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Figure 1: Example mechanical toy: Crocodile Feeding. (a) Input. The designer specifies the geometry and motion of the toy’s features, in
this case a boy and a crocodile object, forming two kinematic chains and four color-coded feature components. The feature base is colored
orange. (b) Mechanical assembly synthesized by our system to generate the target motion. (c) Fabricated result. Overlayed arrows illustrate
the motion, both input for features in (a) and output for the synthesized mechanism in (b), via the rules in [Mitra et al. 2010]. The canonical
local coordinate system for the mechanical assembly is shown in (a). Please see the accompanying video for the full animation.

Abstract

We introduce a new method to synthesize mechanical toys solely
from the motion of their features. The designer specifies the geom-
etry and a time-varying rotation and translation of each rigid feature
component. Our algorithm automatically generates a mechanism
assembly located in a box below the feature base that produces the
specified motion. Parts in the assembly are selected from a pa-
rameterized set including belt-pulleys, gears, crank-sliders, quick-
returns, and various cams (snail, ellipse, and double-ellipse). Posi-
tions and parameters for these parts are optimized to generate the
specified motion, minimize a simple measure of complexity, and
yield a well-distributed layout of parts over the driving axes. Our
solution uses a special initialization procedure followed by simulat-
ed annealing to efficiently search the complex configuration space
for an optimal assembly.
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1 Introduction

Mechanical toy automata produce fascinating motion. Their history
dates back to at least 400BC with the flying pigeon of Archytas of
Tarentum. Modern versions range from large exhibits such as the
Cabaret Mechanical Theater in the United Kingdom and the Swis-
s Jolly Ball at the Museum of Science and Industry in Chicago to
playthings used by millions of children. Mechanisms in these au-
tomata drive the motion of the toy’s whimsical features, and form an
interesting attribute in their own right. Today, mechanical automa-
ta represent a popular topic as witnessed by the many books and
DVDs covering their design and fabrication (e.g., [Neufeld 2003;
Peppe 2005; Frost 2007]).

Mechanical toy design integrates a range of skills from art and
craftsmanship to mechanics and mathematics. The designer typi-
cally begins by sketching the shapes and motions of the toy’s fea-
tures. He then plans a mechanical assembly to generate this mo-
tion. Inevitably, the design is iterated by refining the parameters
of its different parts such as cams, gears, cranks, etc., to tune the
motion and optimize other relevant factors such as manufacturing
cost. The process is difficult and time-consuming, and demands an
understanding of the complicated behavior of mechanisms, as well
as a balancing of different design desiderata.

We automate design for mechanical toys such as the one in Fig-
ure 1. Our larger goal is to integrate kinematic simulation of me-
chanical assemblies into 3D modeling. Integrated simulation allows
a motion-to-form mapping: conversion of user-specified motion in-
to a physical, functioning mechanism. A toy designed in our sys-
tem can be directly fabricated into a real object using a 3D printer,
as shown in Figure 1c. We think custom mechanical design for
ordinary users and for recreational and educational purposes will
become increasingly important with the advent of inexpensive 3D
printing. We also believe our approach can be generalized to other
types of high-level mechanism design.

Our algorithm’s input is the 3D geometry and motion of the toy’s
top-level features. These consist of rigid feature components con-
nected by joints, to form one or more kinematically-linked chain-
s. Its output is a mechanical assembly located below the base of
features. The assembly consists of individual parts, such as cams,
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quick-returns, and crank-sliders, connected to a manually-rotated
driving axis. The free end or handle of each part connects to a
specified feature component and drives it to generate the specified
motion. Our system supports automatic splitting of the main driv-
ing axis into separate axes connected to the main axis by belts.

Current MCAD software such as Autodesk Open Inventor and
Solidworks models mechanical assemblies through the powerful
tool of geometric constraint maintenance. Editing performed on
one mechanical part automatically propagates to others in the as-
sembly. Our algorithm more fully automates design by seeking pa-
rameters based directly on the assembly’s final function: how it
moves the toy’s feature components.

Automatic synthesis of a 3D mechanical assembly from its func-
tion is nontrivial, even for a mechanical toy. It must determine both
the types and parameters of the parts as well as a non-colliding,
physically-realizable layout. Though our system currently uses on-
ly a few basic part types, their combination in an assembly leads to
an exponential growth of the possibilities. We handle this problem
by exploiting knowledge about motion transmission in mechanism-
s. We first categorize input motions into a few standard types (e.g.,
circle, line, arc, and helix), each of which determines an initial sub-
assembly. We then incrementally optimize this initial configura-
tion using simulated annealing, exploiting kinematic relationships
among shape parameters of a part to speed up convergence.

2 Related Work

Assembly Modeling/Mechanism Synthesis: Assembly model-
ing determines the position and orientation of parts according
to constraints governing their mating or alignment. ~Symbol-
ic, rule, and graph-based approaches construct the geometry
constraint equations which are then solved via numerical opti-
mization [Verroust et al. 1992; Gao and Chou 1998; Kondo 1992;
Kim et al. 2000; Li et al. 2002; Peng et al. 2006]. Other research
generates conceptual assemblies from a functional specification
[Gui and Mntyl 1994; Roy et al. 2001; Chiou and Sridhar 1999].
Data structures such as the bond graph characterize standard parts
in a database, which can be searched for a combination to fulfil-
1 a function [Hoover and Rinderle 1989; Finger and Rinderle 1989;
Chiou and Sridhar 1999]. However, conceptual design is abstrac-
t and ignores physical properties such as the size and position of
parts in a non-interpenetrating assembly.

Our algorithm generates a physically-realizable assembly from a
description of the target motion. Unlike previous work, we use
a higher-level abstraction that avoids specifying any information
about the shape, parameters, or motion of parts in the assembly. In-
stead, we automatically select them from a small parameterized set
of part types according to a priori knowledge of motion transmis-
sion in mechanisms, and refine the initial selection by optimizing
over both discrete and continuous variables.

Stochastic Optimization: Markov chain Monte Carlo (MCMC)
methods, such as Metropolis-Hastings, are widely used in com-
puter graphics. Veach and Guibas [Veach and Guibas 1997] ap-
plied the Metropolis-Hastings algorithm to light transport. MCM-
C has been used to find plausible animations of passive rigid ob-
jects satisfying user constraints [Chenney and Forsyth 2000]. Re-
cently, MCMC was applied to grammar-based procedural model-
ing [Talton et al. 2011], to search for a 3D model that conforms to a
user’s specification from the grammar’s production space. MCMC-
based optimization has been used in automatic residential building
and furniture layout [Merrell et al. 2010; Merrell et al. 2011]. The
related method of simulated annealing has also been used for auto-
matic furniture layout [Yu et al. 2011].

We apply simulated annealing to the motion-to-form mechanical
modeling problem, since it allows more flexible random walk-
s through our constrained configuration space. We optimize over
the shape space of the assembly’s mechanical parts, considering it-
s function (i.e., how well does it reproduce the desired motion?),
layout (i.e., how evenly does it distribute mechanical parts along
the driving axis?), and cost/complexity (i.e., how many parts and
types of parts does it need?). We exploit relationships between part
parameters to accelerate the search.

Motion Analysis: Given the geometry of a mechanical assembly,
interactions and motions of mechanical parts can be inferred. X-
u et al. [2009] performed slippage analysis over contact surfaces
to categorize joints in man-made objects, and used them for subse-
quent animation. Mitra et al. [2010] analyzed interactions between
mechanical parts from contact detection and relations between part
axes. This data was then used to visualize how each part moves.
Mechanical toy modeling can be viewed as the inverse problem,
where geometry of mechanical parts is derived from user-specified
motion.

Fabrication: Fabrication of physical objects has received signifi-
cant research attention in CG. Objects with desired subsurface s-
cattering and deformation properties can be fabricated using 3D
printing [HaSan et al. 2010; Dong et al. 2010; Bickel et al. 2010].
Methods have also been developed to facilitate fabrication, by
converting a 3D shape into planar slices [McCrae et al. 2011;
Hildebrand et al. 2012], or optimizing it to improve its stabili-
ty [Stava et al. 2012]. Another research trend is custom design and
creation of objects by non-professional users. Xin et al. [2011] pro-
posed fabrication of 3D burr puzzles. Mori et al. [2007] integrat-
ed simulation and modeling in the design of plush toys. Lau et
al. [2011] converted an existing 3D furniture model into parts and
connectors that can be fabricated and assembled by the user. Our
work extends non-professional design and fabrication to a class of
animated mechanisms.

3 Algorithm Overview

We synthesize mechanical toys that convert the rotary motion of
driving axes to the periodic animation of feature components. An
example is shown in Figure 1. The input to our algorithm consists
of three pieces of information: the 3D geometry and motion of the
toy’s feature objects, the dimensions of an underlying box, called
the assembly box, in which to install the mechanical assembly pro-
ducing that motion, and the location on feature objects where they
connect to synthesized mechanical parts.

We assume that the feature objects have been separated into rigid
components, with specified joint constraints between them. The
specification of geometry, motion, and joints are created with 3D
modeling software, such as Maya or 3DS Max. The toy’s features
thus consist of multiple, kinematically-linked chains. The motion
created by the designer is then recorded to yield a time-varying
translation and rotation for each feature component, which is input
to our assembly generation algorithm.

For the purpose of motion generation, the designer also needs to
specify which feature components should be driven by (i.e., at-
tached to) the free end point or handle of a part in the assembly.
Two general connection types are supported: rigid, in which the
feature is completely controlled by the part handle, and translation-
al, in which the feature’s translation is controlled while its orienta-
tion is left free. A translational connection can be realized by a ball
joint at the handle. Our system also supports a special third type of
slotted connection when a part that generates linear (reciprocating)
motion is attached to a feature component which lacks sufficient
degrees of freedom to be connected in either of the previous two
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Figure 2: Mechanical parts used in our system.

ways (i.e., a single-component feature chain containing only one
2D hinge joint). The slot allows the handle to move freely and clear
the feature geometry; see Figure 4b.

The initial position of the handle on each driven feature component
is also specified as an input, but we allow it to move during opti-
mization to provide extra flexibility in the layout.! This reflects the
fact that we can easily add a rigid link to the end of a part after
fabrication, to extend it and allow its attachment at a fairly arbi-
trary point on the feature component. The designer can constrain
the space of possible handle locations within a specified constrain-
t volume. If unspecified, we use the driven feature component’s
oriented bounding box.

With the above inputs, our system searches for a good configura-
tion of an assembly to realize the desired motion. Our algorithm
first guesses the type and shape of mechanical parts according to
the input motion, and then optimizes the assembly using simulated
annealing. The optimization objective integrates the approximation
quality of the generated motion and the layout quality and complex-
ity of the assembly.

At each step of assembly optimization, we simulate the mechanis-
m over one animation cycle using forward kinematics. The motion
of the assembly’s handles then determines the motion of its fea-
ture components through inverse kinematics. We finally measure
how similar the features’ simulated motion is to the specified target
motion. Use of inverse kinematics may not seem appropriate since
it assumes systems in which each joint can be driven individually,
such as a robotic arm, while joints in the feature chains of our toys
are passive and driven only through the motion of part handles. But
it works as long as the motion of features is uniquely determined by
the motion of handles, with no extra degrees of freedom left over.
This property is not hard to achieve in the toys we target: systems
of 2D revolute or hinge joints with angular limits imposed by the
constraint of non-colliding geometry (e.g., the foot of the crocodile
in Figure 1 can not penetrate the floor).

4 Mechanical Toy Representation

A mechanical toy consists of two parts: its top features and an un-
derlying assembly. Its kinematic simulation is also separated into
two modules. The positions and orientations of the handles are driv-
en by a forward kinematics simulation of the mechanism. These

'Handle position varies as the part moves and so is obviously time-
dependent. “Initial” here refers to the optimization sequence, not anima-
tion time. Each initial handle position is specified at the beginning of the
animation cycle.

Snail cam

Side view
Ellipse cam

Top view

Crank-slider

Gear system Quick-return
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Figure 3: Schematics for mechanical parts in Figure 2. Based on
the shape parameters shown for each part type, the motion of the
part’s free end point (indicated by a red dot) is transmitted to a
connected feature component.

handles in turn drive the features, based on inverse kinematics.

The following introduces the mechanical part types we use, and
then briefly describes how we perform their kinematic simulation.

4.1 Representation and Motion of Mechanical Parts

Figure 2 illustrates the mechanical parts our system uses. Parts con-
vert rotary motion on the driving axes into other types of motion,
such as linear (moving backwards and forwards continuously in a
straight line), oscillating (moving backwards and forwards along
an arc), or helical (moving up and down along a helix). Motions
generated by the various mechanical parts are listed in Table 1.

Figure 3 illustrates the shape parameters for each mechanical part
type, which determine its motion in an assembly. Dark blue arrows
in the figure indicate the direction of driving rotary motion and the
position where the part connects to the driving axis. Each part’s
handle (free end point) is indicated by a red dot, and connects to the
feature component it drives. The “belt-pulley” part does not direct-
ly connect to features but instead transmits motion between driving
axes. Each part type’s shape parameters, the constraints between
them, and its kinematic behavior are fully described in supplemen-
tary material. The double cam part is omitted from the figure but is
similar to a (single) ellipse cam and included in the supplement.

The lobe in the snail cam shown in Figure 3 produces a slow lift
and sudden drop motion. Multiple lobes are also allowed in our
system to generate a series of such motions in one rotational period
(see e.g. the rightmost part in Figure 7). Details are included in
supplementary material.

4.2 Forward Kinematic Simulation of Assembly

Kinematic simulation of a mechanical assembly is a well stud-
ied problem [Uicker 2010]. Our implementation is a simplified
version, in which a hand-controlled driving axis originates the
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Output Motion P Geometry
. art s
(plane/axis) Primitive
rotary (xz) gear circle (2D)
rotary (yz) crank-slider,belt-pulley | circle (2D)
. ellipse cam, snail cam .
linear (y) double cam line (2D)
linear (z) quick-return line (2D)
oscillating (xy) ellipse cam, snail cam arc (2D)
_— ellipse cam, snail cam
oscillating (yz) quick-return arc (2D)
elliptical (yz) crank-slider ellipse (2D)
helical (y) ellipse cam, double cam | helix (3D)

Table 1: Converting input rotary motion to desired motion of a
handle. Planes or axes are represented using the coordinate frame
shown in Figure la. Note that the trajectory generated by the crank-
slider is only approximately elliptical.

(a) (b)

Figure 4: (a) Graphical representation of crocodile feeding exam-
ple. (b) Sliding slot connection for the ellipse cam part. The red
arrow indicates the line constraint target for IK motion simulation.

rest of the motion. First, a graph representing the assembly is
built [Mitra et al. 2010]. Graph nodes represent mechanical part-
s. Parts are connected through a directed edge representing how
motion is transmitted in the assembly. Each edge also encodes the
coordinate frame of a child part relative to its parent. A node with
no incident edges is called the root node, and represents the primary
driving axis in our system. Figure 4a shows an example graph.

Kinematic simulation performs a breadth-first graph traversal
which transmits the motion from the driving axis through each part
to the handles. The detailed mathematics necessary to kinematical-
ly simulate each mechanical part type is contained in the supple-
mentary material.

4.3 Inverse Kinematic Simulation of Features

Inverse kinematics (IK) determines how feature components move,
given the position of handles computed from the forward simula-
tion of the assembly in the previous subsection. Note that the mo-
tion of a single handle drives the motion of all linked components
on each kinematic feature chain. The position (for a translation-
al connection) or position and orientation (for a rigid connection)
of the handle are first set as the target position/orientation of the
driven feature component. IK then solves for the translation and ro-
tation of every component on the kinematic chain needed to reach
this target. The damped, pseudo-inverse Jacobian method is used to
compute the search direction in each IK iteration [Wampler 1986].

When connecting a part that realizes linear (also called recipro-
cating) handle motion to a feature component containing just one
hinge joint, a slot connection is necessary. Figure 4b illustrates the
situation for the ellipse cam. In this case, the cam’s free end point

moves on a straight line, but its trajectory in the local coordinate
system of the “pinned” feature component changes distance with
respect to the fixed hinge, making a slot necessary. For a slotted
connection, the IK algorithm’s target constrains the free end point
to lie on a line representing the sliding slot. Further details are
included in supplementary material. Our system supports slotted
connections for the ellipse cam and quick-return part types.

5 Assembly Generation

We synthesize an assembly by searching within the mechanism’s
configuration space for an optimal result that produces the speci-
fied motion. This configuration space includes discrete variables,
representing the type of each mechanical part, and continuous vari-
ables, representing the parameters of each mechanical part. The
relation between this configuration space and the final motion of
the toy’s features is complex and not expressible in closed form.
The following describes how we solve this optimization problem.

Notation: We denote the translation and orientation, respectively,
of feature components as t;; and q;;, where i is the component in-
dex and j ranges over the N frames of an animation cycle. Quater-
nions represent orientation. These unhatted vectors represent each
component’s rigid motion as driven by the current assembly. Hat-
ted versions, {; ; and q;;, represent their corresponding target rigid
motions, as specified by the designer.

Recall that handle position is updated in the optimization. We use
the notation p; for the initial handle position specified by the user,
and p; for the actual handle position in the current optimization
iteration, where i is the handle index. Handles also move over an
animation cycle. We use doubly-indexed notation to refer to handle
trajectories, e.g., p;j, where the second index j represents animation
time. A singly-indexed vector refers to the handle position at the
first frame of the animation cycle. As with the rigid motions, these
vectors represent motion driven by the current assembly. Placing
a hat on them denotes their (desired or target) trajectories when
driven by the feature component to which they are attached, using
the input motion for that component as specified by the designer
rather than its motion as generated by the assembly.

5.1 Simulated Annealing

Denote the configuration space of the assembly by X, and a s-
tate in this space x € X. As in furniture layout optimization
[Yu et al. 2011], we adopt simulated annealing to search for a so-
lution state. The search minimizes a Boltzmann-like objective

1o =ew(-52) n

where C(x) is a positive definite cost function. A new state x’ is
proposed at each iteration and accepted with probability

i)

The annealing parameter T is initialized to be 10, and its value is
decreased by a factor of 0.9 every 300 iterations. The next two
subsections describe our initialization procedure that determines a
starting point, our cost function, and the parameter settings used in
optimization. The same parameter settings were used to synthesize
all toys in the paper.

a(x'|x) = min (1., 2)

5.2 Initialization

A naively-chosen starting state x is likely to be far from optimal, and
leads to slow convergence or overall failure of the optimization. We
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Figure 5: Driving axis initialization. A front view of the toy is
shown in (a). Dots indicate the projected centers of initial handle
trajectories; color indicates their period (green = whole animation
cycle, red is 1/2, blue is 1/4). Two initial driving axes, correspond-
ing to clusters in z-coordinate of the handle trajectory centers, are
shown in (b). Differences in motion period cause the back axis in
(b) to be split into three, as shown in (c).

propose an initialization procedure based on mechanism theory to
choose a good initial state. The following details the two stages in
this initialization: for driving axes and for parts.

Driving Axes Initialization: We initialize the number and position

of driving axes in the assembly, based on the distribution of initial

handles and their animation periods. The following steps are used:
H o Ak

1. Compute the centers m; = 1 /Ny ):1;/: 1 b7 of the trajectories of

each of the Ny initial handles. Cluster these by their z coordi-
nate using the mean shift method in [Comaniciu et al. 2002].
The radius parameter in the mean shift is set to 4% of the di-
agonal length of the assembly box.

2. Initialize a driving axis for each cluster. Its z coordinate is
just the mean z coordinate of m; over cluster members; its y
coordinate is set at 1/2 the height of the assembly box.

3. Perform period analysis of the trajectory of initial handles in
each cluster. If there are several different periods in one clus-
ter, split the initial driving axis. The driving axis with the
lowest period remains the initial axis; the others are moved
above it, in the y direction. The axis length is set to the max-
imal interval in x coordinate of consecutive centers with the
same period. At least one end of the axis must extend all the
way to an assembly box wall. We extend the end closest to a
wall or extend both ways if both ends are close.

Our system randomly picks one driving axis as the main driving
axis which is manually cranked by the user. It must be an axis that
extends completely through the assembly box. For partial axes, as
in the Construction Site example shown in Figure 5, auxiliary walls
are added when fabricating the toy to support any “hanging” ends.

We use the fast Fourier transform (FFT) to extract period values.
Specifically, we sample the trajectory {p;;, j = 1...N} of an ini-
tial handle i. The FFT is then applied to each of the three (x,y,z)
coordinates of this sequence, and the period derived from the fre-
quency of maximum modulus over all three coordinates. Figure 5
illustrates the result for an example.

If the initial driving axis is split, our algorithm automatically creates
belt-pulleys to connect the initial and split axes and to realize the
required conversion of rotational speed. A gear system is also an
option; our system currently supports only belts.

Motion-Guided Mechanical Toy Modeling . 127:5

Parts Initialization: Table 1 shows that categorizing an initial han-
dle’s motion type roughly indicates how to choose an associated
mechanical part type. This idea motivates the following two-step
procedure. First, we apply a principle component analysis to the
trajectory of each handle to categorize it as 2D (planar) or 3D (s-
pace curve). We then choose the best-fitting geometric primitive to
approximate this trajectory. A trajectory classified as 2D is fit with
either a circle, line, arc, or ellipse, while a 3D trajectory is restrict-
ed to a helix. For rotary or helical motion, the trajectory evaluated
exactly at the rotation center is fixed or on a straight line. So plac-
ing the handle there misclassifies its desired motion in initialization.
We instead classify based on the trajectory of a slightly perturbed
version of the input handle. A candidate part that can generate the
appropriate motion category is selected from the list in the table; the
one whose initialized parameters best approximate the input handle
trajectory is selected.

Our current implementation only supports helical 3D motion,
which can be realized with an ellipse cam or double cam where
rq is not 0.

Parameters for each mechanical part chosen must also be initial-
ized. The required procedure for each part type is described in the
supplementary material. The initialized parameters are then further
refined to minimize error between the handle’s actual and specified
trajectories, via the objective

N
Ei=Y |lpij— il 3)
j=1

Constraints that keep the parts functioning properly must be main-
tained and are also documented in the supplementary material.

Motion Decomposition: An individual part in Table 1 generates a
relatively simple motion, but more complex motion can be realized
by connecting multiple parts to the same feature chain. Our sys-
tem supports this by decomposing the complex motion into com-
ponents, each controlled by a separate part. To work correctly,
this motion decomposition assumes that the planes or axes of the
two motion components are orthogonal. Suitable motions include
translation along and rotation around the same axial line (motion of
upper body of the boy in Figure 1), or translation along two orthog-
onal axes (motion of drawing character in Figure 9).

Motion decomposition is invoked if the fitting error from Eq. 3 ex-
ceeds a threshold, /E; > N 8¢, on a part that drives a feature chain
containing multiple components. Oy is set at 5% of the diagonal
length of the assembly box. The procedure tries using two parts to
separately drive the motions of the end component and its parent
component. Specifically, we initialize a part connected to the origi-
nal feature component by representing its motion in the local frame
of its parent component. The part for the parent component is ini-
tialized as usual. In the crocodile feeding example, the boy’s arm
is decomposed into rotary motion of the plate (parent component)
and up/down motion of the arm. The two parts are then initialized
independently. The designer can also explicitly indicate the paren-
t and child components to be driven. Collisions between the two
parts initialized for motion decomposition are ignored in both the
initialization and optimization.

5.3 Cost Function

The cost function characterizes the mechanical assembly in terms
of its generated motion fidelity and aspects of its layout and com-
plexity. It is defined as:
Cx) = Ca(x) +Ci(x) + G (x)
Subject to : no mechanical part collision. 4)
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The term C,(x) measures motion similarity, C;(x) measures layout
quality, and C;(x) measures topological complexity. These terms
are detailed below.

Non-collision is a hard constraint. Our current implementation uses
the OBB-tree algorithm [Gottschalk et al. 1996] to detect collisions
between different parts. Collisions between intermeshed compo-
nents on a single part, such as the cam and follower of an ellipse
cam, are ignored; these are handled by imposing constraints on the
shape parameters. We also ignore collisions between feature ob-
jects and instead rely on the motion similarity metric, since motion
that causes interpenetration will not match the non-colliding motion
specified by the designer. Finally, we maintain IK feasibility as a
hard constraint. During optimization, any change to the mechanism
yielding handle positions that violate the kinematic constraints in
any feature chain is rejected.

If any pair of parts collide immediately after initialization, we in-
voke a special procedure to avoid getting stuck in a colliding state.
It replaces the collision hard constraint with an additional objective
term, C,(x) = exp(ot Y™, D;), where M is the number of collisions,
D; is the depth of collision i, and o is a large value equal to 10° in
our current implementation. This penalty allows the algorithm to
gradually reach a non-colliding state. After removing all collisions
with this procedure, we revert to the normal, three-term objective
and enforce non-collision in subsequent states by rejecting any s-
tate that yields a collision. This can greatly improve efficiency in
optimization, because recovery from a colliding state with soft con-
straint is expensive and slows convergence.

Motion Similarity Objective: Given the current state of the as-
sembly, we measure the difference between the actual and specified
motions for each initial handle and for each feature component. De-
note the number of frames in one cycle of the animation as N, the
number of handles as Ny, and number of feature components as
Nc. Motion similarity is defined as

Ny N ) Ne N P
Cax)=wp Y Y i —05IIP+ Y Y It — il 5
P oo

i=1j= i=1j=

Ne N . 2
+Y Y Hlog(q; Qij)H

i=1j=1

where i indexes over handles or components, and j indexes over
animation time. The weight w), is set to 40 in our experiments.

The target trajectory of the initial handle, p*, is determined by the
specified motion of the feature component to which the handle is
attached. Using the initial rather than current handle avoids discon-
tinuous change to the cost function as the optimization proceeds.

Layout Objective: We optimize the assembly’s layout through two
adjustments: a) movement of the driving axis within the assembly
box, and b) movement of parts along the driving axis. The main
goal of this term is to avoid part collisions, to guarantee that the toy
can be fabricated and functions properly. Another goal is to evenly
distribute the parts to make their behavior easily visible.

Denoting as n the number of driving axes, and m; the number of

parts on the i-th driving axis, the layout term is defined as

n o m

n . . .
G =wi Y lei—ciP+wm Y Y (b +1 =20 (6)
i=1 i=1j=1

nom X . S

, 1
s Y Y s~y 1/8) exp | —
i=1j=1 165~y =&/ |

Ny 2
+W4ZHP1‘ —p; |
i

Note that the total number of parts is larger than or equal to the total
number of handles. Belt-pulleys are parts but are not connected to
handles.

The first term penalizes movement of the driving axis i away from
its initial position ¢; to a new position ¢;. To evaluate the next two
terms, parts are first ordered by their position along their respec-
tive driving axis, by x coordinate. The second term characterizes
uniformity of the distribution of parts based on their bounding box-
es, where /; is the x coordinate of the center of part i’s axis-aligned
bounding box. For indices j beyond the first or last part in the list,
we use the wall position instead. The third term penalizes prox-
imity of adjacent pairs of bounding boxes, and forces their separa-
tion to be greater than a specified threshold §. b}_, denotes the x

position of the right side of bounding box i — 1, while hf denotes
the x position of the left side of i. The term assumes we maintain
non-overlapping bounding boxes, i.e., bj_; < bé. The function s is
defined as a sigmoid function s(d) = 1/(14 €%¢). The final term
penalizes movement of the handle away from its initially specified
location. Weights wy, wyp, w3 and wy are set to 1.0, 5.0, 10.0 and
5.0, respectively. The threshold & in the third term is set to 1/100
of the diagonal length of the assembly box.

Topology Objective: We prefer mechanisms which reduce the
number of parts, Np, and the number of different part types, Nr,
via the objective

C,(x) =wr N7 +wpNp. (7)

The weights wr and wy are set to 10 in our implementation.

5.4 Proposal Moves

Proposal moves adjust the current assembly to efficiently explore its
configuration space. They comprise shape parameter moves, layout
moves, and topology moves. The probability density function used
to select moves is defined hierarchically. We first pick the overal-
1 move type based on a discrete probability distribution: 0.7 for a
shape parameter move, 0.2 for a layout move, and 0.1 for a topol-
ogy move. Within the selected move type, we then choose an ap-
propriate element using a uniform distribution. For example, for a
shape parameter move we randomly choose a single part parameter
to adjust. The operation of each move type is described below.

Shape Parameter Move: This move locally adjusts the shape pa-
rameters of each mechanical part. We randomly choose a mechan-
ical part and one of its parameters and replace it with a new value
from a Gaussian distribution [.#"(s, §2)]. The distribution variance,
ds, varies depending on the type of the shape parameter. We set it
to 15° for angle parameters and 1/20 of the diagonal length of the
assembly box for length parameters.

Layout Move: This move adjusts the position of an entire driving
axis or the position of a single mechanical part along it. The two
operations are randomly chosen with the same probability. A uni-
form distribution also governs which mechanical part to move. A
layout move that leads to a collision is rejected.
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The first type of layout move randomly slides one driving axis in-
to a new position, ¢. The new value is chosen from the Gaussian
distribution .4 (c,82)]. Positions are 2D projections (in yz) onto
the assembly box wall. Before evaluating the objective function, all
parts connected to the driving axis must be translated accordingly.
This can be done given the graph representation of the assembly.

The second type of layout move translates one selected mechani-
cal part along its driving axis. We use a 1D parameter to represent
the position of each mechanical part along its axis. This move al-
so translates the free end of the mechanical part which attaches to
a feature component. If it moves outside the feature’s handle con-
straint volume, we reject the layout move.

Topology Move: We allow two types of topology moves tailored to
the mechanical toy: type change and split/merge. The two types are
randomly selected with equal probability. A type change replaces
one type of mechanical part with a different, compatible type. Com-
patibility is listed in Table 1. The split or merge operation applies
to two nearby gears with opposite rotational direction. Figure 7cd
shows an example, in which two gears in the middle of the figure
are merged. In general, two gear pairs (four gears total) can be
merged into a single gear that drives two others (three gears total),
or the reverse split operation performed on systems of three gears.
The topology term prefers a merge, which reduces the number of
mechanical parts, but a split can be accepted if it reduces the motion
approximation error enough.

One problem with the above method is that a type change move
is almost always rejected, because its motion is based on rough-
ly initialized shape parameters. We thus adopt the delayed re-
jection technique to improve the move’s acceptance probabili-
ty [Tierney and Mira 1999; Talton et al. 2011]. Specifically, we try
150 iterations of shape parameter moves after changing a part type
but before deciding whether to accept the type change.

5.5 Convergence Acceleration

Two methods accelerate convergence of the optimization algorithm.
Figure 6 quantifies their benefit on the example toy in Figure 7.

Constrained Sampling: We observe that each mechanical part is
relatively independent in approximating the input motion, since it
controls only one particular component on the feature object. This
motivates the following sub-optimization procedure, which is in-
voked after a shape parameter move. We fix the single parameter
adjusted in this move, and then optimize the rest of the parameters
pertaining to the same part, in order to better match the specified
motion at the current handle position. This is identical to minimiz-
ing Equation 3 in part initialization, except that the actual handle,
Pij, replaces the initial one f);‘j, to account for subsequent move-
ment of the handle’s attachment point on the feature component
during optimization. As before, p;; is the motion of the free end
point of the part simulated from its current shape parameters. This
strategy considers the global relations between shape parameters of
a single mechanical part, and greatly speeds up convergence.

For gear and belt systems, a simple rule that preserves radius ratio
is enforced when adjusting their radius parameters. For a slotted
connection, the part’s handle floats over the driven component; we
ignore the constrained sampling step for such parts.

Covariance Matrix Adaptation: Covariance matrix adapta-
tion (CMA) iteratively adapts a Gaussian distribution over pa-
rameter vectors. It has been proven effective in speeding up
stochastic optimization algorithms [Wampler and Popovi¢ 2009;
Wang et al. 2009]. However, its direct application to our problem
is complicated by topology moves, which change the dimension-
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Figure 6: Optimization acceleration.

ality of the configuration space. We thus limit CMA to the set of
shape parameters for an individual mechanical part. In our imple-
mentation, each parameter’s Gaussian distribution is re-estimated
after 300 iterations. The top 30 percent samples ranked by cost
function value determine the updated distribution.

6 Experimental Results

Our system runs on a 2.99GHz Intel Quad Core PC with 4GB of
RAM. Automatically generated results are shown in Figures 1, 7,
9, and 11. Table 2 documents statistics for these examples. Please
see the accompanying video for the animations.

Assembly Optimization: We tested how various objective terms
affect assembly generation on the “New Year” toy example. The
initial assembly is shown in Figure 7b. It produces a rough ap-
proximation to the motion but does not prohibit collisions between
feature objects. Collisions between parts in the assembly also oc-
cur because we initialize each part independently based only on its
own target handle trajectory. Optimizing the shape parameters of
all parts with the motion similarity objective alone removes the col-
lision between feature objects, as shown in Figure 7b. Adding the
collision-free constraint and the layout objective removes collisions
between parts and more uniformly distributes them along the driv-
ing axes. Finally, adding the topology objective term merges two
close-by gears to reduce the total number of parts in the assembly.

More results from the optimization algorithm are shown in Fig-
ure 11. The Robot DJ contains an example of a helical motion
target on the stand with two notes, realized by an ellipse cam. The
Construction Site example targets motions with different periods.
Workers in the first line share one common period; the trolley and
two workers in the second line share a second one, while the rising
pad in the scaffold exhibits a third. Our algorithm automatically
clusters features sharing a common period and generates child axes
to drive them, using belt-pulleys to convert the rotational speed of
the main user-cranked axis to the one needed at each child axis.

Motion Decomposition: Two examples use motion decomposi-
tion: Crocodile Feeding in Figure 1 and Lazy Drawer in Figure 9.
In the crocodile feeding toy, the overall motion of the feature com-
ponent representing the boy’s upper body is decomposed into the
rotary motion of its (parent) rotating base plate and the oscillating
motion of the (child) upper body part itself. This decomposition
removes the parent’s rotary motion and so simplifies the oscillatory
motion that must be matched in the child, allowing the initialization
procedure to find a good part type (ellipse cam) to drive it.

The target motion in the Lazy Drawer toy in Figure 9 can not be
approximated by any individual part type we support. But it can
be decomposed into two linear motions: horizontal motion (in Z)
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(a) Initial assembly

(b) Motion optimization

(c) Motion+layout (d) Motion-+layout+topology

Figure 7: Effect of the cost function in the New Year example. (a) Initialized assembly. Collisions between feature objects and parts occur,
indicated within red rectangles. (b) Optimizing the motion similarity objective by itself removes the collision between feature objects. (c)
Adding the layout objective removes collisions between parts. (d) Adding the topology objective merges two nearby gears.
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Figure 8: Applying our algorithm to long kinematic chains. (a)
Clock toy with an initial gear chain. The minute hand does not
point to 12 when the hour hand points to 8. (b) Schematic view of
the gear chain. (c,d) Optimization results with two different user-
specified strokes guiding the gear layout.

of the overall scaffold, and vertical motion (in Y) of the character’s
seat inside the scaffold. Note that the part driving the horizontal
scaffold motion is connected behind the wall on which the draw-
ing is traced. Our algorithm automatically generates a quick-return
(for the horizontal motion) and various cam types (for the vertical
motion) to generate the decomposed target motion.

Long Chains: To demonstrate the ability of our approach to han-
dle longer kinematic chains, we used it to design a mechanical toy
clock containing a 9-gear chain. This chain transmits rotational mo-
tion from the driving crank to its hour and minute hands (Figure 8).
The number of gears is specified manually. Gears A and B in Figure
8 are placed so that their centers correspond to the rotation center
of the clock hands. The other gears can be initialized arbitrarily;
the system asks the user to specify their contact relationship.

However, a roughly initialized chain does not function properly.
The hour and minute hands fail to rotate synchronously as shown in
Figure 8a. Optimization to synchronize the hour and minute hands
takes 10 seconds in our current implementation. Optimization ran-
domly choose one gear, samples a new radius or position for it, and
then performs constrained sampling to maintain contact between
gears. The error in ratio between hand periods after optimization
(compared to perfect synchronization) is below 10~8. We let the
user draw a stroke to guide gear layout. The distance between the

Robot DJ

Construction Site

Figure 11: Robot DJ and Construction Site mechanical toys.

center of the gear and the stroke is introduced as an additional en-
ergy term. Figure 8c and d show the results of stroke-based editing.

Motion Editing: Figure 9 also shows how changing the target
curve the drawer traces out affects the assembly generated. Blue
curves in the figure show the actual trajectory as generated by the
assembly. Note our algorithm’s selection of different cam types to
realize the desired horizontal motion.

Our system’s ability to automatically guess part types and their pa-
rameters makes it useful as an interactive, high-level mechanical
design tool. We allow editing of the period, range, and type of mo-
tion for each feature object component. Figure 10 illustrates such
editing in the robot DJ example. The compound gear in the middle
appears when the period of the two bottles is edited, since the note
object and bottle objects on the same driving axis no longer share a
common period. We also substitute a disco ball with rotary motion
for a note object with helical motion. Please see the supplementary
video for the editing operations.

Validation: To validate the created mechanical toy, we fabricat-
ed the Crocodile Feeding example using a UPrint Plus 3D printer,
shown in Figure 1c. The accompanying video shows that the actual
motion generated by the fabricated toy is very similar to its simu-
lated motion.

Limitations: Our system supports only the parts and motion types
listed in Table 1. Success of the optimization relies on a reasonable
feature layout. The algorithm may fail if the handles on different
feature objects are placed too close together. In this case the us-
er should rearrange features or enlarge their handle boxes to give
the algorithm more freedom. Input motion should also be specified
with some care. Feature objects should be largely non-colliding,
and should move smoothly so that the time sampling is adequate. In
our experience, this is not difficult for the motion types we demon-
strate. The user simply reviews the animation and adjusts the size
or position of features to avoid deeply interpenetrating collisions.
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Figure 9: Effect of motion editing on the generated assembly. (a) Input. (b,c,d) Figure 10: Editing on the Robot DJ toy. Part’s
Assemblies generated for different target trajectories (red curves). In each image, drawn in brown were updated according to the
the blue curve on the wall shows the trajectory actually traced out by the character user’s edit. Please see the accompanying video
in the scaffold, as driven by the assembly, to match this target. for the entire editing session.

. # Feature # Feature N Time
Name Figure Chains Components # Frames Parts in Final Assembly (seconds)
Robot DJ Fig. 11 5 7 50 4 ellipse cams, 1 gear system, 1 belt-pulley 52s
Crocodile Feeding | Fig. 1 2 4 50 1 ellipse cam, 1 snail cam, 1 gear system 36s
Construction Site | Fig. 11 7 1 oo | O cllipse cams, I double cam, T crank-slider | 35

1 quick-return, 3 belt-pulleys

. 1 ellipse cams, 2 snail cams, 2 gear systems
New Year Fig. 7 12 26 30 2 crank-sliders, 2 belt-pulleys 96s
Lazy Drawer 1 Fig. 9a 2 3 100 1 ellipse cam, 1 quick-return 62s
Lazy Drawer 2 Fig. 9b 2 3 50 1 double cam, 1 quick-return 37s
Lazy Drawer 3 Fig. 9¢ 2 3 50 1 ellipse cam, 1 quick-return 33s

Table 2: Statistics for examples. Total time required to synthesize each toy example is reported in seconds in the rightmost column. 3000
iterations of the optimization algorithm were used in each example.

7 Conclusion and Future Work

We pose a new motion-to-form problem in mechanical design and
propose an algorithm to solve it that mimics the iteration of a hu-
man designer. It initializes the assembly using knowledge about
each part’s motion transformation and then refines it using simulat-
ed annealing, automatically adjusting each part’s shape parameters
to generate the specified motion of the mechanism’s features.

Our specific goal is to allow people unfamiliar with mechanisms to
design and fabricate their own mechanical toys. Our long-term aim
is to integrate mechanism simulation into CG modeling to achieve a
high-level (e.g. motion-to-form) specification and create a physical
object. Generating mechanisms automatically from a specification
of their function has occupied the attention of mathematicians and
engineers from Archytas and Archimedes through Euler to the mod-
ern researchers we cite. Though we focus on toy design to demon-
strate this contribution in a nontrivial application, our method can
be generalized to other types of mechanisms by modifying the as-
sembly’s kinematic parameterization model. Our work advances
the state-of-the-art in mechanism design which is currently difficult
even for experts, and is based on low-level manipulation of parts
governed by user-specified geometric constraints. We believe our
approach might be useful in other applications, such as in shape
reconstruction and reverse engineering of mechanical objects.

In future work, we plan to investigate new types of mechanical parts
and new layout objectives. Our approach’s division of the toy into
driven features above and driving mechanism below a plane is also
limited and could be improved to more freely combine mechanism
and features within the same 3D space. Our system supports only

a naive notion of fabrication cost in the topology term of its ob-
jective function. It also supports only kinematic simulation. Many
mechanical toys require dynamics. For example, string often con-
nects mechanical parts to feature objects; when the string is relaxed,
object motions are not kinematically determined but behave in re-
sponse to gravity and inertia. Dynamic behavior can also increase
motion realism even in kinematically-linked toys. Finally, our sys-
tem could be augmented with suggestions to help the user design
motions that are approximated well by its set of mechanical parts.
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