Lifting Abstract Interpreters to Quantified Logical Domains

Sumit Gulwani Bill McCloskey Ashish Tiwari

Microsoft Research Microsoft Research/UC Berkeley SRI International

sumitg@microsoft.com billm@cs.berkeley.edu tiwari@csl.sri.com
Abstract Here,E, F; ande; are quantifier-free facts from three potentially

different domainsD,,, Dy, and D, respectively. These domains
are the parameters to our universally quantified domain; we call
them the base domains. The abstract elemigalled the environ-
ment, contains quantifier-free facts about program variables. With-
out any quantified facts, our domain reducesXg ElementsF};

are the guards to the quantified faegs which are quantified over
variablesU;.

This universal domain, writte®y, represents typical quantified
facts quite naturally. To constrain array values, we use the domain
of difference constraints for the guards and uninterpreted func-
tions to represent array access in the quantified faefe:. < ¢ <
n = A[i] = 0). In some cases, more complex domains are required.
The invariantvi, (0 < i < n A0 < j < size[i] = Afi][j] <
Afi][+ 1]) can be represented using the combination of differ-
ence constraints and uninterpreted functions for both the guards
and the facts [10]. In our experiments section we describe a reach-
ability domain that allows us to represent constraints Vikén €

Today, abstract interpretation is capable of inferring a wide variety
of quantifier-free program invariants. In this paper, we describe
a general technique for building powerfuhiversally quantified
abstract domains that leverage existing quantifier-free domains. For
example, from a domain that abstracts facts lik&] = 0, we
automatically construct a domain that can represent universally
quantified facts liké7i(0 < ¢ < n = a[i] = 0).

The principal challenge in building such a domain is that, while
most domains supply over-approximations of operations like join,
meet, and variable elimination, working with the guards of quan-
tified facts requiresunderapproximation. A crucial component
of our approach is an automatic technique to convert the stan-
dard over-approximation operations provided with all domains into
sound under-approximations.

The correctness of our abstract interpreters is established by
identifying two lattices—one that establishes the soundness of
the abstract interpreter and another that defines its precision, or X
completeness. Despite the computational intractability of inferring 12(15t) A n & R(p) = n.data = 0). Here, all elements reach-

quantified facts in general, we prove that the analyses we generate?Ple from the variabl@ist up to the element pointed to by
are complete relative to a very natural partial order. are required to have a data field containing zero. Even some ex-

Using our generic construction, we build a number of abstract istential facts can be represented via Skolemization. If our do-

; ; ; - ; ; in includes a function NLEN defined to be the length of null-
interpreters on top of domains for linear arithmetic, uninterpreted M&n ¢ . ’ . :

function symbols (used to model heap accesses), and pointer reacht:erm"l\}ﬁ:zeﬂ C string (and’??d?flrggg forr] non-strings), ﬂ?ﬁ(@ = ‘
ability. Our experiments on a variety of programs using arrays and * < (s) = s[i] # >!”) forbids the strings, regardless o

pointers (including several sorting algorithms) demonstrate the fea- its length, from containing exc_:l_amgnon points (facts l'ke this are
sibility of the approach on challenging examples. useful for analyzing string sanitization routines for secquty). .
To ensure adequate performance, we place some simple restric-

tions on the base domains. The fagtmust be a single atomic
1. Introduction fact—a predicate of the form(¢1,...,pm), such ag; < t2 or
t2. ElementsE’ and F; must be finite conjunctions of atomic
. There is no way to represent disjunctions explicitly in any of
hese elements, which eliminates a possible source of exponential
xplosion in the size of the element.

The abstract interpreters for the base domains will be supplied
with transfer functions for assignments, assume statements, and
control-flow joins. All of these functions are over-approximations
of the ideal result. However, the crux of this paper is that quantifi-
cation introduces extra complexity: in order dgerapproximate
a function on a quantified abstract element, we needriger
approximate its effect on the quantifier guard. Under-approximation
has been studied in the context of backward analysis, but it has
never been applied in this way before. The following example
demonstrates the importance of under-approximation.

Proving the correctness of software almost always requires the uselft;c?s
of universal quantifiers, since program invariants often need to con-
strain unbounded segments of a data structure. However, abstrac
interpreters are typically designed to constrain only a bounded set
of program variables; they cannot express quantified facts. In this
paper, we describe a general method of transforming a quantifier-
free abstract domain into a universally quantified domain. Since

there already is a huge variety of quantifier-free domains available,

our technique can be readily instantiated in many areas. For exam-
ple, in our experiments we were able to reason about unbounded
numbers of array locations and heap objects using some fairly sim-
ple base domains (difference constraints and reachability predi-
cates, respectively).

We began our research by considering many potentially useful

quantified invariants. Ultimately, we were able to express all of o _
them in the following form. Under-approximation operators at work. The following exam-

ple initializes elements 0 to — 1 of arrayA to 0.

for (i = 0; i < n; i++) A[i]l =0
We would like to prove that'k(0 < k < n = Alk] = 0) when
the loop terminates. There are many ways to explore all the possi-
ble control-flow paths taken by this loop. For explanatory purposes,
Microsoft Technical Report TR-2007-87.ps, July 2007 we focus on the first two unrollings of this loop. We B¢, be the

E/\/TL\VUJ‘(FJ':>6J‘) (2)

j=1

combined domain of difference constraints and uninterpreted func-

tions [10]. After the first iteration, this domain infers the following
quantifier-free fact in the environmeht

& i=1A A0]=0

approximates th& of the two inputs). However, doing such a sim-
ple conjunction of guards will almost always lead to imprecision.
In this case, it simply yields the new faek(k = 0 = A[k] = 0),
which is no better than if we had joined the quantifier-free facts.
The key to solving this problem is to join quantifieirs the

We assume that no join occurs, so that the abstract interpreter conpresence of their environment§he i constraints inf;’ and £
tinues to execute the second iteration, producing another quantifier-offer natural upper bounds fdr. So rather than generating A

free fact:
& i=2 A A0]=0 A A[1]=0

At this time, we would like to joirf; and€,. Using the standard
join algorithm for the base domain does not yield a satisfying result;
the invariant we desire requires quantifierspasan be arbitrarily
large. Therefore, the join algorithm for our universally quantified
domain Dy begins by introducing quantifiers in both elements.
(Throughout this paper, we call anything of the foul (F' = ¢)

a quantifier or quantified fact while a domain element fror®y
is called aquantified domain elemetThe details of quantifier
introduction are explained later; the result is as follows:

E : i=1 A Vk(k=0= A[k] =0)

E : i=2 ANVk(k=0= A[k] =0) A Vk(k=1= Alk] =0)
Note that€] and &, are equivalent t&€; and &. Also note

that the two quantified facts ifi; have the same right-hand side.

Therefore, they can be simplified to a single quantifier. We call
this simplificationquantifier merging The tricky part is merging

the guards. In general, given two quantified facts from the same

domain elementyU (F: = e) and VU (F> = e), it is logically
sound to merge them intdJ (F, V F; = ¢). However, our domain

F>, we would like to produceF" = (E; = Fi) A (B2 =
F>), where E; and E» are the respective environments of the
universally quantified elements to be joined. Unfortunately, we are
again faced with the problem of under-approximating a logical
formula that is essentially disjunctive (since implication is another
form of disjunction).

To solve this problem, we use a similar approach to the one
before: we use an over-approximation of the join algorithrin
to start with, and then refine this answer until it is a valid under-
approximation. The initial join takes the environments into account
by joining E1 A Fy with Ex A F». In the array initialization example,
we mustjoini =1 A k=0withi =2 A 0< k < 1.The
result,1 <i <2 A 0<k <i,isasound and precise guard for
the factA[k] = 0. Thus, there is no need to refine the result, since
it is already a valid under-approximation. For simplicity, we can
eliminate the constraints ansince they are already represented in
the joined environment. Ultimately, we get the following element

in the quantified domain, which is the one we desired:
£ 1<i<2 AVEO0<LEk<i= A[k] =0)

The steps we took to arrive at this result may appear somewhat
ad-hoc. Perhaps if the loop had not been unrolled twice, or the ini-

does not represent disjunctions since they are a major source oftial quantifiers had been introduced differently, or if the join algo-

inefficiency. The standard way of approximating disjunction in an
abstract domain is with the join operation. However, using join
will lead to unsoundness here. Consider the fa@t{s = 0 = e)
andVi(i = 2 = e). The join of the guards in a typical numerical
domain will yield0 < ¢ < 2. However, the fact:(0 < i <2 =€)
is not a sound over-approximation of the conjunction of the two
original facts.

The source of the problem is that the join algorithm for an ab-

rithm had not always produced a valid under-approximation, our
approach would have been less successful? In powerful domains
like this one, the threat is ever-present that small changes to the
inputs can lead to a dramatic loss of precision. To alleviate this
fear, we prove that our domain is complete relative to a fairly in-
tuitive partial order in the quantified domain (although not relative
to the implication partial order, which is undecidable). Our under-
approximation operators are also complete for common domains.

stract domain is required to generate an over-approximation of the Our implementation does perform “tricks” like loop unrolling, but

disjunction of two elements. Since the guard of a quantifier ap- it does so only as a performance optimization. It would still arrive at
pears in a negative position (in the antecedent of an implication), we the desired invariant even without loop unrolling; however, doing
mustunderapproximate the disjunction of guards instead. Unfor- so forces it to consider many more possible quantified invariants,
tunately, most domains are not equipped with under-approximation most of which are spurious.
operators. This paper addresses the problem by constructing sound
under-approximations for each domain operation, given the corre- Contributions. The contributions of this paper are four-fold.
sponding over-approximations. These under-approximations work We describe a parametrized framework of universally quanti-
in fairly general circumstances, which allows us to parametrize our fied abstract domains. We describe a general technique to con-
universal domain with a wide variety of base domains. struct under-approximation operations from their respective over-
Our solution is quite simple. We under-approximate disjunc- approximations. We provide soundness proofs and restricted com-
tions by taking the join in the base domdn of the two disjuncts pleteness proofs for both. Finally, we present benchmarks on com-
(an over-approximation) and then adding extra constraints to the plex array- and pointer-based examples demonstrating that it is pos-
result until it is a valid under-approximation. Fortunately, the join sible to construct practical abstract interpreters using our method-
of the two guards ir€; and&5, 0 < k < 1, is already a valid ology.
under-approximation, so there is no need to refine it. Hence, after
the simplification of€5, we now are faced with joining these two
elements iDy:

&' i=1 A Vk(k=0= A[k] =0)
& i=2 AVEO0<k<1= A[k] =0)

The facts about in the two environments can be joined using
the standard over-approximation operator frén. Since the two
quantifiers have the same right-hand sid¢k] = 0, we choose
to join them together. In general, when joining two quantifiers
YU (F; = e) andVU (F> = ¢) from different quantified domain
elements, a safe answerV&/(F1 A F; = e) (meaning it over-

2. Quantified Abstract Domain

The quantified domainDy, is parametrized by three (not neces-
sarily different) base abstract domaifi3,, Dy, andD.. We as-
sume these aronjunctivedomains, meaning that each domain el-
ement is a conjunction @ftomic factsof the formp(ty,. .., tx) or
—p(t1,...,tx). pcan be any predicate, such-as<, or reachabil-

ity. Eacht, is an arbitrary term. We assume that these domains are
equipped with a partial ordex. However, since the domains are
conjunctive domains, we can think of domain elements as formulas
in some logical theory. As such, the partial ordeshould always

respect the standard logical implication relatidnfor that theory

(ie., < C).
An abstract elemer# in quantified domairDy is of the form
£ (2

ENN\VU(F; = e)
where (Q)E € D, is the environment, (b§; € D, ande; € D,

for eachi, and (c) without loss of generality, for eagh; is a set

of variables disjoint from the program variables.

The semantics of the abstract elemérig described in terms of
the semantics of the constituent abstract dom&gnsD,, andD...
Letvyp,, vp,, andyp,, be the concretization functions of the base
abstract domains. The concretization functies, of the quantified
abstract domain is defined as follows. A program sta¢eyp,, (£)
iff

® p€p,(F), and

o for everyi, if p’ is an extension of state with assignment to
variables inU; such thap’ € vp, (F;), then,p’ € vp, (e:).

A special and important class of quantified abstract domains is
obtained wherD := D, = D, = D.. For simplicity and ease of
presentation throughout the rest of this paper we will only refer to
the base domai® and the quantified domaih. .

2.1 Quantified Partial Order

The most obvious partial order for the quantified domain is logical
implication. However, given that the partial order for the base
domain may be weaker than logical implication, we have no hope
of deciding implication on the quantified domain.

A more tractable approach is to obtain a quantified partial order
whose power is relative to the partial order given for the base
domain. However, even this problem is quite tricky. Consider the
following two quantified abstract elements.

&1 Vi, k(0<j<n—-1Ak=j+4+1= A[j] < A[k])
& Vi, k(0 < j <k <n= A[j] < A[k])
&1 implies &, but proving the implication requires induction. We

would like to avoid solving such hard problems. Therefore, we use
a simplified partial order defined as follows. We say

n!

\ VU (F] = ¢))

=1

EN N\VU(F, = e;) 2v E'A
=1
when the following criteria are satisfied:
(i) The environments match up in the base doméainx E’'.

(i) For each factvU(F] = €}) on the right-hand side, there is a
fact VU (F; = e;) on the left-hand side (assumed to have the
same set of variables, for simplicity) such that: g F; < Fj,
and (b)E Aej < €.

We choose this partial order because it is fairly natural and

because it is powerful enough that the examples presented later are

analyzable. We prove completeness relative to this partial order, but
we prove soundness with respect to the standard logical implication

partial order,£>.

One important point to note is that when completeness is de-
fined relative to this partial order of quantified elements an analysis
that never introduces any quantified facts is still considered com-
plete. This partial order only guarantees that, once a quantified fact
is introduced, it will be preserved as long as possible. Addition-
ally, the partial order treats quantified facts as independent of each
other. Thus, for example, it does not require an analysis to transi-
tively close quantified facts to achieve completeness. We consider

this property to be beneficial, since it allows us to forgo transitive
closure of quantified facts for efficiency while still providing a mea-
sure of completeness.

2.2 Templates

A serious problem in implementing a quantified domain is know-
ing when to introduce quantifiers. For example, consider the
quantifier-free element whose environmentli®] = 0. One valid
way of turning this fact into a quantified fact resultsvk(k =

0= A[k] = 0). However, there are many other ways, such as
Vk(k = 0= A[k] = k) and evervk(k = 0 = A[A[k]] = Alk]).
According to the quantified partial order given above, these differ-
ent quantified elements are independent of each other, since their
right-hand sides are not related Byin any environment. Introduc-
ing a greater number of quantifiers may improve precision, but it
incurs a cost in performance.

Therefore, we add extra structure to figdomain by requiring
that all atomic facts represented in it match one of a given set of
templatesA template is a formula such aga] = 0. An atomic
fact e matches a templateif there is a substitutionr over the
template’s variables such that= ¢o via syntactic equality. In the
examples above, we would not introduce the fAE#[0]] = AJ[0]
when using the templatga] = 0. We would introduced[0] = 0,
since there is a substitution= {a = A, a = 0}.

Templates have three kinds of variables, Greek, Roman, and
fixed. Fixed variables are treated the same as constants—they can
only be matched with a program variable of the same name; Greek
and Roman variables can match arbitrary expressions. When in-
troducing quantifiers, we quantify over the Greek variables but
not the Roman ones. Greek variables are writierfRoman vari-
ables as:, and fixed variables as Thus, from the factd[0] = 0
and the template[a] = 0 we would create a single quantifier,
Va(a = 0= Ala] = 0).

Templates have an important impact on precision in practice.
Without any templates, no quantifiers are ever introduced, making
the analysis no more powerful than the base domain. However,
we did not find it difficult to produce good templates during our
experiments. All the quantified invariants that we found useful
have complex guards, but their right-hand sides are simple. Since
templates are needed only for the right-hand sides, they are not a
significant obstacle in generating useful invariants.

3. Abstract Interpreter for Dy

This section presents the principal transfer functiongigr along
with soundness and completeness proofs:

e The join function computes an over-approximation of the log-
ical v of two quantified abstract elements (essentially their
union), which involves under-approximating thre of their
guantifier guards.

The assignment transfer function eliminates any references to
the variable being assigned to. Then it adds a new equality rep-
resenting the assignment. Variable elimination is handled by
over-approximating quantifier elimination, which, in turn, re-
quires under-approximatirigquantifier elimination for quanti-

fier guards.

Quantifier introduction uses templates to move facts from the
environment into a new quantified fact. Quantifier merging
combines the guards of two quantified facts with the same right-
hand sides. Guards are merged using an under-approximation
of v.

¢ A widening step ensures termination of abstract interpretation.

We discuss these basic operators in this section; the next sec-
tion describes the under-approximation operators that they depend

Vo, (E,E) When joining these facts, we would like to generate a quantifier

1 Let & be EAN]_ YUi(F; = ei). whose right-hand side igd[min] < Afu]. Both these facts were

2 Let & be E'ANTL VU(F] = ¢)). generated from a template= a[v] < a[a]. It is easy to see that

3 E":=[V]p(E,E); in &1, the right-hand side matches the templaveith substitution

4 result:= FE"; o1 = {a = Ajv = z,a = u}. In & the substitution is

5 forall i€ {1,..,n},j € {1,..,m}: o2 = {a = Av = y,a = u}. Somehow from these two

6 e:= [Vlp.((e:, E), (¢j, E')); substitutions we must generatgmin] < Afu].

7 if (e =) continue; To do so, we take advantage of the environments of the two
8 Fj = [AJ((Fi, E), (F}, E"); quantified elements using the join algorithm from the base domain.
9 result := result AVU;, (Fj; = e) We convert each substitution into a fact in the base domain. For
10 forall i€ {l,..,n}: example,o; is converted toS; '=a = AAv =z Ao =u

11 0 = |A|((Fi, E), (false, E')); (templates are required to use fresh variables). Then we compute
12 result := result A VU, (F}) = e;) the join of the substitutionsS := [V]p (E A S1, E' A S2). In the

13 forall j € {1,..,m}: example, we ge$ = (a = AAv = minAa = u). If Simplies that

14 Fy = |A)((false, E), (F}, E')); each template variable is equal to some expression, $hean be

15 result := result A VUJ’-(F(S;- = e;) converted to a substitution, ando applied tot yields the desired

16 return result; right-hand Side Of the joined quantlfle‘ﬁ,[mln} S A[u] If S doeS

not imply a value for each template variable, then the quantifiers are
Figure 1. [V]p, . The join algorithm for the quantified domain. said not to match. The functiofV]p. ((e1, E), (e1, E')) carries
out the algorithm just described. It returns either an atomic fact as
) .) its result, or) if the inputs do not match.
on. A common theme here is that over-approximating an oper- Now, suppose that we have made the right-hand sides of the
ator for the quantified domain requires us to under-approximate o quantified facts identical and we are left with the problem of
its dual for the guard. Since both under-approximation and over- computing the join ofE A YU (F; = e) and E' A YU (F} = e).
approximation are so important in this area, we use a special nota-|; js easy to see that the result of this join should contain a fact

tion. An under-approximation of a formuléis denoted |, while YU (F = e), whereF satisfies the following property:

an over-approximation is writtefF"]. Similarly, operators like\

are written as eithefrA | or [A]. FAE = F and FAE = F

3.1 Quantified Join Algorithm HenceF is an under-approximation ¢fE = F1) A (E' = F7).

We need a function on the base domain that computes suéh an
Specifically, we assume that we have the proceduig(F;, E'),-
(FJ,E")) that under-approximates’ = F}) A (E” = FJ) in
D. It should have the following properties.

Consider two elements @y, £ := E A \]_, VU(F; = e;) and
& = E'AN]L, VU (F] = ¢€}). The join algorithm is described
below; pseudo-code is shown in Figure 1.

Let L := (D, =) denote the base logical lattice. We assume
that we are given a procedury]p, that implements a sound . .
and complete join operator for the base domain with respect to the PROPERTY1. (Soundness ofA|p with respect to latticel. :=
lattice L. It takes as input two elements, and E, from D and (D, 2) If (Ao ((F}, EY), (F}, E")) retumnsF, thenF 1y, E' <
returns an elemerft of D. The correctness of the join operator is FlandF g ET™ < Fy.
stated with respect to a partial ordet, on the domairD. A join (Completeness dfA | p with respect to latticel) If F” is such that
operator is correct with respect to an ordeif the return value is for some substitution (on variables inVars(F}) N Vars(Fy) —
the least upper bound of the inputs. The following definition makes (Vars(E') U Vars(E"))) itis the case thaf”’ M, E' < Flo and

this more precise. F'My E" < Flo,then|Alp ((FL, EY), (FI, E™)) returnsF such

!
DEFINITION 1 (Correctness of Join Operatov]p). Let L that /" < Fo.
(D, <) be a lattice. LetE' := [V]p(E1, E2). Then, with respect
to lattice L, we say that Section 4 presents an algorithm to compute this function, which
) o) is sound and, in some cases, complete.
* [V]p is asoundjoin operator if £, < EandFE; < E. Given this algorithm, the pseudo-code in Figure 1 proceeds as
* [V]p is a completejoin operator if, for any E” such that one would expect. Lines 6-9 match up quantified facts on either
Ey < E'andE» < E', itis the case thaty < E'. side and relate their guards via |. Lines 10-15 perform a simi-

lar function, but their job is to match up a fadt/ (F = ¢) on one
side with a dummy factU (false = e) on the other. For exam-
ple, consider the following quantified elements (similar to the find
example in our experiments).

The first step in joining two quantified facts is to join their
environments in the base domain, as shown on Line 3 of Figure 1.

Next consider the process of joining quantified facts. When
computing the join of, safg AVU (Fy = e1) andE’AVU (F} = €}),
we first need to “matche; ande;—that is, make them identical. & : found = false
To do so, we take advantage of the fact that all quantifiers are , .)
generated from templates, so the right-hand side of each quanti- & : found =true AVi(0 <i<10= P(7))
fier matches some template. We say two quantifiers match if they
match the same template in the same way.

However, this matching can be tricky, as illustrated by an exam-
ple. Consider the following two quantified facts to be joined (facts g . Vi(found = true A0 < i < 10 = P(i))
like these appear in practice when analyzing selection sort). o

The join of these two facts should not be simgly We can arrive
at a more precise fact, namely:

We produce this quantifier becauSghas an “implicit” quantifier
Alz] < Alu)) sayingVi(false = P(i)). This implicit quantifier, when matched
Aly] < Alul) with the quantifier in€., yields the quantifier ir€’. This is true

&1 (x =min) AVu(Fi(u) =
& ¢ (y=min) AVu(F](u) =

314, &)
1 Let £ be EAN_, VU(F; = ei);

// Instantiate some quantified facts.
2 E':=EAN{eioc| E=<p Fo;{ occurs in e;o}
// Fix F; 1: Remove affected instances
T, :={t |t occurs in Fj,e;; Vars(t) NU; # 0}
F} = F; N \,eq, {NotEffect(((, E'), 1) };
// Fix F; 2: Remove { from Fj
Fi” = _VJ (& FiI7E,);

/ Fix e;: Remove ¢ from e;
6 ¢;:=[3|(e, E'NF});

because of the following fact:

|A]((false, found = false), (0 < ¢ < 10, found = true))
= (found = true A0 <7 < 10)

Therefore, our join algorithm also tries to match each quantifier on3
either side withfalse, as shown in Lines 10-15. 4

Correctness. We prove the soundness of the join with respect to >

the strongest partial order possible: logical implicatiérn, How-
ever, we prove completeness using a weaker partial ordesince /7 Fix E: Remove ¢ from E
a complete algorithm with respect to logical implication is unde- 7 E" = [3] @ E');

cidable. The soundness (completeness) proof requires that the ba%e t' 5 ’A /\n’ VUL(F! = €));
domain operationsg and|A], are themselves sound (respectively return i=1 TR @)

complete). The A | implementation we present later is sound, but Figyre 3. [3]. Procedure for existential elimination in the quanti-
complete only in some circumstances. fied domain.

)] PROOF Letthe fact£!, £7, € and€’ be of the following form:
LEMMA 1 (Soundness of Join wet). If £” is the fact returned

by the functionf\V]p, (£, £’), theng = £” and€&’ = £”. e =ENN\VU(F =e) , £ :=E NA\VUF =e)
E=EANN\VU(Fi=e) , € :=ENA\VUF =e)

k3 7

PROOFE Let £ and&’ be as defined above. LEt' := E” A
N, VU(F{" = €}) be the result returned by, (€,£’)
as described above. To prove the lemma, we will show that
() E < E" andE’ < E”, and

(i) for each universal factU (F}' = e}.), say generated using
factsVU (F; = e;) andVU (F] = ¢€) in Line 9 or Line 12 or
Line 15 above, itis the case thAt1p I}’ < F; andEMpe; <
e (respectivelyE’ Mp Fy < Fj and E' Mp €; < ey).

We note here that, in the case of universal facts introduced by
Line 12 above, the second universal fact can be thought of to
be VU (false = e;). Similarly, in the case of universal facts
introduced by Line 12 above, the first universal fact can be
thought of to bevU (false = ¢).

We note that
EL =y & andE™ <y &’
- E'< E andE" < E’
V]p(E',E") X E'

(given)
(by defn.)
(completeness dfv]p wrt <)

E<FE (defn of E)

To complete the proof f <v &', we need to show that for any
universal facvU (Fy, = e;,) in &', we can find a corresponding
universal fact in€ that is “stronger” than it. Hence, consider
any universal facvU (F}, = e}) in £'. Since&' <y &', it
follows that there exists ahsuch that

FiNp E' < F! ande! < ¢},
Similarly, we have an such that

F,Np E" < F] ande] < e},

Claim (i) follows from the soundness of the join algorithm for
the base abstract domaid with respect to the base logical
lattice lattice(D, <).

We now prove Claim (ii). Consider the universal f8&f (F}’ = ¢}!)
in the answer generated froivth universal fact on the left and
j-th universal fact on the right as above. By assumption, the
procedure] V] p ((es, E), (¢}, E')) would have returned;, in
Line 6, ore; ande; are the same and; is equal to them

By completeness dfv]p wrt <, we know thaf V] o ((e}, F),-

(e%, E")) returnse s.t.

(Line 12 or Line 15).

By soundness ofV]p, it follows that

Enfe; < e, and E’He} < ep.

(These claims are trivial for the case arising from Line 12 or

Line 15). By soundness d¢fA | p, we have

F/NMpE < F, and F}/Np E' < F}

Claim (i) and Claim (ii) together imply thaf” is a logical
implied by £ (and by £’) since the partial order is, by
assumption thatl, is a logical lattice, contained in the-
relation. This completes the proof.

O

LEMMA 2 (Completeness of Join wiy). Let £ be the fact re-
turned by the functiodV]p, (€', 7). If £ is another fact such
that&! <v & and€&”™ <y &, then€ =y &'

/
e =X eg.

Let F' be the result returned by | o ((F}, EY), (F], E")). By
completeness ofA | p, it follows that Fy, < F. By definition
of [V]p, (£, E7), we know thatvyU(F = e) is in €. This
completes the second part of the proofoKy £'.

O

3.2 Existential Elimination for Assignment

The transfer function for an assignmént= r is shown on the left
side of Figure 2. Most of the machinery for this function is handled
by [31(¢, £), which eliminates any reference to the Ivalifom

the quantified domain eleme#it Once all references have been

eliminated, the equality created by the assignment is assumed. This

function assumes that assignments witeappears in- have been
decomposed into the form:“.= r; ¢ := ¢”, wheret is a fresh
variable.

The difficult part of implementing assignment is delegated to
existential quantifier elimination3](¢, £). This function elimi-
nates all references tfrom £. It is described throughout the re-

mainder of this subsection. When the assignment is to a program

PreCondition? is not a prefix ofr.
PostAssign(&,0:=7)
1 & =13E);
// Let & be E' AN, VU(F] = e€})
// Add the new fact to the environment
2 E" :=PostAssume(E',{ =r);
3 return E" AN, VU(F] = e});

PreConditione is an atomic formula on the base domain
PostAssume(&, e)
// Let &€ be E‘/\/\?:1 VUZ(FZ = ei)
// Add the new fact to the environment
1 E' :=E[ANe;
2 return E'AN[_,VUi(Fi = ei);

Figure 2. PostAssign andPostAssume. The procedures for computing post-conditions of assignment and assume statements are standard

variable (i.e., wherf = v for somev) then the goal is to generate
an under-approximation of the formuld.£, with the complication
that3 cannot be represented directly in our domain.

When a heap location is being updated (gay, A[0]) then the
situation is more complicated. In this cades a termF(¢1,t2),
whereF is an operator like array sub-scripting or field access. We
define the notion of existential quantification of the tefttt:, t2)
in a formula¢ as follows:

H(F(t17t2)7¢)

IF' (Vo,y(x # t1 Vy # t2) =
F'(z,y) = F(z,y)] Ao[F'/F]) (3)

The above definition is in terms of second-order existential quan-

tification (of a function symbol) applied on a specific form of a
universally quantified formula.

We require the base domain to supply an opergid(/, F) that
returns an abstract elemeft that over-approximates the logical
operator3(¢, F) and that does not “contairf: To formally define

NotEffect({z, F),x) false

NotEffect((z, F),t) = true whentis notx
NotEffect((t, F),x) = true whentis notx
NotEffect({Ale],E),Ble']) = e#¢ fEXA=DB
NotEffect({Afe], E), Ble']) = NotEffect({Ale],E),e)
if E<A#B
NotEffect((Ale], E), Ble']) = NotEffect((Ale],E),e")
Ne#e otherwise

Figure 4. NotEffect function for the Array Base Domain.

@ [3](F(z),z =y Au=F(z))isz =y,
(b) [F(F(z), F(z) = F(y) ANu = F(z)) is true, (note here that

the [3] operator on the lattice, we need to define what it means for soundness requires that = F(y) not be in the result — because

a term/ to not occurin an abstract domain elemeht.

DEFINITION 2 (Provably notin#y). A termt is provably not in
E assuming environmerf’, denoted by ¢, E, if either

(a) t is a variable and: does not syntactically occur i&, or

(b) t is of the formF(¢1,t2) and for every termF' (¢}, t5) that
(syntactically) occurs ir, it is the case that eitheE” < t; # t)
or E' <ty # th.

We can extend this definition to a quantified domain element.

DEFINITION 3 (Provably notingZ, £). A termt is provably not
in £ assuming environmerf’, denoted by #, £, wheref =
E N /\:.;1 VUZ(Fl = 67;), if

@t ¢ E

(O)t #pr Fi

©)t #rnr, €

Finally, we definet ¢#., £ whent #. &, whereE’ is the
environment of”’.

The basic job of 3] (¢, E) is to return ank’ so that¢ ¢ E'. It
is clear from this definition that the more disequalities we know,
the fewer terms will have to be eliminated. Thus, we define a
more refined operatdd] (¢, E, E’) that eliminate€ from E using
disequalities from the environme#t .

Given two abstract domain elemerfisand E1, and a tern,
we are now ready to define the overapproximation of existential
quantification oft in E; in an environmenf, which is denoted by
31(t, Ex, E).

DEFINITION 4 ([3]). Let E, E1 be elements of the abstract do-
main. LetE] := [3]|(t, E1, E). Then, we say

e [J]issoundif (E1 M E) <X E1 andt ¢y p Ei.

e [J] iscompletefforall EY s.t.(E1ME) < E{ andt ¢ rp

EY,itisthe casethaf; M E < EY.

By definition,[T] (¢, E) is just[3] (¢, E, true).
ExAMPLE 4. In the logical lattice induced by the theory of unin-
terpreted function symbols, we have

it is not the case thal(z) #p(.)=r)ru=r) ¥ = F(y) since
F(z) = F(y) ANu= F(z) does not imply # z.)
(©) [31(F(2),2 # yAF(x) = F(y) Au= F(x))isz # yAu =

F(y),
(@) [3(F(F(z)), F(z)
T #uNu=F(z).

= Fly)y ANu = Flz) ANz # u)is

The[3](¢, E, E') operation can be used to elimindtirom the
environment of a quantified fa¢t. Figure 3 shows the complete
algorithm for eliminating? from £. Line 7 shows the elimination
from the environment. In the remainder of the section, we describe
what the other lines do.

Elimination from D.. A universal quantifier represents an infi-
nite conjunction over all possible instantiations of the quantified
variables. Some of these instances may be affected by a change to
¢ and others may not be. We would like to eliminate the affected
instances while leaving the others alone. This can be achieved by
strengthening the guard. Consider the following fact:

£:=Vi(0 <i<10= A[i] = 0)

If the locationA|0] is updated, then we can update the guard of this
quantifier, but otherwise leave it alone:

E=Vi(0<i<10Ai# 0= Ali] =0)

The general process of updating the guard is handled by Line 4
of Figure 3. For each term in the quantifier that includes a quantified
variable, it computes a condition under which the term will not be
affected by a change to the updated Ivalue. In the example above, it
knows that the termi [¢] appearing inA[:] = 0 will not be affected
by an update te1[0] as long as # 0. This constraint is then added
to the guard.

Computing these constraints is the responsibility ofiéeEf fect
function. This function will be somewhat domain-specific, since it
depends on the semantics of the functions used to represent heap
access. In general, NotEffect(({¢, E), t) generates a constraint
that is true, therf does not affect. An exampleNotEffect func-
tion that works for Java-style arrays is shown in Figure 4.

After adding extra constraints to the guard, Line 6 of the algo- | emma 3 (Soundness o] wrt)0 & = [31(¢,), then

rithm eliminates any terms from the quantifier’s right-hand side that
may be affected by the update £0The [3] algorithm is allowed

to use disequalities from both the environment and from the guard,
some of which may have been introducediogEffect.

Elimination from guard. A common theme of this paper is
that performing an over-approximation operation on a quantified
domain element requires us to perform the dual of its under-
approximation on the guard. Consider the following example.

E:=i>nAVE0 <k <i= P(i))

This is a typical situation after exiting a loop that establishes prop-
erty P. Imagine now that the programmer assigns to varialsie
it can be used for another loop. It is wrong to simply eliminate
facts from the guard involving since that would producek (0 <
k = P(i)), which is not a sound inference. Under-approximating
existential elimination on the guard is also a mistake, since that
would producevk(false = P(t)), which is sound but useless.
Instead, we will under-approximatmiversalquantification. In
environment?, with guardF’, we will find the weakest fadt” such
that ' = V¢.(E = F). In the example above, our goal is to find
F' sothatF’ = V{.(i > n= (0 < k < 7). Itis easy to verify
thatF’ := 0 < k < nis such a fact.
We use the functiohV | (¢, F,, E) to find the under-approximation
of V¢ on factF in environmentE. It should have these properties.

DEFINITION 5 (|V]). Let E, E; be elements of the abstract do-
main. LetE] := |V|(t, E1, E). Then, we say

e |V]issoundif (E1 M E) X Ey andt &5 F1.
e |V]iscompletdfforall EY s.t.(E{ME) < Ey andt ¢, EY,
itis the case thaf?y ME < Ej.

By definition,|V| (¢, E) is just|V| (¢, E, true).

An algorithm to computeV | is given later in the paper. Line 5
of Figure 3 relies on this algorithm to eliminatérom the guard of
a quantifier.

Quantifier instantiation. One important step in existential elimi-
nation is to instantiate some quantifiers and move the instantiations
to the environment, especially those that may be invalidated. This
may seem pointless, since these facts will be immediately elimi-
nated from the environment as well. However, they may lead to

£ & andl g, &

PROOF. Let £ be E A N\, VU;(F; = ¢;). Let & be E” A
N, VUi(F" = ¢€}), whereE" | F}’ e; are as defined in the
procedure in Figure 3. First we show trat= &’ using the
following two arguments:

@¢ = E: This follows from the two fact€ = E’ and
E' = E”. The first fact is true because every fagt added
to E’ (Line 2) is implied by&. (Note here that, sincé is a
logical lattice, we havel <; F;o implies E X F;o, and
henceE A VU;(F; = e;) = ¢;0.) The second fact follows
from the soundness ¢8] on the base domain (Line 7).

(b) For each, £ = YU;(F]' = €}): From Line 4 and Line 5
it follows that 7/ = F; andF/’ <, F/ (soundness ofV| in
the base domain). Since the base domain is a logical lattice, it
follows thatF!’ = F/ and hence we havB” = F;. Similarly,
from Line 6, it follows thate; A E' A F = ¢, (using soundness
of [3] on the logical lattice defining the base domain). Now,
assume thaf is true. Thus, ifF’ is true, thenF; is true (by
F!' & F)), and hence; is true sincef = VU;(F; = e;).
Also, if /' is true, thenF, is true (byF,’ X F}), and hence
¢} is true (usinge; A E' A F) = ¢}) since€ = E’. This shows
that€ = VYU, (F/ = ¢}).

To complete the proof, we have to show tifagZ, £’. Note
that, in Line 5, Line 6, and Line 7, we explicitly ugél] and
|V] on the base abstract domain to eliminafeom the result
&'. Hence, it follows from the correctness[af] and|¥| on the
base abstract domain that, for all¢ #., F;', ¢ Heinp e,
and? #,, E".We note that’ is implied by&. Furthermore,
we can assume that; does not participate in proving any

nontrivial fact not involving the quantified variables. Hence, it
follows that! ¢z F{', ¢ #g e, ¢ #g E’, and therefore,

0 ¢ £

inferences in the environment before they are eliminated. Consider U
the following example, which is derived from insertion sort.
E=Vk(0<k<i=A[k] <Alk+1
(e ' (K] <) [) . LEMMA 4 (Completeness dB] wrt <v). If " = [3](4,E),
The programmer assignd[j + 1] := A[j], wherej is a local then for all € s.t.£ <y £" and{ ¢, £, itis the case that

variable. OumiotEffect algorithm will convert the quantifier to " =<y &,

the following:
VEO<Sk<ink#j+1ANk+1#j+1= Alk] < Ak+1])

Compared to the old quantifier, two facts are losj] < A[j + 1]
andA[j + 1] < A[j + 2]. However, if we put these two facts into
the environment, then even after eliminatidAgj + 1] from them,
we retainA[j] < A[j + 2] by transitivity. Hence, we get a stronger
result.

Line 2 of Figure 3 performs this quantifier instantiation. Note
that because of the way our partial ordey is defined, this step is
not needed to prove completeness. However, it increases precision
in practice, so we include it nonetheless.

Soundness and completenessThese two lemmas prove sound-
ness and completeness fat] on Dy. They are similar to the cor-
responding ones for the join operation. They depend on the sound-
ness and completeness of the base domain operatioris]], and

V).

PROOF. Let £ be E A A\, VU (F; = e;). LetE” be E” A
» VU(F] = ¢}), where E”,E',F}', F] and ¢; are as

defined in the procedure in Figure 3. L&t"” be E"' A

A, VU(F{" = ¢e"). We show thatt” <., £” by not-

ing the following:

(a) E” < E"": This follows from the following derivation,

ExvE" L g E" Definition of £

E=<E" Definition of <y

L #g E" Above and property off

E' < E"” - E"is E A something

(3¢, E') = E"” - [3] is complete on base domain
E’" < E" Definition of E”/

(b) for eachi, there is aj s.t. E[A1F" < Fj" ande); < e 3.5 Widening, Termination, and Complexity

1 " . . .
Since€ =v £, we know that, for each there is g s.t. Widening is used in abstract interpreters to ensure termination. We

E[NF" X F;, e; 2 ¢ Definition of <y define a widening operatoty,, on the quantified domain using a
0 # 51 pvorestect((,B7) 1) € Definition of NotEffect widening operatory/, on the base domain and an operatir,on

Y gE/ANOtEf/fﬁct(%E,),t) ell! ej/ < el the base domain that is dual of the widening operator.

¢ ¢E'Aj§ & 5 Fi = _NOtEffeCtW’ E),t) DEFINITION 6 (Dual Widening).An operator A(Fy, F») is a
e 3y b fpnpy € Putting it together dual widening operator if (WA (F1, Fy) < Fy, (i) A(Fy, Fy) <
[F1(¢,e;, E" A F]f) < ey -+ [3] is complete on base domain F%, and (iii) for every infinite sequendé = F>= - - -, the sequence
e; < e Definition of ¢/ F{ Fy F}, ..., whereF] := Fy and I} := A(F/_,,F;) (for

1 > 2), is not strictly decreasing.

To complete the proof, we will also show thBifA] 77 < F'. A trivial A operator is one that always returfsl se.

E[NF]" X F;, L g E" From above Given quantified abstract domain elemeits and &, the
E[NF" 2 Fj, £ ¢ F]" Definition of #, <v widening operatorsy, (€1, &2) returns £s. Let & be written
E=<E" Definition of £ E; N N, VU (Fi; = eij). We assume that the universal vari-
E[NF" 2 F;, ¢ gg F" From above ables ine1; andesy, have been appropriately matched up. Thgn
F" < V], F;, E) " |V] is complete on base the widening result, is defined as follows.
E" < F/ Definition of F}’ (a) B5 is v (E1, Ea),
. (b) if E2 A E; (thatis, E2 is not equivalent taF,), thenng is
This completes the proof. O equal tone and for eactk = 1, ..., ngs, esy iS ear, and Fsy, iS Faoy.
(c) if E2 < Ej (thatis,E- is equivalent taF,), thenns is equal to
3.3 Miscellaneous Transfer Functions ny and for eachk = 1,...,ns, if, for somej € {1,...,m},

. . . e1; < ey and By M Fy, <X E1 M Flj, then ez, is equal
Conditionals. We assume that all conditionals in the program o'/ (ey;, exx) and Fii is A(Ey A Fuj, Ex A Fa); otherwise,
are converted tassume statements. The right side of Figure 2 g, ".— £, andesy, == eay.
shows the transfer function fassume. It simply adds the assumed
condition to the environment.

Termination. We now establish termination of our abstract inter-

Partial order. When computing a fixed point, it is necessary 0 preter. Suppose that it does not terminate. This can happen only if
check if one quantified domain element is below another in the e get an infinite chain of successively weaker facts,

partial order. The definition oKy is purely in terms of<. Hence,
the check for<y is easily implemented using an implementation E123vE& v & v,
of <. The soundness and completeness of this implementationwhere&_ is E; A\, VU(Fi; = e;;). This infinite chain and the
follows directly from the soundness and completenesx aind the definition of<vj'znlgether ijmply tjhat
the definition of<\. - ’
Ei 2B, X E3 X -+

-) o) . The widening step (a) guarantees that the base abstract interpreter
Quantifiers are introduced by finding facts in the environment that always terminates, and hence there is a finitsuch that allE;’s,

match a given set of templates, as described in Section 2.2. Thisfgr ; > m, are (logically) equivalent.

step takes place before a join, as joins may throw away facts from Now let us consider the quantified facts in the above infinite
the environment unless they are quantified first. This step clearly chain starting from the:-th element. The infinite chain above (and
preserves soundness. It is complete according to our lattice the definition of<y) implies that we will have a chain of quantified

3.4 Quantifier Introduction and Merging

since the resulting quantified element is actub®yowthe original facts,
one in the lattice.
A related operation, merging two quantifiers into a single one, is VU (Fmj = €mj), VU (Frng1,50 = €my1,),
sometimes desirable. Frequently, after introducing new quantifiers gych that (we assume universal variables have been renamed and
from the environment, we get a fact like: made equal)
E:=Vk(k=0= Alk] =0) AVk(k=1= A[k] =0) Em Nemj =< €mi1y Em M Fpi1 0 = Fj

Since our lattice< essentially treats different quantifiers indepen- ~ Em+1 M emy150 X €mya i | Emi1 N Fopa o 2 Fg g
dently, the analysis may become more precise if we merge these : :
facts into a single one:

E=Vk(0<k<1= Alk] =0)

follows that,
We merge two quantifiers (in a process caliedge) when their _
right-hand sides match the same template with the same substitu- Em M Fmyj = Em O Fngyye 2 En 0 Fngs o
tions. In this case, we can write these quantifierS&$F; = e) Enfen; =X EnDNempy =X EmMemig

and VU (F: =). To merge the guards: and 2, we compute 1he \yidening operatory, on thee's and the dual widening opera-
an under-approximation of their disjunction (essentially unioning 4 A ‘on theF’s guarantee that this chain is not strictly decreas-
them together). In Section 4, we describe how to implement an 0p- jg This establishes termination of our abstract interpreter.
erator | V| (F1, F», E) that under-approximates disjunction in an

environmentE. Given this function, we can eliminate the origi- Complexity. Although the widening operator defined above guar-
nal quantifiers and replace them witt/ (F' = e), where ' = antees termination, it does not guarantee efficiency. Recall that if
|V](F1, F2, E). This transformation is sound (complete) assum- there are multiple quantified factd/ (F} = e), VU(F> = e), ...,

ing | V] is sound (complete). VYU (Fy, = e) with the same right-hand side, then we can use

We know that allE’s in the above are equivalent 6,,,. Hence, it

=
=

Merge to merge them. HoweveNerge does not guarantee that
the number of quantified facts will always be bounded. In our im-
plementation, we modify therge rule so that it keeps at most
K different quantified facts with the same right-hand sid&ec-
ond, by using a finite set of templates to spedfy (Section 2.2),
we ensure that the number of distinct faetthat can occur on the
right-hand side of a quantified fact is bounded, sayMyHence,
the number of quantified facts is always boundedy K.

Suppose that the length of any increasing chain (with widening)
in the base domain is bounded by and the length of any decreas-
ing chain (with dual widening) is bounded liy. The termination

argument shows that, at any program point, we can change facts at

most(L1 + K x M = L) times. Hence, the abstract interpreter over
the quantified domain makes at mogt + K * M * L2) x n calls
to the transfer functions, whereis the size of the input program.

A join of two quantified domain elements, each containing up
to MK quantified facts, can creaté/ K2 quantified facts. The
complexity of the join operator i©)(MK>T|,)), whereas the
assignment operator runs @(KM(Trz1 + T|v))) time. The
Merge operator takes tim@ (M K*(T\)) time. The partial order
checking function runs ifO(M K?(Tx)) time. HereT, denote
the time the operator takes in the base domain. Hence, the time
complexity of the abstract interpreter for the quantified domain is
obtained by multiplying the number of calld,; + K« M * Ly) xn,
and the sum of the complexities of each of the transfer functions.
If we treat K, M as constants, the complexity is only a polynomial
factor over the complexity of the base domain abstract interpreter.

4. Under-Approximation Operators
The underapproximation operatots;|, | A, and|V], are needed

IAJ((F1, Er), (B2, E2))
F = ’—\/—|(F1 [A.‘El,FQ[A.IEQ)
Forall e; € Fy — F':
F := F Nabduct(Ei[A]F,e1);
Forall ez € Fr — F':
F := F A abduct(E2[A]F, e2);
Return F';

o U~ WN PR

Figure 5. Underapproximation of conjunction. This operator is
used for implementingVv] on the quantified domain.

We solve these difficulties using a technique cabéduction
Abduction is a process in artificial intelligence that generatesxan
planationfor a fact given a set of assumed facts (the environment).
We defineabduct(E, F') to be the set of all explanatiors for a
base fact’ in the context of an environmett.

More formally, suppose we make an observatiéfi, in a
known state,F/. Abduction learns an explanatio#;, for the ob-
servationF”. This means,

EANF S F

We requireabduct(E, F') to compute the set of all possible ex-

planationsF' that satisfy the requirement above. An algorithm to
computeabduct will be given later. Using it, we can now define

the two underapproximation functions as follows:

|_\/J(F17F2,E) abduct(E,F1 \/Fz)
|_/\J ((F1, El), (FQ, EQ)) abduct(El, Fl) N abduct(Ez, FQ)

We can use these two definitions as algorithms for computing
|A] and | V]. However, sinceabduct can return many different
answers, this algorithm would be fairly inefficient. Instead, we use

and FE A Fis consistent

by the abstract interpreter for the quantified domain. They are not, \¢ standard over-approximations from the base domain to compute
in general, reducible to the other standard lattice operators. Hence,[/\] and [V], and then usebduct to add additional constraints

we have to develop dedicated algorithms for these operators for | we reach a valid under-approximation. This technique leads
each base domain. Here, we present sgemericprocedures that 1, more efficient algorithms in practice. Pseudo-code is given in

work for anybase domain. These procedures are complete only for g re 5 and Figure 6; the next sections explain these algorithms in
certain theories, like difference constraints, as will be explained. yqtail.

The following example demonstrates the difficulty of computing

under-approximations. 4.1 Under-approximating Conjunction in Two Environments

EXAMPLE 5. In a version of insertion sort without loop unrolling ~ Under-approximating conjunction is necessary when joining two
(unlike the one appearing later in the experiments section), the fol- quantifiers from different domain elements. For a quantified do-
lowing two quantified domain elements are generated on different main element, A VU (F; = e) and anothe; A VU (Fz = e),

paths. the joined quantified element must have a guard that under-
L . approximateg 1 = F1) A (E2 = F3) (recall that simply using
j=i=1 A Vu0 <k <i-1= Alk] <Alk+1]) F1 A F, is too imprecise). The functiot | ((F1, E1), (Fa, Es))
Jj<i—=1 A Vu(0<k<i= A[k] < A[k+1]) computes this under-approximation.

As mentioned in the previous sectioapduct(E1, F1) N
d abduct(FE?2, F») is a sound answer for this problem. However, us-
ing abduct in this way may lead to many different answers, and it
would be inefficient. Instead, we start by computing a conjunction
of facts thatmustbe in the answer, and then add more conjuncts
usingabduct until we have a sound result. Another way to think
of this algorithm is that we start with an initial “guess” and then

Both facts say that the array is sorted except at positipmut
they say it in different ways. Eventually, these paths are joine
together, causing the guards (and their respective environments)
to be combined vigA |.

A((O<k<i—1,j=i-1), (0<k<i, j<i-—1))
lj=i—1=20<k<i—1) A (j<i—1=0<k<i)] ofthis _
refine it to a valid answer.

One valid result i) < k < i Ak # j. When used as a guard, An overapproximation of the conjunction of guards in their
we get the fO”OW|ng quantlf_lt?l’. It agl’ees W|th our intuition that the environments is a good p|ace to s’[art, Since |’[is ||ke an under-
array is sorted at every position byit approximation but less constrained (because the under-approximation
Vu(0 < k < i,k #j = A[k] < A[k + 1)) implies the over-approximation). Therefore, starting with the over-
approximation will not preclude any potential answers; we then
There are two difficulties in computing the under-approximations.add extra constraints by abduction until we find a correct under-
First, the under-approximation result must be an element of a con- approximation.
junctive domain, so it cannot use any disjunction. Second, each Fortunately, it is easier to find a good over-approximation of
input to the under-approximation must be understood in the con- (E1 = Fi)A(E2 = F») than to find a good under-approximation.
text of its environment, and the two inputs may have different We are allowed to assum@; V E-, since it is known in the join
environments (as is the case for]). that either one quantified domain element or the other holds. In this

case, the following inference is valid.

(E1:>F1)/\(E2:>F2) (E1:>F1)/\(E2:>F2)
= E; AF; assumingk, = FE; A F> assumingts
= (E1 A F1)V (B2 V Fz) assumingt; Vv Es

Itis easy to over-approximate this formula in the base domain using

its join algorithm,[V].
In fact, with a bit more examination above, it's clear that when
E, is disjoint from E (that is,E1 = —E»), then the top formula

and the bottom formula are equivalent. In most cases, the two

environments are disjoint, usually having forms like = E A
it = landE; = E Ai = 2. Due to this fact, we know that
(E2 A F2) V (E1 A F1) is not just an over-approximation, it is
usually the best over-approximation.

Figure 5 shows the remainder of the algorithm for conjunc-

tion in the presence of environments. After computing the over-

approximation, it generates more constraints via abduction to en-
sure that the result is a valid under-approximation. Note that since
abduction may generate multiple answers, this algorithm may also
have many results. The pseudo-code makes sense if we conside

abduct as a non-deterministic algorithm, and let the results of

|A] be the set of all possible results, given the non-determinism

of abduct.
The algorithm first considers all atomic factsih that are not
already implied byF', the over-approximation. For each such fact,

V] (Fy, P2, E)
1 F:=[V|(Fi[AE, F2[AE)
2 Foreach e € Fi — F and es; € Iy — F':
3 F := F Nabduct(E[A]F,e1 Ve2);
4 Return F;

Figure 6. Underapproximation of disjunction. This operator is
used for implementingA] on the quantified domain.

These facts are generalized to give the following elements of the
quantified domain,

&1 :change=0AVU(0 < up < wug,1 <ug < 2= Afui] < Afuz])
& change=1AYU(0 < uy < 2,us = 2= Aluy] < Aluz])

whereU := (u1,uz), and F; and F; are the underlined formulas
in the two elements respectively. When we join these two facts, we
have to compute the following underapproximation,

[A]((F1, change = 0), (F2, change = 1))

;J'his returns two mutually incomparable answetsunge = 0AF;

and F». The first one leads to the invariant which says that if
change is zero, then the array is sorted. The second one gives
the quantified invariant that the last element is the largest element
(which is the correctness statement of the inner loop of bubble sort).

The soundness of the procedure in Figure 5 follows directly

abduction is used to find explanations for why this factis true inthe from the soundness ebduct. The completeness follows from the

first environment. For example, i1 saysj = 2 ande isi = 2,
then one possible abduction result is simphg 2. However; = j

observation that (i) we do not lose any solutions in Line 1 as itis an
over-approximation of any possible answer; and (ii) completeness

is another possible answer, which may be more precise. The samesf apquct guarantees that we generate all possible explanations.

process is repeated fék, using the updatefl. Note that the closer
the initial over-approximation is to a valid under-approximation,
the fewer calls there are #tbduct, and the quicker the algorithm
runs.

ExAMPLE 6. Consider these inputs, which occur when zero itera-
tions of an array initialization are joined with one iteration.
Ei:=1=0 Fi:= false
Ey:=i=1 Fy:=5=0
The proceduréA | ((F1, E1), (F2, E2)) will computej =0 A ¢ =
1. This result is obtained in Line 1, and the other lines do not
contribute to the result.
Similarly, the following occurs when the first iteration of an
array initialization loop is joined with the second iteration.
Fi1=1=1 Fi:=5=0
Ey=i=2 F,:=0<j<2
In this case, the procedure will compute< j < 4. Again, this

result is obtained in Line 1, and the other lines do not contribute to
the result.

The following example illustrates the importance of the results
returned by abduction.

EXAMPLE 7. After unrolling the inner loop of bubble sort once, we

4.2 Under-approximating Disjunction in an Environment

Under-approximating disjunctions of base facts is useful when two
quantifiers from the same quantified domain element are to be
combined into a single quantifier. In this case, their guards are
combined via V| (F1, F», E), whereE is the environment andl
andF; are the guards.

As in the algorithm for conjunction, we start with an initial over-
approximation of the result and then refine it with more constraints.
In this case, the over-approximation is even easier to compute. We
could start with[\V](F1, F»). However, we wish to take advantage
of facts that are known to be true in the environment, so instead it
is safe to start with V] (F1[A1E, F2[A]E).

Figure 6 shows the remainder of the algorithm, which adds more
constraints using abduction to get a sound under-approximation, as
was done for conjunctions.

ExamPLE 8. For the inputs,
Fi:=(1<k<n) F:=(k=0) E:= true

the procedurgV |(F1, F2, E) returns0 < k < n. This result is
obtained in Line 1, and the other lines do not contribute to the
result. We note here that this particular example is reminiscent of
the “range merging” approach of [12].

As another example, consider the inputs

Fii=(G=0k=1) F:i=(G=k E:=0<k<1)

get three different sets of facts. We consider only two sets here. Inin this case, the procedute/ | (Fi, F», E) will compute0 < j <
set one, the first 3 elements of the array are already sorted and we k. Again, this result is obtained in Line 1 itself.

get
& change = 0 A A[0] < A[1] < A[2].

In the second set, the array is not sorted initially, but the largest
element moves up, and we get

Eo change = 1 A A[0] < A2] A A[1] < A[2].

The next example shows how abduction is useful.
Fi:=(0<i<10) Fr:=(11<i<20) E:=true

The join in Line 1 produces” = (0 < ¢ < 20). The loop in
Line 2 has a single iteration, with; = (¢ < 10) andes =
(11 < 4). These are the facts that are not implied By Line 3
calls abduct((0 < ¢ < 20), (1 < 10) Vv (¢ > 11)). It returns the

abduct(E, ¢) V|, F,E)

let ¢ be e1 V---Ve, where e; is an atomic fact let F be ey Aea A---Aex, where e; is atomic
2 ans ::@; ans := true;
3 Foreach maximally strong for i=1,...,k do

atom e s.t EAA,7e;=e and E# e Nondeterministically choose maximally strong

4 ans := ans U {—e}; atom e in [3]|(¥, —e;, E)
5 return(ans); ans := ans A —e;
return(ans);

[N
»WN PR

ol

o

Figure 7. Abductive reasoning in the base domain using forward
reasoning. A literal is an atomic formula or its negation. The Figure 8. Underapproximation of Quantification. This operator
abduct function is used for implementing all underapproximation is used in implementing3] on the quantified domain.

operators. It assumes that negated atomic formulas can be repre-

sented in the base domain. In Line 1, we compute a join and get

answeri # 10, which is correct becaus@® < i < 20) A (i # 10) Fi=0<u<ij<i-1)
implies (and thus under-approximaté$)< 10) v (i > 11)). This is not a sound underapproximation. We need to strengthen it

The soundness of the procedure in Figure 6 follows directly @S in Line 3 and Line 5 of Figure 5. For example, we will need to
from the soundness afbduct. The completeness follows from Strengthenitbybduct(FAj =i—1,u < i—1). We compute this
the fact that (i) Line 1 generates an over-approximation and does Py computing atomic facts implied ByA j =i — 1 Au > i — 1.

not forbid any solution; while (i) the completeness afiduct Some such atomic facts age= i — 1, u = j, Using the second
guarantees that all solutions are generated. atomic fact,u = j, and adding its negation t@" results in the

answern) < u < i,u # j thatis used in Example 5.

4.3 Generating Explanations via Abduction . . .)
We remark here that the inductive invariant generated in Ex-

The previous two sections use abduction to generate alternate eXample 5 is not present in the code in any way. It took 3 hours of
planations for a formula in the context of an environment. This manual effort to generate this precise inductive invariant, which is
section explains how to implement abduction. The simplest sound automatically generated in our approach.
implementation ofabduct(E,e1 V ... V ex) can return any;. The soundness of the abduction procedure (Figure 7) is obvious
However, a more sophisticated abduction procedure that takes ad{rom its description. There is a potential loss of completeness on
vantage of facts from the environment will improve the precision |jne 3 since we only search faatomic (and not arbitrary)e.
of.the rest qf the system. The abduct[on algorithm we describe in However, the procedure in Figure 7 is completedonvextheories
this section is even complete for certain base domains. whose set of atomic facts is closed under negation. This is because,
Our abduction algorithm is based on the following principle. for such theoriesp,—e; (and hencelZ A A;—e;) can be written
T N T as a conjunction of atomic facts (s&y) and hence, whenever
(E A (J\—e:) = e) implies(E A —e = \/ ¢)) > 8, coniune b /(T&y), _ _
; ; E' = eve thenE = eor E' = ¢ (by convexity). This
. . — . shows that there is no loss of completeness on Line 3. While linear
That is, the negation of any faetimplied by E and the negation arithmetic over integers is not convex, it becomes convex if we
of all thee;s is a valid answer fosbduct. Therefore, we take the

— H _ / !
set of all such facts that are maximally strong and return their nega- remove= from the signature and replace= ¢’ (and¢ # t)

tions. As an optimization, we ignore all facts implied by the envi- byt > t' At <t (andé < ¢ Vi > ¢'). The atomic facts are
ronm.ent alonep since thé aregnot useful. Fi urg 7 shgws Seudo_obviously closed under negation in this theory. Hence, abduction,

A y Y P and consequently each of the other under-approximation operator,
code for this algorithm.

is complete for the theory of linear arithmetic over integers (and

EXAMPLE 9. Consider computingbduct(E, ¢), where reals) and for the theory of difference constraints over integers (and
reals).
E=j=2 ¢p:=i=2)
We will search for all maximally strong facts such thatj = 4.4 Under-approximating v in an Environment

2 A i # 2impliese (andj = 2 alone does not imply). The most The underapproximation operatpy | requires computing an ex-
obvious answer i # 2, but another potentially useful answer planation for a fact in the context of a known fact such that
isi # j. We return the negations of both these facts as possible the explanation does not contain the quantified term. Recall that
answers. V| (¢, F, E) under-approximates the logical formWé(E = F).

The function|V| (¢, F', E) can be computed using the procedure
given in Figure 8. The soundness of the procedure follows from
noting the following logical equivalences:

Implementing this algorithm requires two non-trivial properties
of the base domain. First, it must support negation of atomic facts.
All of the domains that we have implemented for our experiments
can perform sound reasoning about negated facts. Second, the do- ans = V{(E = F) iff (3¢.(FEA-F))= —ans
main must be able to enumerate the maximally strong facts implied
by a set of formulas. It is easy to do this for saturation-based do-
mains like difference constraints or reachability.

If one of these properties is not satisfied by the base domain, it
is still possible to implement a simpler but less complete abduction
procedure, such as the trivial one that returns its inputs. However, .
we believe that most domains used in practice do fulfill these ©- EXperiments
requirements. In our experiments, we instantiated our quantified domain by two
base domains. The first base domain was the logical domain defined
by the combination of linear arithmetic and uninterpreted sym-
IN(0<Lu<i—1,j=i—-1), (0<u<i, j<i—1)). bols [10]. We extended this domain to include some disequality rea-

Assuming that the abstract domain can precisely represent literals
(atomic formulas and negated atomic formulas), it is easy to see that
the procedure of Figure 8 always returns an underapproximation of
the forall quantified formula.

ExAMPLE 10. Let us revisit Example 5 wherein we had to compute

soning. Disequalities permit us to represent disjoint ranges in a sin-
gle quantifier guard, rather than splitting them into multiple quan-

of their environmentsE;
{—next?).

(p = {—next) and E-

tifiers. The second base domain we used was a saturation-based

domain that has inference rules for reasoning about data structure

reachability. One appeal of our approach is that our quantified do-
main can switch from linear arithmetic/uninterpreted functions to
reachability with little effort. This section first gives an overview of

(AI((Fr, Er), (F2, B2))

The above answer gives the guard for the quantified fact that says
that the propertyP is true for all nodes betweefiand the node
immediately beforg, inclusive. This is an inductive loop invariant

R(¢,u) A\ R(u—next, p)

the reachability domain, and then describes our experiments overthat can now be used to verify that the loop establisResr all

both domains.

5.1 Reachability

We considered a domain in which each element is a conjunction of
atomic facts of the form

R(e1,e2) | —R(ex,e2) |
where each expressieris of the form

€1 = €2 | el 7562
ex=gx | null | e—next

The reachability predicate®(z,y), intuitively denotes that there
is a path from the object specified byto the object specified by

y, where the path passes through a set of fixed pointer fields in the

objects (e.g., theext field). A reachability predicate is commonly
used in the analysis of pointer data structures [2].

Given a set of known reachability facts, we saturate it by apply-
ing a set of inference rules to add new facts (as described in [2]).
Examples of these reachability inference rules for lists include:

= R(€1,62)
= R(el,eg)
= R(ei—next,e2)

ez = e1—next
R(el, 62) A R(ez, 63)
R(el, 62) A €1 75 €2

The algorithms for meet and join are fairly simple—we take the
union or the intersection of the saturated facts. Existential elimina-

elements.

5.2 Results

We applied our techniques to automatically generate invariants for
some standard sorting routines and other similar problems that have
been studied as challenge problems for generation of quantified in-
variants in the literature. We report on some of the examples in
detail in Table 1. Benchmarks were run on a 3 GHz Intel processor
with 2 GB of RAM. In the array examples, we used fixed vari-
ables instead of Roman variables in the templates to increase per-
formance. We also unrolled loops two times to avoid discovering
spurious invariants.

The first few examples in Table 1 have been taken from [12].
Arraylnit is the example from our Section 1. Our tool discovers
the invariant that all array elements are initializedOtdt uses a
templateA[a] = 0. VarArg (from [12]) counts the number of non-
null entries in a list, and then scans over that many list entries again,
asserting non-nullness. We use a templdig # 0. ArrayCopy
(from [9]) simply copies the contents of one array into another,
distinct array. Our tool discovers the invariant that the two arrays
are the same. We use the templaje] = B[«a]. ArrayCopyProp
(from [12]) starts with the pre-condition that a source array has only
non-zero elements. It copies this array into a distinct destination
array. Our tool checks that the destination array has only non-

tion is somewhat more complicated, and beyond the scope of thiszero elements. We use the templaie] = B[«]. Find (from [8])

paper.
We used the generic under-approximation algorithms described
in Section 4 for this domain. Despite not being complete in this
context, they are precise enough to handle the following examples,
which we extracted from our linked list manipulation benchmarks.

Underapproximation of disjunction in an environment. When
initializing the data fields of an acyclic singly-linked list to zero,
we arrive at the following quantified domain element. It represents
the case where properfy has been established for the first two list
elements (recall that we use loop unrolling for better performance).
Variable ¢ is the head of the list and the iteration pointepoints

two elements beyond it. We would like to merge the two quantifiers.

p = l—next® AVu(u = £ = P(u)) AVu(u = {—next = P(u))
This requires computing an underapproximation of disjunction of
Fi = (u = ¢) and F» (v = f—next) in presence of the
environmentE = (p = f—next?). The answer that is computed
by our generic under-approximation algorithm is as follows. It says

thatP is true for all nodes betwedrand/—next, inclusive, which
is what we desire.

|V|(F1, F3, E) R(¢,u) A R(u,{—next)

Underapproximation of conjunction in two environments.The

been initialized. Now consider joining this case with the one where
only the first element has been initialized.

& p = {—next AVu(u = £ = P(u))
& p = l—next® AVu(R({,u) A R(u, {—next) = P(u))

This requires computing an underapproximation of conjunction of
Fy = (u = {) andF> = R({,u) A R(u,{—next) in presence

searches an input array for a specific value, setting a flag if it is
found. After the search, our tool discovers that if the flag is not set,
the value is not present in the array. We use the templafe# v.
Partiallnit (from [9]) copies those indices of a source array for
which the source array’s value is positive into a target array. Our
tool discovers that the source array’s values are all positive at the
indices stored in the target array. We use the templiter]] = 0.
Partition (from [1]) copies the zero and non-zero elements of a
source array into two different arrays. Our tool discovers that the
two destination arrays have entirely zero or non-zero entries. We
use the two template&a] = 0 andC[«] # 0.

The next four examples constitute the inner loop of various sort-
ing algorithms. For each of these examples, we were able to dis-
cover the inductive invariant required for proving that the final ar-
ray is sorted. We use three kinds of templates in these examples:
Ala] < e, e < Ala], andA[a] < Ala + 1]. (Caveat: Because of a
bug in our quantified instantiation routine, we had to hand-annotate
the results of one quantifier instantiation in both InsertionSort and
SelectionSort and the timing results do not take this into account.
However, we do not anticipate any significant increase in the tim-
ing of these examples with the fix of the quantifier instantiation
routine.)

The final four examples are standard acyclic singly-linked list
manipulation routines. We were primarily limited by our current

fmplementation of the reachability base domain that can only han-

dle onenext link. However, our technique theoretically works
equally well for other data-structures such as cyclic linked lists,
doubly-linked lists, and trees, and we have manually traced our al-
gorithm to successfully discover similar invariants for these data-
structures.

All four list examples are designed to establish or preserve the
invariant that all list elements havelata field set to zero. They all

[Procedure | Dy Time | D Time [Ratio |
Arraylnit 3.2 15 2.1
VarArg 4.1 2.0 2.1
ArrayCopy 55 2.2 2.5
ArrayCopyProp 11.3 6.8 1.7
Partiallnit 12.0 6.1 2.0
Find 24.6 8.3 3.0
Partition 73.0 22.7 3.2
InsertionSort (inner loop)| 35.9 2.0 18
QuickSort (inner loop) 42.2 45 9.4
SelectionSort (inner loop) 59.2 8.1 7.3
MergeSort (inner loop) 334.1 73.5 4.5
List Remove 20.5 1.4 14.6
List Insert 23.9 14 171
List Init 245 1.9 12.9
List Create 42.0 3.4 124

Table 1. Benchmark results. Times are in seconds. The third col-
umn reports time for the mode wherein abstract interpretation is
performed over the base quantifier-free abstract domain.

use the template that—data = 0. The insert and remove routines
start with a pre-condition thdtis a list withdata fields set to zero,
andt is a pointer into the list. They insert or remove at position
The list init example assumes a valid list on entry, and we discover
that itsdata fields are zero on exit. The list create example creates
a list from scratch, and we discover that the result is a list, whose
data fields are zero. (Caveat with the list create, insert, and remove

examples: a bug in our reachability saturation procedure forced us

to “hard-code” the results of some reachability domain operations.

As a result, the timings for these benchmarks may under-estimate

the true time.)

The total time take by some of these examples seems rather

large compared to the size of these examples. However, it must b

plementation of the underlying difference constraints domain and
reachability domain. This is corroborated by the fact that the time
taken to do abstract interpretation over simply the base quantifier-

free abstract domain in those examples is also large. An interesting

attribute to read from the tables in that case is the ratio of the time
taken to do abstract interpretation over quantified domain and the
corresponding quantifier-free domain.

6. Related Work

Automatic generation of (universally) quantified invariants has
been a topic of extensive research [8, 5, 14, 9, 3, 1, 12]. The var-

ious approaches differ in the extent of user guidance assumed.
In one class of methods, the user specifies the predicates and thg .

tool searches for the “right” boolean structure that gives an induc-
tive invariant [8, 3, 14]. In the dual approach, the user specifies
the boolean structure and the tool searches for the “right” predi-
cates [1]. In our approach, the user is not required to specify either
the boolean structure or the predicates.

[8] require that all atomic formulas in the quantified invariants

e
noted that we have a very naive and inefficient saturation based im-

[12] have described an interpolation based technique to generate
quantified invariants. They have instantiated their technique to dis-
coverrange predicatethat capture properties of sequences of array
properties (e.g., facts such as “the elements of the array M from in-
dexi throughj are positive”). The range predicat1, t2, p) de-
notesvi(t; <14 < t2 = p), wherei is a free variable ip. This can
not represent, for example, that the contents of a two-dimensional
array is initializedvi, j(0 < ¢ < n,0 < j < m = A[i][j] = 0).
Representing this fact would require a new and different range
predicate with its own set of axioms. It is not clear what is a good
choice for a complete set of such range predicates. There will al-
ways be interesting examples that are not representable using a pre-
defined range predicate.

The logic flow analysis by [15] also maintains quantified facts
about contiguous ranges of array elements. It does not use predicate
abstraction, but it still is unable to handle complex guards like those
that appear in the sorting examples.

[1] combine invariant generation and predicate abstraction tech-
nigues using path invariants. While this technique is independent of
any particular invariant generation technique, [1] describe a par-
ticular template-based approach for generating quantified invari-
ants. The template-based technique reduces the search of an in-
variant to constraint solving over a large number of (unknown)
variables used to specify the templates. While it is sound in gen-
eral, it is complete only for a very specific form of invariants,
VU (Niti(X) < ui < t5(X) = r(X,U)), whereX are the pro-
gram variables ant, t;, r are linear expressions (with parameter-
ized coefficients) with the provision that array reads of the form
Alu;] can occur inr. Note that correctness of sorting routines can
not be stated using the above template since it disallows compari-
son between quantified variables. Furthermore, the translation from
the original templates to the final constraints is not generic and has
to be freshly worked out for each base domain. While the high-level
approach (choose templates and translate to constraints) is general,
he details are not general.

One fundamental difference of our framework for generating
quantified invariants, compared to these other works [8, 14, 3, 1,
12], is that it is based on abstract interpretation. This offers a more
efficient methodology of discovering useful program invariants, al-
beit at the cost of merging facts at join points (which may re-
sult in loss of some precision). While abstract interpretation based
methods have been thoroughly investigated for unquantified do-
mains [6, 13, 7], they have seen only limited exploration for quan-
tified domains [4, 5, 9]. In the work of [5] and [9], quantified facts
are encoded as neunquantifiedpredicates and lattice operators
are defined directly on thesmquantifiedpredicates. The automa-
tion achievable via the under-approximation operators has to be
painfully hard-coded in these methods.

[5] has used an abstract domain consisting of elements of the
form (t(t, a, b, ¢, d), r), which informally says that all elements of
ween indices andb are less than any element obetween
indicesc andd. In our notation, this element is represented as,

t

r(a,b,c,d)AVur,uz(a < up <bAe < ug < d=tui] < tug))

(Since the auxiliary variables, b, ¢, d always have definitions in
terms of program variables, they can be eliminated and we get ex-

be given. Given such a set of atomic formulas, their approach actly an element of our quantified abstract domain.) [5] presents
generates a quantified invariant that can be expressed using onlyprocedures to compute the abstract logical operators on this do-
those atomic formulas. For example, to generate the quantified main, and it can be easily verified that the underapproximation cal-
invariantvVu(0 < u < n = Afu] = 0) for the array initialization culation is built into the definitions. Using this abstract domain, [5]
procedure, their method requires that the three predieateso0, generates invariants for a sorting routine. The work of [9] is similar
u < n, andAfu] = 0 be given. Our approach, on the other hand, in spirit to the work of [5]. They use an abstract domain 2, A),
would generate the quantified invariant with only the template whereP is a partition of an array’s indice®, associates each parti-
ala] = 0. In our approach, the antecedeit< u < n, islearned tion with a numerical abstract domain element, ani$ a valuation
using join of facts generated iy 1, or 2 iterations of the loop. of some given abstract predicates on each partition. Again, this ab-

stract domain element can be expressed in our quantified abstracf10] S. Gulwani and A. Tiwari. Combining abstract interpretersPLDI,
domain as pages 376-386, June 2006.

[11] S. Gulwani and A. Tiwari. Static analysis of heap manipulating
\ Yulw e = Q) A\ Vur,uz(u € TAus € 7= Alm)), low-level software. IrCAV, LNCS, 2007.

. . . . [12] R. Jhala and K. McMillan. Array abstractions from proofs.GAV,

whereu € 7 essentially denotes a conjunction of constraints, and = “5qq7.
Q(7) andA(7) denote some atomic facts. It should again be noted
that the antecedent is carefully fixed here and [9] provide dedicated
descriptions of the transfer functions.

Our paper uniformly generalizes these specific abstract domains[14] S. K. Lahiri and R. E. Bryant. Indexed predicate discovery for
(that represent quantified facts) by explicity making quantified ~ Unbounded system verification. GAV, pages 135-147, 2004.
facts first-class objects. It builds on our earlier work [11] — that [15] M. Might. Logic-flow analysis of higher-order programs. ROPL,
developed an abstract quantified domain witlistandmayequali- pages 185-198, 2007.
ties — but goes significantly beyond by developing a precise formal
theory for abstract interpretation on generic quantified domains us-
ing under-approximation operators. We also present generic proce-
dures for computing transfer functions for the quantified domain —
thus automating a lot of the manual effort in building special do-
mains such asin [4, 5, 9].

mell mell

[13] M. Karr. Affine relationships among variables of a programAbta
Informaticg pages 133-151. Springer, 1976.

7. Conclusion

Quantified abstract domains provide the expressive power re-
quired to state universally quantified invariants of unbounded data-
structures. We formally define quantified abstract domains by using
base domains — whose facts are used to build universally quantified
facts — as parameters. We provide a general framework for building
abstract interpreters over such quantified domains. This is achieved
using a rich interface provided by the base domain. This inter-
face consists of the standard over-approximation functions (that
are used to build abstract interpreters over the base domain) along
with additional functions that compute under-approximations of
logical boolean operators. The under-approximation functions play
a foundational role in the process of invariant generation.

We also instantiate this framework to obtain two specific ab-
stract interpreters — one for programs that manipulate arrays and
the other for programs that manipulate heap-based linked data-
structures. These abstract interpreters are used to successfully gen-
erate quantified invariants stating correctness of several procedures
that work on arrays and lists.

References

[1] D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko. Path
invariants. InPLDI, 2007.

[2] J. D. Bingham and Z. Rakamaric. A logic and decision procedure for
predicate abstraction of heap-manipulating program¥MCAI, pages
207-221, 2006.

[3] A.R. Bradley, Z. Manna, and H. Sipma. What's decidable about arrays?
In VMCAI, volume 3855 of NCS pages 427-442. Springer, 2006.

[4] P. Cerny. \Verification par interpretation abstraite de predicats
parametriques. Master's thesis, Univ. Paris VII & Ecole normale
superieure, Paris 20, 2003.

[5] P. Cousot. Verification by abstract interpretation. Merification:
Theory and Practicevolume 2772 o NCS pages 243-268, 2003.

[6] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. INnPOPL, pages 234-252, 1977.

[7] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. ROPL, pages 84-97, 1978.

[8] C. Flanagan and S. Qadeer. Predicate abstraction for software
verification. INPOPL, pages 191-202, 2002.

[9] D. Gopan, T. W. Reps, and S. Sagiv. A framework for numeric analysis
of array operations. IROPL, pages 338-350, 2005.

