the users; meaningfully modifying edge weights re-
quires a deep understanding of both the domain as well as the di-
agnostic algorithms. Second, not all diagnostic engines support in-
cremental re-computation and hence the visualization may become
less interactive.

ACKNOWLEDGEMENTS

We would like to thank Danyel Fisher for contributing to the early
stages of this project. We also would like to thank George Robert-
son and John Stasko for critiquing earlier versions of this paper.

REFERENCES

[1] Gteko, inc. http://www.gteko.com, Mar. 2009.

[2] nCompass for Enterprises. = OPNET Technologies, Inc.
http://www.opnet.com, Aug. 2009.

[3] OpenView, HP technologies inc. http://www.openview.hp.com, Aug.
2009.

[4] PerfMon. http://msdn.microsoft.com/en-
us/library/aa645516%28VS.71%29.aspx, Aug. 2009.

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]
[25]

[26]

(27]

[28]

S. Alexander, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. High
speed and robust event correlation. IEEE Communication Magazine,
5:433-450, 1996.

P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang. Towards highly reliable enterprise network services via
inference of multi-level dependencies. SIGCOMM Comput. Commun.
Rev., 37(4):13-24, 2007.

M. Q. Baldonado, A. Woodruff, and A. Kuchinsky. Guidelines for
using multiple views in information visualization. In Proc. AVI, pages
110-119, 2000.

M. Bilgic, L. Licamele, L. Getoor, and B. Shneiderman. D-dupe: An
interactive tool for entity resolution in social networks. In Proc. IEEE
VAST, pages 43-50, 2006.

M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint:
problem determination in large, dynamic internet services. In DSN,
pages 595-604, 2002.

R. F. Erbacher, K. L. Walker, and D. A. Frincke. Intrusion and misuse
detection in large-scale systems. /[EEE CG&A, pages 3848, 2002.

J. R. Goodall, W. G. Lutters, P. Rheingans, and A. Komlodi. Focusing
on context in network traffic analysis. IEEE CG&A, 26(2):72-80,
2006.

A. P. Jardosh, P. Suwannatat, T. Hollerer, E. M. Belding, and K. C.
Almeroth. SCUBA: focus and context for real-time mesh network
health diagnosis. LNCS, 4979:162—-171, 2008.

S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Padhye, and
P. Bahl. Detailed diagnosis in enterprise networks. SIGCOMM Com-
put. Commun. Rev., 39(4):243-254, 2009.

Y. Kang, C. Gorg, and J. Stasko. Evaluating visual analytics sys-
tems for investigative analysis: Deriving design principles from a case
study. In IEEE VAST, 2009.

G. Klein, B. Moon, and R. Hoffman. Making sense of sensemaking
1: Alternative perspectives. [EEE Intelligent Systems, 21(4):70-73,
2006.

G. Klein, J. K. Phillips, E. L. Rall, and D. A. Peluso. A data-frame
theory of sensemaking. In Expertise Out of Context: Proc. 6th Intl
Conf. Naturalistic Decision Making, 2006.

R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. IP fault
localization via risk modeling. In NSDI, volume 2, pages 57-70.
USENIX Association, 2005.

C. G. Lundberg. Made sense and remembered sense: Sensemaking
through abduction. Journal of Economic Psychology, 21(6):691-709,
Dec. 2000.

F. Mansmann, D. A. Keim, S. C. North, B. Rexroad, and D. Shele-
heda. Visual analysis of network traffic for resource planning, inter-
active monitoring, and interpretation of security threats. JEEE TVCG,
13(6):1105-1112, 2007.

J. Mulik, P. Conrad, B. Drake, S. Biswas, and M. Sendula. MTreeDx:
a multicast network diagnosis tool. In Integrated Network Manage-
ment, pages 105-108, 2003.

A. Perer and B. Shneiderman. Balancing systematic and flexible ex-
ploration of social networks. IEEE TVCG, 12(5):693-700, 2006.

A. Perer and B. Shneiderman. Integrating statistics and visualization:
case studies of gaining clarity during exploratory data analysis. In
Proc. CHI, pages 265-274, Florence, Italy, 2008. ACM.

P. Pirolli and S. Card. The sensemaking process and leverage points
for analyst technology as identified through cognitive task analysis. In
Proc. Intelligence Analysis, pages 2—4, 2005.

J. Rasmussen. Diagnostic reasoning in action. /EEE Trans. on Sys-
tems, Man and Cybernetics, 23(4):981-992, 1993.

D. M. Russell, M. J. Stefik, P. Pirolli, and S. K. Card. The cost struc-
ture of sensemaking. In Proc. INTERCHI, pages 269-276, 1993.

J. Stasko, C. Gorg, Z. Liu, and K. Singhal. Jigsaw: Supporting inves-
tigative analysis through interactive visualization. Information Visu-
alization, 7(2):118-132, 2008.

J. J. Thomas and K. A. Cook. llluminating the Path: the Reseach and
Development Agenda for Visual Analytics. IEEE Computer Society,
Los Alamitos, CA, 2005.

K. E. Weick. Sensemaking in organizations. Sage, 1995.

	Introduction
	Fault Diagnosis in Enterprise Networks
	Diagnosis as Sensemaking
	Automating Diagnosis

	NetClinic
	Semantic-based Graph Layout
	Contextual Exploration Across Analysis Levels
	Top-down Exploration
	Bottom-up Exploration

	View Coordination and Common Path Encoding

	Evaluation
	Methodology
	Results
	Sensemaking Strategies Using NetClinic
	User Satisfaction and Usability

	Study Limitations

	Discussion
	Related Work
	Conclusion and Future Work

