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1. INTRODUCTION 

In programming asynchronous multiprocess systems, the customary approach 
has been to make process synchronization independent of the execution rates of 
any components. This requires synchronization algorithms in which one process 
must wait for another to do something before it can proceed. In distributed 
systems, this means waiting for a message from the other process. These time- 
independent algorithms cannot be fault-tolerant because a process could fail by 
doing nothing, and such a failure manifests itself only as a reduction of the 
process's execution rate [5]. 

The usual method of obtaining fault-tolerant synchronization in distributed 
systems is to add timeouts to time-independent algorithms. A process sets a timer 
whenever it begins waiting for another process, and a failure is assumed to have 
occurred if a certain period of time elapses without a response from the other 
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process. A number of fault-tolerant synchronization algorithms have been pro- 
posed that use timeouts in this way. However, these algorithms provide only a 
limited degree of fault-tolerance. Every previously published synchronization 
algorithm that we know of can be defeated by the failure of a single component. 
The "fault-tolerant" algorithms are tolerant only of restricted kinds of failure, 
and can fail if a faulty process sends conflicting information to two other 
processes. Moreover, most of the algorithms provide only ad hoc solutions to 
individual problems. An exception is the method of [12], which provides a general 
approach to distributed synchronization that is similar to ours, but it assumes 
"nice" failures. 

The use of timeouts rests upon assumptions about the real-time behavior of 
the system. It is assumed that a waiting process can infer from the occurrence of 
a timeout that a failure has occurred. In this paper, we show how assumptions 
about real-time behavior can be used to infer information other than the existence 
of a failure. We describe a general algorithm to achieve any desired form of 
synchronization with any desired degree of fault-tolerance--including the ability 
to tolerate totally arbitrary and malicious failures. The algorithm is based on the 
use of absolute times instead of timeouts, and can be considered an extension of 
the approach of [6], achieving fault-tolerance by using physical instead of logical 
clocks. The generality of the algorithm is demonstrated by applying it to several 
distributed computing problems. A resource allocation problem is considered in 
some detail, and other applications are briefly sketched, including a robust 
distributed database and a reliable transaction commit protocol. 

Achieving high reliability is expensive; the exact cost is discussed in the 
conclusion. It may therefore be impractical to implement the entire system with 
our algorithm. In this case, the algorithm can be used to implement a reliable 
synchronization kernel, which can maintain system integrity even though com- 
ponent failures cause the loss of some functionality. This is illustrated by a brief 
discussion of three examples--a distributed file system, the transaction commit 
protocol, and a reliable fault detection scheme. 

2. THE ASSUMPTIONS 

We model a distributed system as a network of processes joined by communication 
links (not necessarily completely connected). Each process executes an event- 
driven algorithm, where an event is the arrival of a message or the process's clock 
reaching a certain value. The use of timeouts rests upon the following assumption. 

Assumption UC1. For any event e that causes process i to send a message to 
process j ,  there is a 5 such that if event e occurs at time T and processes i and j 
and the communication link joining them are nonfaulty, then the message arrives 
at process j by time T + 5--where time T and the time when the message arrives 
are either both measured according process i's clock, or are both measured 
according to process j ' s  clock. 

In general, the value of 5 may depend upon the processes i and j and the 
particular event e. For simplicity, we assume that there is a single constant 
that works for all i, j, and e. This saves us from having to keep track of many 
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different 5's. The important assumption being made in UC1 is that  the value of 
5 is fixed in advance, and does not depend upon other message traffic or other 
demands for processing resources. 

There are two parts to the delay 5: 

- - T h e  time needed to process the event and generate the message. 
- - T h e  time needed to transmit the message across the communication link. 

Bounding the message transmission time requires a high enough bandwith to 
handle all the messages that  may be generated. Bounding the processing time 
requires enough processing power to handle all the events that  may occur. 

In practice, it may not be possible to find an absolute bound on the processing 
and message transmission times. In this case, a value of 5 should be chosen which 
is large enough so that the messages generated by almost all events e arrive 
within 5 seconds. If a burst of message traffic over the communication link or a 
burst of other demands on the processing resource prevents the message generated 
by e from arriving within 5 seconds, then UC1 defines this to be a failure. Our 
fault-tolerant algorithms can handle such failures. With a statistical distribution 
of message transmission and response times, the probability of a failure can be 
decreased by making 5 larger. 

When process i sends a message to process j and waits for a response, it can 
time out 25 seconds after deciding to send the message--5 seconds for the 
message generated by the "decision event" to reach process j ,  and another 5 
seconds for the acknowledgment message {generated by the "receipt-of-message 
event") to reach i. By applying UC1 twice, we see that  the timeout will only 
occur if there is a failure. Note how this uses the fact that  UC1 bounds the length 
of time as measured by both the sender i and the receiver j .  

It often simplifies the description of an algorithm if we allow a process to send 
messages to itself. We therefore assume that there is a communication link 
joining any process with itself, and that  UC1 still applies when i = j .  Since 
sending a message to itself is really an internal processor operation, this means 
we are assuming that  any internal action initiated by i at time T will be completed 
by time T + 5. 

To satisfy UC1, all nonfaulty processes must maintain clocks whose running 
rates are more or less the same. 1 Actually, it is enough that  their rates are within 
a constant multiple of one another. In practice, the clocks will run at the same 
rate to within one part in 104 , and often to within one part in 106 . 

Although the different processes' clocks must run at approximately the same 
rate, the use of timeouts does not require that  they maintain the same absolute 
time. In this paper, we make the additional assumption that  the clocks are 
synchronized to keep approximately the same absolute time, and show how they 
can be used in solving the synchronization problems that  arise in distributed 
systems. More precisely, we make the following assumption. 2 

' I t  is customary to use the term "clock" for a device that  tells absolute time, and "timer" for a device 
tha t  measures time intervals. Since it is easy to build a clock given such a timer, we will not 

discriminate between the two terms. 
2 Note that  UC2 uses the notion of simultaneity, so it tacitly assumes a preferred global time f r ame- -  

i.e., "Newtonian" time. 
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Assumpt ion  UC2. At any time, the clocks of any two nonfaul ty  processes 
differ by at  most  e. 

Since real clocks run at slightly different  rates, they tend to drift  apart.  Hence, 
satisfying UC2 requires tha t  the clocks be periodically resynchronized. In the 
presence of completely arbi t rary failures, this resynchronizat ion is quite difficult. 
Faul t - to lerant  clock synchronizat ion algorithms do exist, and are described in 
[8]. Here,  we simply assume UC2. 

It  is easy to see tha t  UC1 and UC2 together  imply the following result. 

PROPOSITION 1. I f  an event  e occurring at t ime T on process i's clock causes 
process i to send a message to process j , and processes i and j and the communication 
link joining them are nonfaulty, then the message arrives at process j by t ime T + 

+ e on its clock. 

In the expression T + 5 + e, 5 represents  the maximum time needed to generate 
and t ransmit  the message, while e represents the maximum difference between 
the two clocks. 

There  is one fur ther  assumption tha t  we will need. 

Assumpt ion  UC3. A process can determine the immediate source of  any 
message tha t  it receives. 

Process i is the "immediate source" of a message sent to process j over the 
communicat ion link joining i and j .  If  i is simply relaying the message to j from 
some other  process, UC3 does not imply tha t  j can determine the original source 
of the message- -only  tha t  j knows it just  came from i. Identifying the source of 
a message becomes a problem only if a failure can cause an incorrect  message to 
be delivered, otherwise the source can be included as par t  of  the message. Wi thout  
assumption UC3, it appears tha t  a single failed process can defeat any distr ibuted 
algorithm by "impersonating" nonfaul ty  processes, thereby disrupting all com- 
munication. UC3 is easy to achieve if interprocessor communicat ion is by direct 
wire between the processors. It  may be very difficult to achieve if interprocess 
communicat ion is by a broadcast  medium such as an ethernet .  

3. HOW TO SEND A MESSAGE BY NOT SENDING A MESSAGE 

Using clocks, one can convey information by not doing something. We formulate 
this ability with a method for sending a message by doing nothing, lett ing the 
nonreceipt  of a message be interpreted as the receipt of a special N U L L  message. 
This  is accomplished with the following algorithm by which process i sends 
process j a message m at  t ime T over the communicat ion link joining them. 

Algorithm I: send message timestamped T from i to j 
Process i: 

WHEN clock = T DO 
IF m ¢ NULL THEN send message T:m t o j  FI OD 

Process j: 
WHEN clock = T + 5 + e DO 

IF exactly one T: m message has been received from i 
THEN message received := m 
ELSE message received := NULL FI OD 
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The  "exactly one" in the last IF s ta tement  is needed to handle the case in 
which a failed process i sends multiple messages. 

In Algorithm I, process i sends a n o n N U L L  t imes tamped message in the 
ordinary way. However,  it sends a N U L L  message t imes tamped T by simply 
doing nothing. If  a process can fail only by "dying"--i .e . ,  by simply halt ing and 
doing no th ing - - t hen  a failed process i can only send a N U L L  message. Hence,  
one possible meaning of N U L L  is "I have failed". In general, the  following result  
holds. It  is an easy consequence of  Proposi t ion 1 and Assumption UC3. 

PROPOSITION 2. Algorithm I has the property that, if process j is nonfaulty, 
then: 

1. By time T + ~ + ~ on its clock, process j receives a message timestamped T from 
process i. 

2. I f  process i and the communication link joining i and j are also nonfaulty, then 
this message is the one sent by process i. 

We can use Algorithm I to send a separate message from process i to process j 
at every clock tick. If  the clocks give the t ime in nanoseconds,  then  this means 
tha t  a billion messages per second are being sent. Of course, almost  all of  them 
will be N U L L  messages, which do not  involve any real message transmission.  
However,  the logical existence of all these messages lies at  the hear t  of our 
general method  for implement ing distr ibuted synchronizat ion.  

If  there  is no direct communica t ion  link joining processes i and j ,  then  a 
message sent  from i to j must  be relayed via in termediate  processes kl . . . . .  kn-1. 
Algorithm I is generalized as follows. 

Algorithm H: send message timestamped T from i to j along ~, where ~/is the path i = ko, 
kl . . . . .  k, = j  

Process i: 
WHEN clock = T DO 

IF m ¢ NULL THEN send message T:i:m to k~ FI OD 

Process ks: (0 < s < n) 
WHEN message T: ko: . . .  : ks-~ : m received from k,_~ DO 

send message T:ko: . . .  :k,:rn to ks+~OD 

Process j: 
WHEN clock = T + n$ + ~ DO 

IF exactly one T:ko: . . .  :kn-~:m message received from k,_~ 
THEN message received := m 
ELSE message received := NULL FI OD 

The  following generalization of Proposi t ion 2 holds. 

PROPOSITION 3. Algorithm H has the property that, if process j is nonfaulty, 
then: 

1. By time T + n5 + ~ on its clock, process j receives a message timestamped T 
along path % 
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2. I f  all the processes and communication links on the path ~/ are nonfaulty, then 
this message is the one sent by process i. 

The truth of this proposition is almost obvious. The only difficulty is seeing 
that  the failure of some process not on the path ~ cannot cause j to receive an 
extra T: ko: . . .  : k , - l : m '  message. A little thought will show why this is so, and 
there is a simple inductive proof of the proposition whose discovery we leave to 
the reader. 

Like Algorithm I, Algorithm II has the property that  the NULL message is 
transmitted without any real messages being sent. Hence, we can use it to send 
a separate message every clock tick over the path % To achieve fault-tolerant 
communication, so two nonfaulty processes can send messages to one another 
despite the failure of communication links or other processes, Algorithm II is 
applied several times for different ~ to send the same message along disjoint 
paths. The number of different paths depends upon the type of failure to be 
handled. If a failure cannot cause the transmission of an incorrect (real) message, 
then up to / failures can be tolerated by using [ + 1 disjoint paths. 3 To handle [ 
arbitrary failures, one must use 2[ + 1 paths and majority voting. 

Synchronizing processes requires not just reliable communication between two 
processes, but a reliable broadcasting algorithm by which a process can commu- 
nicate with all other processes. We therefore assume such an algorithm, imple- 
mented with the underlying network message-passing operations. The precise 
condition that  the algorithm must satisfy is the following, where A is some 
unspecified constant. 

IC. If process i initiates the broadcast of a message at time T on its clock, 
then: 

1. If i is nonfaulty, then every nonfaulty process j receives the message sent by i 
by time T + A on its clock. 

2. If j and j '  are both nonfaulty, then either each of them receives the same 
message by time T + A on its clock, or each of them receives no message by 
time T + A on its clock. 

We are assuming that  process i broadcasts the message to itself as well as to 
the other processes. It turns out to be convenient to let i send messages to itself 
in this way. Note that condition 2 follows from condition 1 if process i is 
nonfaulty. We can obviously assume that  A > 6, since one cannot implement 
such a broadcast algorithm on a network having a message-passing delay greater 
than A. 

Condition IC is essentially the interactive consistency condition discussed and 
solved in [11], [9], and [1]--it differs only in stating an explicit time bound, and 
considering the possibility of no message being received within that  time. The 
solutions require the ability to send a message along a path in such a way that: 

1. The message always arrives at its destination. 
2. If all the processes and communication links are nonfaulty, then the message 

arrives correctly. 

3 Th i s  is also the  case if one a s s u m e s  unforgeable  digital s ignatures .  
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However, Proposition 3 shows that this is guaranteed by Algorithm II. It is easy 
to see that by using Algorithm II for message transmission, each solution to the 
Byzantine Generals Problem that works in the presence of f "traitors" (failed 
processes) provides an algorithm that satisfies condition IC when there are at 
most f process and communication link failures. 

The ability of the Byzantine Generals solutions to handle arbitrary malicious 
behavior by the traitors means that the resulting broadcast algorithms work 
despite completely arbitrary failures. Restricting the class of failure permits less 
costly solutions. For example, assuming that failures cannot cause incorrect 
messages to be transmitted makes the implementation of message authenticators 
trivial, so the algorithm using authenticators in [11] and its generalization to the 
"signed, written message" algorithm of [9] can be employed. Making still stronger 
assumptions can permit even simpler solutions [13]. Thus, assuming a perfectly 
reliable interprocess communication network permits trivial solutions. 

Using Algorithm II, we can transmit NULL messages by doing nothing. An 
examination of the Byzantine Generals solutions shows it is easy to implement 
them so that receiving only NULL messages results in the broadcast of the 
NULL value. We then obtain a broadcast algorithm satisfying IC in which a 
NULL message is broadcast by doing nothing. With such an algorithm, we can 
let each process broadcast a separate value at every clock t ick--so long as almost 
all the messages are NULL. 

We will not say any more about what kind of solution is used; we simply 
assume some broadcast algorithm that satisfies Condition IC. However, we must 
note that this can be achieved only if any two processes can always communicate 
at least indirectly with one another. By assuming it, we are therefore assuming 
that failures cannot partition the network of nonfaulty processes and communi- 
cation links into two disjoint components. This is tantamount to assuming a 
sufficient degree of connectivity for the communication graph. 

4. HOW TO SOLVE ANY SYNCHRONIZATION PROBLEM 

4.1 The State Machine Algorithm 

We now describe our general method for implementing any kind of distributed 
synchronization for N processes. It involves an algorithm for reliably imple- 
menting an arbitrary state machine. The desired synchronization is achieved by 
using an appropriate state machine. 

The basic idea is that at every instant of time T, each process i issues a 
command Ci.T by broadcasting it to all processes. At time T + A, the commands 
C1.T . . . .  , CN,T are executed in order, and any "timeout" actions that are supposed 
to occur then are performed by executing a special timeaction command. To 
specify this precisely, we define a command to be a subroutine that has three 
arguments: a state, a time, and a process number. (The timeaction command does 
not have a process number argument.) Executing a command may change the 
value of the state argument (so it involves a "call by reference") and may produce 
output. We regard the output as a message from the process to itself. 

The generation and execution of commands by process i is performed according 
to the following algorithm. We assume that this is begun at some initial values 
of clock and state. 
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Algorithm III: 
LOOP FOREVER 

FOR j := 1 UNTIL N 
DO execute C/,c~k- ~ [state, clock - A, j ] OD; 

execute timeaction[ state, clock - A]; 
generate command C~,c~k and initiate its broadcast to all other processes; 
clock := clock + 1 

END LOOP 

The incrementing of the clock (the last statement in the loop) is actually done 
by the passage of time, so the first three statements of the loop must be performed 
as if they were instantaneous atomic actions. These actions are all internal to 
the process, so there is no difficulty achieving the effect of instantaneous 
execution. An example given below shows how this can be implemented in 
practice. For now, we simply pretend that the actions are instantaneous. 

The first two of these actions, which execute all the commands C~,T for T = 
clock - A and the timeaction command, form the state machine's t ime T execution 
step. We let stateT denote the value of state immediately after the execution of 
the time T execution step. Thus, the time T execution step begins with state = 
stateT-1 and ends with state = stateT. 

When its clock strikes time T + A, each process does the following: 

1. It executes the time T execution step of the state machine--executing every 
other process's command plus the timeaction command for time T, and 
computing stateT. 

2. It initiates the broadcast of its command for time T + A. 

We can prove the following result about this algorithm. 

PROPOSITION 4. I f  the broadcasting mechanism satisfies condition IC, 
then Algorithm I I I  satisfies the following conditions at any time T, where 
A' = A + 5: 

- -Every  process i that has not failed by time T + A' on its clock will by then have 
executed the time T state machine step, using the command it generated at t ime 
T as the command Ci,r. 

- - A n y  two processes that have not failed by time T + A' execute the identical 
sequence of state machine execution steps through time T. 

PROOF. Condition IC implies that  a nonfautty process receives all the com- 
mands Ci, T by time T + A, so it guarantees that a nonfaulty process knows the 
commands that  it needs to execute the first action. If we were to take Algorithm 
III literally, with the execution of a state machine step being instantaneous, then 
a simple induction argument would prove the result with A' = A. However, we 
must take into account the time needed to perform the step. We can consider 
the execution of the time T state machine step to be the act of generating a 
message from the process to itself, initiated by the clock striking T + A. (The 
message is actually the output generated by the step, or NULL if no output is 
generated.) By assumption UC1, letting i = j, we see that the time needed to 
execute the step is at most 5, leading to the value A + 5 for A'. [] 
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The reader should note that  all the interprocess message delays are included 
in the A term, and come from the broadcasting of the commands; the extra delay 
5 represents an execution time within a single process. 

With a nanosecond clock, Algorithm III performs a billion state machine 
execution steps per second. Just as broadcasting a billion messages per second is 
easy so long as most of them are NULL messages, performing a billion execution 
steps per second is easy so long as: 

- -The  NULL command does nothing--i.e., it does not change the value of state 
or produce output. 

- -For  any given value of state, executing timeaction[state, T] does not nothing 
for almost all values of T. 

In this case, almost all of those billion execution steps per second are performed 
by doing nothing. 

5. EXAMPLES 

5.1 A Resource Allocation Problem 

We first consider a simple resource allocation problem used as an example in 
[6], extended to include fault-tolerance. The problem is to synchronize access to 
a shared resource by N processes so that  only one process at a time can use it. 
Each process must issue a request for the resource, and wait until the request is 
granted before using the resource. The solution must satisfy the following three 
conditions. 

1. A process that  has been granted the resource must release it or fail before the 
resource can be granted to another process. 

2. Different requests for the resource must be granted in the order in which they 
are made, unless they are made at approximately the same time. 

3. If every process that  is granted the resource eventually releases it or fails, 
then every request is eventually granted. 

The first and third conditions were obtained by modifying the corresponding 
conditions in [6] in an obvious way to specify fault-tolerance. However, we 
interpret "before" to have the ordinary meaning of "occurring earlier in time", 
and not as the --. relation defined in [6]. This is necessary because --. is defined 
in terms of the sending and receiving of messages, and our method for sending 
information {NULL messages) without sending real messages eliminates too 
many messages for --* to be a useful relation. With the stronger definition of 
"before", it is impossible to ensure that  requests are granted in the order they 
are made. Thus, condition 2 requires this to be true only if the requests are made 
at sufficiently different times. In our algorithm "sufficiently different" will mean 
more than e seconds apart, as measured by every process's clock. 

In order to satisfy condition 3, it must be possible to discover if the process 
that  has acquired the resource has failed. For simplicity, we assume that  a 
nonfaulty process will release the resource within o0 seconds of when it acquires 
it--where o~ is some arbitrary constant. Condition 3 can then be satisfied by 
automatically releasing the resource w seconds after a process has acquired it. 
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DEFINE request[state, T, i] TO BE: 
IF state.queue empty T H E N  state.qtime := T; 

output "i granted resource" FI 
state.queue := insert[i, state.queue] 

END DEFINITION 

DEFINE release[state, T, i] TO BE: 
IF head(state.queue) = i 

THEN state.queue := tail[state.queue]; 
IF state.queue empty 

THEN state.qtime := oo 
ELSE state.qtime := T; 

output "head(state.queue) granted resource" 
FI FI 

END DEFINITION 

DEFINE: timeaction[state, T] TO BE: 
IF T = state.qtime + o~ + A'  

THEN state.queue := tail[state.queue]; 
IF state.queue empty 

THEN state.qtime := oo 
ELSE state.qtime := T; 

output "head(state.queue) granted resource" 
FI FI 

END DEFINITION 

Fig. 1. Command definitions for resource allocation example. 

To apply Algorithm III to this problem, we define a state machine having two 
commands: requests and release--plus the timeaction and NULL commands. The 
state consists of two components: 

state.queue--a queue of process numbers, initially empty, 
state.qtime--a time or the value 0% initially equal to oo. 

The state.queue component has as its head the process that owns the resource, 
and as its tail the queue of waiting processes. The value of state.qtime is the time 
of the state machine step at which the resource was granted to its current owner, 
or oo if no process currently owns the resource. 

A request command issued by process i adds i to the end of the queue, and a 
release command issued by i deletes i from the head of the queue. (A process 
issuing a release command when it is not at the head of the queue must be faulty, 
and its command is ignored.) The timeaction command effectively executes a 
release command when a process has been at the head of the queue for too long. 
(The process must be given an extra A' seconds to allow for the time it took to 
be notified that it had acquired the resource.) When a new process reaches the 
head of the queue, thereby acquiring the resource, this is indicated by the 
appropriate output. 

The precise definitions of the commands are given in Figure 1, where in- 
sert(item, queue) returns the new queue obtained by inserting item at the end of 
queue, tail(queue) returns the new queue obtained by deleting the head of queue, 
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Action 

1. (clock = T + A) 
and 

(there is a message in buffer timestamped T) 

FORj  := 1 TO N DO 
IF "T:j-request" message in buffer 

THEN remove message from buffer; 
execute request(state, T, j ) 

FI 
IF "T:j-release" message in buffer 

THEN remove message from buffer; 
execute release(state, T, j ) 

FI OD 

2. (clock = qtime + w + A' + A) delete head of queue; 
IF state.queue empty 

THEN state.qtime := ~] 
ELSE state.qtime := state.qtime + ~; 

output "head(state.queue) granted re- 
source" FI 

3. (wants to request resource) initiate broadcast of "T :/-request" 
and (clock = T) message to all processes 

4. (wants to release resource) initiate broadcast of "T:/-release" 
and (clock -- T) message to all processes 

Fig. 2. Process i's program for the resource allocation algorithm. 

and head(queue) returns the head of queue. Of course, the NULL command is 
always defined to be a "no-op"--i.e., by: 

DEFINE NULL[state, T, i] TO BE: 
S K I P  

E N D  D E F I N I T I O N  

Each process executes Algorithm III using this state machine. Process i owns 
the resource from the time it generates the "i granted resource" output until it 
either executes a release command or fails. Note that  the state machine output 
is simply used to notify the process of the result of executing the state machine; 
it is not sent from one process to another. 

Thus far, we have described our solution in terms of Algorithm III, which 
executes a state machine step every clock tick. We now show how it can be 
implemented by a more practical "interrupt-driven" program, in which a process 
performs an action only in response to one of the following events: 

- -The  receipt of a message. We assume that  all messages are placed in a common 
message buffer. 

- -A clock interrupt--generated by the clock reaching a specified value. 
- -The process's "desire" to request or release the resource. 

In our algorithm, the receipt of a message timestamped T causes the setting of 
a clock interrupt for time T + A, which will cause the message to be processed at 
that  time. The actions taken in response to clock interrupts and "desires" are 
described in Figure 2. Instead of thinking of the actions as initiated by events, 
we think of them initiated by the holding of conditions. Thus, the first two 
actions, which represent clock interrupts, occur when the value of the clock 
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satisfies certain conditions. Action 1 implements the execution of the commands 
Cj, T, and action 2 implements the timeaction command. Actions 3 and 4 imple- 
ment the generation and broadcasting of the request and release commands. We 
assume that the condition of "wanting" to request or release a resource no longer 
holds after the action is executed. We also assume that if two different conditions 
hold at the same time, then the actions are performed in the indicated order. 

We now prove the following result about this algorithm, where a "dead" process 
is one that sends no messages. 

P R O P O S I T I O N  5.  If 

- -a  process can fail only by "dying", 
- -a  non/ailed process will issue a release command within w seconds (on its clock) 

o /when it is notified that it has been granted the resource, 

then the algorithm of Figure 2 satisfies correctness conditions 1-3. 

PROOF. It is easy to check that  the program implements Algorithm III for 
this particular state machine. Hence, by Proposition 4, every non/ailed process 
executes the identical time T state machine step by time T + A' on its clock. We 
can therefore prove that the program satisfies conditions 1-3 by the following 
simple reasoning about the behavior of the state machine. 

1. To prove condition 1, assume that process i is granted the resource by the 
time T state machine step. No other process can be granted the resource until i 
is not at the head of state.queue. This can happen only by i executing a release 
command or by the timeaction command for the time T + w + A' state machine 
step. The latter case can only occur if i did not release the resource by time T + 
co + A'. Since i received notification by time T + A' that it had acquired the 
resource, by hypothesis, this means that i must have failed by that  time. 

2. Requests are granted in the order of the time at which they are issued, 
where that time is measured by the clock of the requesting process. Interpreting 
"appoximately the same time" to mean "within e seconds", condition 2 follows 
from Assumption UC2. 

3. A request command places the requesting process at the tail of state.queue, 
and processes can only be removed from the head of that  queue. Since the current 
head must be deleted within o~ + A' seconds, every requesting process must 
eventually reach the head of the queue and acquire ownership of the resource. [] 

The event-driven program of Figure 2 therefore provides a very practical 
implementation of Algorithm III for this particular choice of a state machine-- 
an algorithm that  may execute a billion state machine steps per second. The 
implementation does this by doing nothing almost a billion times a second. 

Thinking in terms of executing a state machine step at every clock tick provides 
a method for writing distributed synchronization programs. One first defines the 
state machine commands as in Figure 1, and then constructs an implementation 
by an event-driven program as in Figure 2. This implementation can exploit the 
details of the particular state machine. In our example we could have allowed 
some commands to be executed out of order--for example, it does not matter in 
which order a release and a request command are executed within a single state 
machine step. This is the same kind of refinement done by optimizing compilers-- 
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changing the way a program computes something without changing the results it 
produces. 

It is instructive to compare this algorithm with the one given in [6]. In the 
latter algorithm, each message requesting the resource must be explicitly ac- 
knowledged. This acknowledgment 'is necessary for a time-independent asyn- 
chronous algorithm, since without it there would be no way for a requesting 
process to be sure that there are no concurrently-issued conflicting requests. 4 
The present algorithm does not need the acknowledgment because process i 
knows that any requests conflicting with a request issued at time T must be 
received by time T + A. Thus, the nonoccurrence of an event (the receipt of a 
conflicting request) by a certain time conveys an important piece of information 
(the absence of any conflicting requests) that  in an asynchronous algorithm can 
only be sent by an explicit message. 

Although the present solution uses fewer messages, it does so at the cost of 
• taking longer to process a request. With the present solution, a process requesting 
the resource when it is free must wait A seconds before acquiring it. With the 
solution of [6], it just waits for all the acknowledgments, which will usually take 
less than A seconds if no process has failed. In Section 7, we show how our 
method can incorporate the use of explicit acknowedgments to speed response in 
the absence of failure. Of course, unlike the solution of [6], the present approach 
works even if there are failures. 

It is easy to modify our solution to the resource allocation problem by changing 
the state machine definition. For example, although in principle our algorithm 
works in the presence of arbitrary failures, in practice it would be defeated by a 
failed process issuing a continual stream of request commands, since each 
command adds another element to state.queue and allows the process to seize 
the resource for an additional 00 seconds. To prevent this, we simply change the 
definition of the request command so that it does nothing if the requesting 
process is already on the queue. It should be obvious how to change the formal 
definition of the request command to accomplish this. 

This observation illustrates that there are two aspects to achieving fault- 
tolerant synchronization with our method. 

--Using a fault-tolerant broadcasting algorithm to achieve reliable execution of 
the state machine. 

--Designing the state machine to be tolerant of "bad" commands issued by faulty 
processes. 

5.2. Further Examples 

Our method works not only for solving the resource allocation problem, but for 
obtaining a fault-tolerant implementation of any desired form of synchronization 
in a distributed system. We now give some other examples. 

Distributed Semaphore. To implement a distributed semaphore, one lets the 
state have two components--the value of the semaphore and a queue of waiting 
processes. The P and V commands are then defined in the obvious way. By using 

4 T h e  use  of  t i m e s t a m p s  makes  it  easy to "piggy-back" the  acknowledgment  on ano the r  message,  bu t  
it  m u s t  be sent .  
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a sufficiently fault-tolerant broadcasting mechanism, one obtains a semaphore 
that functions correctly despite the faults of individual components. 

Replicated Database. Suppose that there are m data items D 1 , . . . ,  Din, which, 
for robustness, are replicated at each of the N processes. Each process wants to 
execute operations on these data items--for example, the "money transfer" 
operation of subtracting a quantity from one data item and adding it to another. 
The effect of executing all the processes' operations must be the same as if they 
were executed in some specific order, which should be approximately the order 
in which they were issued. (See [3] for a more detailed discussion of this problem.) 
Using our method, we solve this problem by defining a state machine in which 
the state consists of the values of the data items, and the commands are the 
operations that  the processes wish to perform. For example, the "money transfer" 
command is defined by: 

DEFINE transfer x [romp to q [state, T, i] TO BE: 
IF state.Dp >_ x 

THEN state.Dp := state.Dp - x; 
state.D¢ := state.Dq + x FI 

END DEFINITION 

(In the terminology we have been using, this is a separate command for each 
triple of values (x, p, q).) 

Using a broadcast mechanism that  satisfies Condition IC produces a very 
reliable database system. In this system, "atomicity" of the operations is main- 
tained--each command is either performed or not performed. The failure of a 
process while a command is being executed cannot leave the other processes' 
versions of the database in an incorrect or inconsistent state. 

Transaction Commit. A process wishes to issue a transaction complete request, 
whereupon every other process issues either a commit or abort request. If all 
processes issue a commit request, then the transaction must be committed, 
otherwise it must be aborted. A nonresponse from a failed process must be treated 
as an abort request. 

To solve this problem, we let the state consist of a mapping from transaction 
identifiers to time, status pairs. For any identifier I, state(I).time is the time at 
which a transaction complete request was issued for transaction /, and 
state(I).status denotes the status of that  request. A status is an N-tuple whose 
ith component equals "commit" or "undecided"--depending upon whether proc- 
ess i has issued a commit request or no request for that transaction. (A transaction 
complete request is considered to include an implicit commit request.) Initially, 
for any identifier/,  state(I). t ime equals oo. The commands are defined as shown 
in Figure 3. In order for its response to a transaction complete request issued at 
time T to be counted, a process must respond by time T + ~. The constant 
must be chosen greater than A' to ensure that the process will have learned about 
the transaction request in time to issue its response. (A process can also issue an 
implicit abort request by failing to issue any command.) 

With this algorithm, the failure of any process means that  all transactions will 
be aborted. The problem can be generalized to allow a transaction to be committed 
despite some failures. For example, with a replicated database, we might want 
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DEFINE transaction complete I [state, T, i] TO BE: 
state(I).time := T; 
state(I).status := ( "undecided", . . . .  "undecided" ); 
state(1).status.i := "commit" 

END DEFINITION 

DEFINE commit I [state, T, i} TO BE: 
IF state(I).time ~s 

THEN state(I).status.i := "commit"; 
IF state{I).status = ( "commit",..., "commit") 

THEN output "transaction I committed"; 
state(I).time := ¢¢ FI FI 

END DEFINITION 

DEFINE abort I [state, T, i] TO BE: 
IF state(I}.time =~ oo 

THEN state(I).t ime := ~; 
output "transaction I aborted" FI 

END DEFINITION 

DEFINE timeaction[state, T] TO BE: 
FOR ALL identifier I DO 

IF state(I).t ime = T - ~ 
THEN state(I). t ime := oo; 

output "transaction I aborted" FI OD 
END DEFINITION 

Fig. 3. The state machine commands for transaction commit. 

the t ransact ion to be commit ted  if each update  can be performed to some copy 
of the data. By defining the appropriate  state machine, it is easy to extend our 
solution to the more general problem. 

Note tha t  unlike more tradi t ional  t ransact ion commit  algorithms, our solutions 
have no "window of vulnerabili ty"; processes and communicat ion lines can fail 
at  any t ime without  delaying the system. Of course, we are assuming tha t  our 
Byzant ine  Generals solution works, which requires tha t  enough processes and 
communicat ion lines keep working. In particular,  handling a single arbi t rary 
failure requires tha t  each process be connected by at  least three separate com- 
municat ion lines to the rest  of the network. 

R e a l - T i m e  P r o c e s s  C o n t r o l .  A real-t ime process control  system can often be 
designed as an iterative procedure,  in which each step consists of first reading 
input  from sensors and then  generat ing output  to actuators.  For  reliability, one 
wants  the reading of input  and generation of output  to be performed by physically 
separate processors. To  apply our method,  each processor is represented by a 
process. A process's command  consists of the input  read by tha t  process, and the 
state machine describes the algori thm for generating actuator  output  from the 
sensor inputs and the current  system state. The  interval  between successive 
"clock ticks" is the repeti t ion period for the successive read input /genera te  output  
s teps- - typica l ly  tens or hundreds of milliseconds. (These clocks will actually be 
the higher-order bits of f iner-grained clocks tha t  are mainta ined by the system.) 
The  S IFT  system [14] can be viewed as an elaborat ion of this basic idea. 
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Once again, we observe that  there are two parts to the problem of achieving 
fault-tolerance: 

--Reliably executing the state machine, so each nonfaulty process produces the 
same output. 

--Designing a state machine that  performs properly (generates the right actuator 
outputs) despite the presence of some bad inputs (incorrect sensor readings 
produced by faults in the sensors or in the processes reading them). 

We hope that  these examples will serve to substantiate our claim that the 
method can be used to implement any desired form of distributed synchroniza- 
tion. We urge the reader to try applying the method to his own favorite distributed 
synchronization problem. 

6. FURTHER REFINEMENTS 

A method as simple as ours cannot by itself provide practical solutions to all 
synchronization problems; it requires further refinement to handle the unique 
details of specific subclasses of problems. We now discuss three important 
refinements. 

6.1. Restart 

Proposition 4 says nothing about the behavior of a process after it fails. In most 
distributed systems, one must be able to restart failed processes without having 
to restart the entire system. The basic idea behind restarting a process is simple-- 
in order for the restarted process to resume normal operation at time T, by time 
T + A it must be able to determine stateT-1. In order to determine stateT-1, it is 
sufficient for there to be some earlier time T'  for which the process knows: 

--stateT,, 
--All commands issued between times T'  ÷ 1 and T - 1. 

The restarted process must obtain from other processes the information it 
needs for resuming execution of the state machine. How it does this will depend 
upon the type of failure assumed and the details of the particular state machine. 
If one assumes that the only kind of failure is simple "dying", then the restarted 
process can obtain the state information from a single other process. With 
arbitrary failures, it must use majority voting on information obtained from 
several sources. If the state contains only a small amount of information, then 
the restarting process can easily obtain the value of the entire state. If there is a 
great deal of state information, then a process must periodically put a copy of 
the state (a "checkpoint") onto a stable storage medium, and also save a log of 
the commands that have been issued. {This log need not be on stable storage.) A 
restarting process can then learn the current state by obtaining the log of all 
commands issued since the last checkpoint recoverable from its stable storage. 
The problem of restarting failed processes is also discussed in [12]. 

To handle arbitrary failures, one must also consider the possibility that  a 
process fails and restarts without any indication that it has failed--for example, 
due to a transient malfunction. In that  case, the process might be quite happily 
executing the state machine using the wrong state, thereby producing incorrect 
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output. There are two possible ways to handle this problem: 

1. Have each process periodically take a "checksum" of its state and compare its 
result with that  of the other processes. 

2. Design the state machine to be "self-stabilizing", so that, for some value of r, 
the state at any time T is completely determined by the input commands 
issued at times T - T through T - 1. 

How these approaches are implemented depends upon the details of the particular 
application, and will not be discussed. 

6.2. Reconfiguration 

We have been assuming that  the network of processes is fixed. However, in some 
applications it is desirable to reconfigure the network to eliminate processes or 
include new ones. This is done by having reconfiguration controlled by the state 
machine. Formally, reconfiguration is performed by terminating the current N- 
process algorithm after execution of a time T state machine step, then starting a 
new version of the algorithm at time T + 1 using a different network of processes. 
The reconfiguration is initiated by a time T '  state machine execution step, with 
T '  < T - A', which produces output notifying the processes that  the reconfigur- 
ation will take place after the time T step. To perform the reconfiguration, each 
process needs the following information. 

- -The  new network of processes. 
- -The definition of the new state machine. 
- -The initial state of the new state machine. 

As an example, we can modify the above transaction commit solution by 
allowing a process to eliminate itself from network by executing a quit command. 
This command is defined so that  when process j issues it at time T, it generates 
the output "eliminate j after time T + A'". This causes a reconfiguration in 
which process j is removed from the set of processes, the new state machine is 
the same as the old one except that  state(I) .s tatus  is an (N - 1)-tuple instead of 
an N-tuple, and the initial state of the new state machine is obtained from the 
final state (stateT) of the old one by deleting the j th  component of each status N -  
tuple. (The processes also need to be renumbered.) 

If the reconfiguration adds a process, then the information needed to execute 
the new state machine must be transmitted to that  process by the processes in 
the original network. For the initial state information, this is the same problem 
encountered in restarting a failed process. 

Note that  changing the network of processes involves changing the broadcast 
algorithm. That  is why performing a reconfiguration requires knowing the new 
network of processes, including the communication links, and not just the set of 
processes. For example, one can easily define the new state machine when 
reconfiguring the transaction commit solution to add a new process (numbered 
N + 1). However, defining the new broadcast algorithm requires knowing pre- 
cisely where the new process lies in the total network of processes and commu- 
nication links. 
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6.3. Explicit Acknowledgments 

In Algorithm III, a process always waits until time T + A before executing the 
time T state machine step. The algorithm is easily modified to execute this step 
as soon as (1) the time T - 1 step has been executed and (2) all the commands 
Ci.T have been received. Condition IC guarantees that  every command is received 
within A seconds of when it is broadcast, so the modified algorithm always 
executes the time T step by time T + A'. However, it will execute the step sooner 
if commands are received earlier. 

For systems like the real-time process control example in which nonfaulty 
processes never issue NULL commands, no further modification of Algorithm 
III is needed. However, a NULL command broadcast by not sending any messages 
is detected only when A seconds have elapsed without the receipt of any messages, 
so it always takes A seconds to receive such a command. Hence, to execute the 
time T step before T + A', all commands issued before time T--including NULL 
commands--should be explicitly broadcast. 

There is no reason to hasten the execution of a state machine step that  does 
nothing. The time T step can perform an action only if one of the commands Ci, T 
is nonNULL, or if the timeaction command does something at time T. As soon 
as a process learns that  this is the case, it can explicitly broadcast a single 
message containing all the relevant NULL commands. This is done as follows: 

Let the message IT ' ,  T]:m broadcast by process i denote that  Ci.r = m 
and C~T~ = NULL for all T"  with T '  < T"  < T; and let T( i )  be the last 
time at which process i explicitly broadcast a command. If i discovers 
at time T that a nonNULL state machine step is to occur at some time 
T '  with T( i )  < T '  <_ T--for example, by receiving a command time- 
stamped T '  from another process--then it explicitly broadcasts the 
command [T(i), T]:Ci, Tand sets T( i )  equal to T. 

Constructing this new algorithm is straightforward if we assume that  processes 
and communication links can only fail by "dying". Without this assumption, care 
must be taken to handle the situation in which a faulty process issues a nonNULL 
command at time T '  and then a [T", T]:m command with T" < T '  < T. This 
requires modifying Algorithm II so that  two different messages with the same 
timestamp cannot be sent (implicitly or explicitly) over the same path. We will 
not describe exactly how this is done, but simply assume the existence of the 
modified version of Algorithm III, which we call Algorithm IV. The method 
described in [7] may be viewed as a particular implementation of Algorithm IV. 

The important thing to notice about Algorithm IV is that  the earlier execution 
of the state machine step is achieved by using explicit acknowledgment messages. 
When the algorithm is applied to the resource allocation solution, receipt of a 
request timestamped T causes processes to broadcast acknowledgment messages 
of the form "[T' ,  T]:NULL". However, unlike the acknowledgments in the 
solution of [6] which are sent only to the requesting process, these are broadcast 
to all processes. These extra messages are needed to prevent a process from 
sending a NULL command to one process and a nonNULL command to another, 
and are a necessary cost of achieving fault-tolerance. 
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7. REDUCING THE COST 

Our state machine approach can be used to solve any distributed synchronization 
problem. With a sufficiently robust "Byzantine Generals" algorithm for broad- 
casting commands, one can achieve any desired degree of fault-tolerance. In this 
respect, our approach is superior to most previous work on distributed synchro- 
nization that has given ad hoc solutions, providing only limited fault-tolerance, 
to specific problems. However, achieving fault-tolerance is expensive. In this 
section, we investigate the cost of these fault-tolerant solutions, and how it can 
be reduced. 

7.1. What It Costs 

Time. Almost all the time needed to perform an operation is spent in 
achieving the interactive consistency condition IC. It has been shown that even 
with a completely connected communication graph, achieving interactive con- 
sistency in the presence of [ faults requires a worst-case delay of ([ + 1)5 [4]. If n 
is the diameter of the communication graph--i.e., the smallest number such that 
any two processes are joined by a path of length at most n- - then  the minimum 
worst-case delay is probably ( f  + n)5. 

These worst-case delays seem to be necessary only with rather malicious 
failures. By making assumptions about how processes fail, one can reduce the 
delay A. For example, by assuming that processes can fail only by "dying", and 
that two processes will not both die within 2(5 + e) seconds of one another, one 
can obtain a solution with A = 2(5 + e). 

Although the worst-case delay A may be quite large, some Byzantine Generals 
solutions have a delay much less than A when there are no failures. For example, 
the first algorithm of [11] requires only two message delays in the absence of 
failure. We conjecture that for an arbitrary communication graph, the expected 
delay when there is no failure can be made as small as n + 1 message delays, 
where n is the diameter of the communication graph. This is important for 
Algorithm IV, where it is the actual rather than the worst-case delay that 
determines response time. 

Number of Messages. With a completely connected communication graph, 
the original Byzantine Generals algorithms of [11] require on the order of N r+l 
messages to handle [ failures. They can be implemented so that, in the absence 
of failure, they require about N 2 messages. An algorithm in [2] reduces the 
number of messages to O([N) by adding an extra message delay, but requires the 
use of digital signatures. The algorithm of [10] requires O(t ~) messages without 
digital signatures, but doubles the amount of time required. 

Amount of Replication. With our method, each of the N processes maintains 
the complete system state. This implies replicated storage and redundant proc- 
essing. Reliability requires redundancy. If a system is to tolerate fprocess failures, 
then it must maintain at least f + 1 copies of its state information. 

It is shown in [11] that a Byzantine Generals solution to handle f arbitrary 
process failures requires more than 3f processes. Assuming digital signatures 
permits a solution with as few as [ + 1 processes. If one assumes that processes 
and communication links can fail only by dying, then such a Byzantine Generals 
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solution can be used to implement an ([ + 1)-process system that  will tolerate [ 
failures. With more realistic assumptions, one probably needs at least 2 / +  1 
processes to handle [ failures. 

Clock Synchronization. In addition to the costs of executing Algorithm III, 
we must also include the cost of synchronizing the clocks that the algorithm 
depends upon. Real clocks do not run at precisely the same rates, so satisfying 
UC2 requires periodically resynchronizing the clocks. Synchronizing clocks seems 
to require that each process reliably broadcast its clock value to every other 
process, making the cost of clock synchronization the same as that  of solving the 
Byzantine Generals problem. Each of the known Byzantine Generals solutions 
has a related clock synchronization algorithm that uses the same number of 
processes to handle the same number of failures. These algorithms are described 
in [8]. 

The frequency with which the clocks need to be resynchronized depends upon 
the accuracy of the clocks and the maximum permitted difference e. If the clocks 
are accurate to one part in l0 G , then they can drift apart at the rate of about one 
microsecond per second. For e on the order of a millisecond, this implies that 
resynchronization must be performed several times per hour. As these figures 
indicate, the cost of clock synchronization should be negligible for systems with 
reasonably accurate clocks. 

7.2. Reducing the Costs 

There are two ways to reduce the cost of using our method to implement a 
system: (i) modify Algorithm III and (ii) choose a different state machine. We 
describe two ways of reducing the cost of Algorithm III, and then discuss the 
choice of state machine. 

Reducing the Cost of Broadcasting Commands. Most of the cost of Algorithm 
III comes from the Byzantine Generals solution used to broadcast the commands. 
As we described above, there are certain fundamental costs required of any 
solution. The only way to reduce these costs is to reduce the degree of fault- 
tolerance--by either decreasing the number of faults or restricting the class of 
faults that can be handled. 

Reducing the cost by limiting the class of faults was discussed above, and 
invariably decreases the system's reliability. However, it is often possible to 
reduce the number of faults that can be handled without seriously affecting the 
overall system reliability. The Byzantine Generals algorithms to handle [ failures 
work even when all the failures occur simultaneously. In many cases, processes 
tend to fail one at a time, and multiple failures are highly improbable. One can 
then implement an N-process system that can tolerate a single failure. When a 
failure is detected, the system is reconfiguredwas described in Section 6--to 
remove the failed process, forming an (N - D-process system that can again 
tolerate a single failure. This approach works so long as no failure occurs before 
the previous failure has been diagnosed and the reconfiguration accomplished. 
How faulty processes are diagnosed will depend upon the details of the underlying 
network of processors. Additional reliability is achieved by using a system that 
can tolerate two failures. This approach is used in the SIFT system [14]. 
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The need for a Byzantine Generals solution in achieving fault-tolerance has 
not been widely recognized because most previous work considers only the kinds 
of failure that make the problem trivial. These previous solutions therefore 
appear much less costly than ours. However, by restricting ourselves to such 
simple failure modes, we can use an inexpensive solution to the Byzantine 
Generals Problem, obtaining a less costly implementation of Algorithm III. For 
example, if we assume a perfectly reliable communication medium having a 
broadcast facility--i.e., one solving the Byzantine Generals Problem for us- -  
then the delay A becomes equal to 5 + e. In this case, as we will see in Section 8, 
our method may produce faster response than algorithms requiring explicit 
acknowledgment messages. Many published algorithms make exactly this as- 
sumption about the communication medium. 

Executing Commands Sooner. Using Algorithm IV instead of Algorithm III 
can allow commands to be executed sooner, and in some cases will significantly 
improve the system response time in the absence of failures. The response times 
of the two algorithms are compared in Section 8. The response time of Algorithm 
IV is the same as Algorithm III if any process issues implicit NULL commands. 
Since this is exactly what a failed process is likely to do, Algorithm IV should be 
used with a reconfiguration scheme that removes failed processes. 

Choosing the State Machine--the Kernel Approach. Algorithm III gives a very 
reliable implementation of the functions performed by the state machine. To 
minimize the cost, the state machine should only perform those system functions 
which must be executed very reliably. Other functions should be performed by 
some separate mechanism. Thus, instead of using the state machine to control 
the entire system, one defines a state machine for a synchronizing kernel of the 
system. The kernel machine is chosen to minimize the following: 

- -The  frequency with which nonNULL commands are issued. 
- -The  amount of information in the system state. 
- -The  number N of processes. 

The use of a synchronizing kernel is illustrated with three examples. 

Distributed File System. The replicated database solution given in Section 
5 provides a simple way of implementing a distributed file system--we just let 
the data items be the individual files. However, this would be too expensive for 
the following reasons. 

- -There  is too much state information. The state contains the contents of each 
file, so every process must maintain a copy of every file, which requires too 
much storage. 

- - N o n N U L L  commands are issued too frequently. Each read or write to a file 
requires a state machine command. 

Although multiple copies of some critical files might need to be kept, most files 
probably need not be replicated. However, the directory of files would have to be 
reliably maintained--without it no files could be accessed. One would therefore 
use Algorithm III to implement a synchronization kernel that maintains the 
directory. The directory would be part of the state of the kernel machine, and 
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state machine commands would be used to find the location of the current version 
of a file and to update that information when a new version is created. The actual 
reading and writing of the files would be external to the kernel system. Thus, 
only the directory would be replicated, and state machine commands would be 
needed only for opening and closing a file, not for individual read and write 
operations. 

Transaction Commit. In the transaction commit algorithm described above, 
the amount of replication is determined by the total number of processes involved 
in the transaction. However, the amount of replication should be determined by 
the degree of fault-tolerance required. In many cases, less replication will suffice. 

Assume that N-fold replication is required for reliability and that  there are N 
+ M processes in all. Processes numbered 1 through N are designated "commit 
coordinators", and use Algorithm III to implement a "commit machine". Each of 
the M other processes is connected to one or more commit coordinators. Any 
commit coordinator can issue a transaction complete request, which is relayed by 
the commit coordinators to the other processes. Each process then sends a 
commit or abort request to one or more commit coordinators, who enter the 
request as a state machine command. The final "commit" or "abort" decision is 
relayed to the other processes by the commit coordinators. 

The state of the commit machine is the same as before, except that 
state(I).status is an (N + M)-tuple instead of an N-tuple. The transaction 
complete, abort, and timeaction commands are the same as before, except with a 
larger value of ~2. Instead of the simple commit command, a commit coordinator 
can issue a command to register a commit request for itself and a subset of the 
M other processes, causing the appropriate components of state (I).status to be 
set to "commit". The details are left to the reader. 

In this example, the synchronizing kernel consists of the algorithm imple- 
mented by the N commit coordinators. All communication between them and 
the other M processes is external to the kernel system. We have effectively 
defined a standard two-phase commit protocol, except with a highly reliable 
distributed commit coordinator instead of a single central coordinator. 

This kernel solution involves three more message delays than the solution of 
Section 5--one to inform the other processes of the transaction complete request, 
one to send their commit and abort requests to the commit coordinators, and the 
third to inform them of the final decision. However, the number of messages has 
been reduced from O([N + M] 2) to O(N 2 + M) (in the absence of failure). 

Fault Detection. There are very simple methods for achieving a limited 
degree of fault-tolerance that are based upon detecting when a process fails and 
taking appropriate corrective action. For example, one can rely upon a single 
controller process, and switch to a different controller if the current one fails. 
This does not provide a high degree of fault-tolerance, since a failure can cause 
incorrect behavior until corrective action is taken. However, this may be accept- 
able in some situations. 

For these methods to work, there must be a reliable mechanism by which the 
nonfaulty processes agree upon which processes are faulty and what corrective 
action is to be taken. With a single controller process, it is crucial that  all 

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 2, April 1984. 



276 • Leslie Lamport 

nonfaulty processes agree upon who the controller is. Our approach can be used 
to achieve this agreement. A process issues a state machine command whenever 
it detects a failure, and the state machine output indicates when a new controller 
is selected. The precise specification of the state machine will depend upon the 
mechanism by which processes recognize failures and the actions to be taken 
after a failure is discovered. Using our state machine approach ensures that  the 
same decision is reached by all nonfaulty processes. 

In this example, a highly fault-tolerant kernel is used to perform the most 
critical function--maintaining agreement. The kernel machine has a small 
amount of state information (the failure status of the processes), and commands 
are issued infrequently (only when a fault is detected or a process restarted). 

8. RESPONSE TIMES: TIME VERSUS TIMEOUT VERSUS 
ACKNOWLEDGMENTS 

We now compare Algorithm III with more traditional methods that  use timeout 
instead of absolute times. We know of no method using timeout that  is compa- 
rable to Algorithm III in its generality and degree of fault-tolerance. However, it 
is possible to draw some general conclusions about the comparative response 
times of the two methods. 

Algorithm III uses clocks to avoid sending explicit acknowledgment messages. 
It is possible to do the same thing with timeouts, letting the absence of a response 
within a certain length of time denote a particular NULL response. This kind of 
algorithm will be called a "pure timeout" algorithm. A "traditional timeout" 
algorithm uses explicit acknowledgments, with a timeout occurring only when 
there is a failure. A traditional timeout algorithm will have the same response 
time as Algorithm IV when the response is generated by the receipt of acknowl- 
edgments and not by a timeout. When a failure prevents the receipt of the 
acknowledgments needed to generate the response, a traditional timeout algo- 
rithm has the same response time as a pure timeout one, and Algorithm IV has 
the same response time as Algorithm III. There are thus three response times 
that need to be compared: the response times for Algorithm III and pure timeout 
algorithms, and the time required with acknowledgments in the absence of failure. 

Recall that  5 is the maximum value for delay between the occurrence of an 
event and the delivery of a message generated by that  event. We define 5exp to be 
the expected value of this delay, and define 5vat to be the difference between the 
maximum and minimum possible delays. Thus, an event at time T is processed 
and generates a message that  arrives at another process between times T + 5 - 
5vat and T + 5, with an expected arrival time of T + 5exp. 

To make our comparison, we consider the resource allocation problem under 
the assumptions that  there are no failures and the communication graph is 
completely connected. We then have A = 5 + e in Algorithm III. Suppose that  at 
time T on its clock, process i issues a request for the resource. Furthermore, 
suppose that  the resource is free and no other process wants to acquire it. 

With Algorithm III, process i learns by time T + 5 + e on its clock that  there 
are no conflicting requests, so it can acquire the resource then. (In all algorithms, 
we ignore the time needed by a process to generate the response after it has the 
necessary information.) With a pure timeout algorithm, process i can set a timer 
and acquire the resource when a timeout occurs and no conflicting request has 
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arrived. Assumption UC1 implies that the timeout can be set to occur at time 
T + 28 on its clock. With explicit acknowledgments, process i can acquire the 
resource after receiving an acknowledgment from every other process. The 
expected time for this to occur is about 2/~exp. Comparing the three methods, we 
see that  the times taken to acquire the resource are: 

Algorithm 
III Pure Timeout Acknowledgment 

+ ~ 28 2~exp 

These times are for the resource allocation problem in a completely connected 
communication network with no failures, but they seem to reflect the general 
relation among the methods. All synchronization problems seem to require 
waiting for explicit or implicit acknowledgments, and relaying messages along 
paths- - to  handle failures or missing communication links--just causes all the 
delays to be multiplied by the path lengths. Of course, the delay for explicit 
acknowledgments is only meaningful when there is no failure. 

The delay in sending and processing a message depends upon the system level 
of the processes being synchronized. For low-level processes having complete 
access to and control over the hardware, it equals the actual hardware delay in 
transmitting and processing a message. There tends to be relatively little variation 
in these delays, so in this case we have: 

Low-leveh 8vat << ~o~p ~ ~. 

For high-level processes, which must depend upon lower-level system services to 
transmit messages and to allocate processing resources, the delay includes a great 
deal of system overhead. There is a relatively large variation in the delays, so we 
have: 

High-level: 8e~p < 5v~r = 8. 

Within a single system, the value of 8 can be two orders of magnitude greater for 
high-level processes than for low-level ones. 

The value of E depends upon how clock synchronization is performed. If clocks 
are synchronized by some mechanism completely external to the system--e.g., 
the radio signals broadcast by the National Bureau of Standards-- then there 
need be no relation between ~ and any other system parameters. However, if 
clock synchronization is done by sending messages over the communication links, 
then there is a relation between ~ and ~ .... Let n be the diameter of the 
communication graph. Clock synchronization algorithms that can handle only 
simple types of failure yield values of ~ approximately equal to n~ .... The 
sophisticated algorithms of [8] that can handle f completely arbitrary failures, 
based upon the Byzantine Generals solutions, give a value for ~ of about 
( f +  n)5 .... 5 

These considerations lead to the conclusion that  when response time is impor- 
tant, Algorithm III should be used only if clock synchronization is performed 

5 We assume here that clocks are accurate enough and resynchronized often enough so that differences 
in their rates of advance do not contribute significantly to ~. 
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with low-level processes. This is not surprising, since one cannot accurately 
synchronize clocks using high-level system calls. When low-level clock synchro- 
nization is used, the results of our analysis can be summarized as follows. 

- -For  synchronizing low-level processes: explicit acknowledgment algorithms 
offer no advantage; and Algorithm III provides better response time than 
timeout algorithms (except for very sparse communication graphs). 

- -For  synchronizing high-level processes: explicit acknowledgment algorithms 
provide the fastest response (in the absence of failure); and Algorithm III 
responds about twice as fast as pure timeout algorithms. 

9. CONCLUSION 

We have described a general method for implementing any desired form of 
synchronization in a distributed system with any desired degree of fault-tolerance. 
The synchronization is specified in terms of a state machine, and Algorithm III 
is used to execute that state machine. The fault-tolerance of the Algorithm III is 
obtained by the use of a solution to the Byzantine Generals problem. 

Algorithm III is conceptually simplified by considering each process to issue a 
command on every clock tick, and executing all these commands in sequence. By 
using synchronized clocks that read absolute time, the algorithm can be imple- 
mented in such a way that most of the message transmissions and state machine 
executions are performed by doing nothing. In practice, each process executes an 
interrupt-driven program. 

The idea of obtaining a general synchronization method by implementing an 
arbitrary state machine was given in [6]. There, the state machine worked in 
"logical time", and an explicit response from every other process was needed to 
advance a process's logical clock. Failure of any process prevented further 
progress, so no fault-tolerance was obtained. With Algorithm III, the operation 
of the state machine occurs in real clock time, which advances regardless of the 
actions of any other process. Hence, process failure does not impede system 
progress. 

The use of clocks allows the elimination of acknowledgment messages. Instead 
of waiting for a response, the normal situation can become waiting for a nonre- 
sponse. However, this may increase the delay because when waiting for a nonre- 
sponse, a process always has to wait for the worst-case response time. Acknowl- 
edgment messages can also be eliminated by using timeout, but Algorithm III 
gives smaller delays when good clock synchronization mechanisms are employed. 

We have given a number of examples to substantiate our claim that Algorithm 
III can be used to solve any synchronization problem, with any degree of fault- 
tolerance. It is difficult to compare these solutions with previously published 
ones. The Byzantine Generals algorithms that have been studied are highly fault- 
tolerant, and using them in Algorithm III makes our solutions much more costly 
than other solutions. However, all previous distributed synchronization algo- 
rithms we know of can be defeated by a single failure; they can at best tolerate a 
restricted class of failure. It is not meaningful to compare them with our much 
more fault-tolerant solutions. It is possible to reduce the cost of our solutions by 
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using a less fault-tolerant Byzantine Generals algorithm. We believe that the 
resulting algorithms will be quite competitive with more traditional ones using 
timeouts. 

By assuming a solution to the Byzantine Generals Problem, we have assumed 
that failures cannot partition the system into two noncommunicating compo- 
nents. This requires sufficient connectivity in the network of communication 
links. The possibility of the system becoming partitioned complicates the prob- 
lem. Just  stating the properties required of a solution is quite difficult, as can be 
seen from the discussion in [7]. 

Perhaps the most striking difference between algorithms obtained by our 
method and ones based upon timeout is that using timeout produces a traditional 
distributed algorithm in which the processes operate asynchronously, while our 
method produces a globally synchronous one in which every process does the 
same thing at (approximately) the same time. Our method seems to contradict 
the whole purpose of distributed processing, which is to permit different processes 
to operate independently and perform different functions. However, if a distrib- 
uted system is really a single system, then the processes must be synchronized 
in some way. Conceptually, the easiest way to synchronize processes is to get 
them all to do the same thing at the same time. Therefore, our method is used to 
implement a kernel that performs the necessary synchronization--for example, 
making sure that two different processes do not try to modify a file at the same 
time. Processes might spend only a small fraction of their time executing the 
synchronizing kernel; the rest of the time, they can operate independently--e.g., 
accessing different files. This is an approach we have advocated even when fault- 
tolerance is not required [6]. The method's basic simplicity makes it easier to 
understand the precise properties of a system, which is crucial if one is to know 
just how fault-tolerant the system is. 
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