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ABSTRACT. Consider a finite sequence of permutations of the elements
1,...,n, with the property that each element changes its positioatby
most1 from any permutation to the next. We call such a sequence a
tangle and we define anoveof element to be a maximal subsequence
of at least two consecutive permutations during which itsitgans form

an arithmetic progression of common differengé or —1. We prove

that for any initial and final permutations, there is a tangdanecting
them in which each element makes at mdgnhoves, and another in
which the total number of moves is at mdst. On the other hand, there
exist permutations that require at ledsioves for some element, and

at least2n — 2 moves in total. If we further require that every pair of
elements exchange positions at most once, then any two petions

can be connected by a tangle with at mOgtog n) moves per element,
but we do not know whether this can be reducedtd) per element,

or to O(n) in total. A key tool is the introduction of certain restridte
classes of tangle that perform pattern-avoiding perrmutati

1. INTRODUCTION

Let S,, be the symmetric group of permutations= [7(1),...,7(n)] on
{1,...,n}, with composition defined viar-p)(i) = 7(p(7)). Itis natural to
represent a permutationas a composition of simpler permutations. Define
theswaps(i) to be the permutatiofi, ..., i+ 1,4,...,n| thatinterchanges
1 andi+ 1. We call two permutations andp adjacentif they are related by
a collection of non-overlapping swaps, i.epif= 7 - s(p1) - - - s(px) Where
lp; — p;| > 2 fori # j. Equivalently,r andp are adjacent ifr (i) —
p~1(i)] < 1 for everyi. A tangleis a finite sequence of permutations in
which each consecutive pair is adjacent. If a tarigiarts with the identity
permutationd = [1,...,n| and ends withr, we say thafl” performs 7.

It is straightforward to see that for any permutatiothere is some tan-
gle that performsr. Our goal is to find tangles with simple and elegant
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(@) Permutations and (b) Moves (thickened (c) Shading the swaps.
paths. lines) and corners (cir-
cles).

FIGURE 1. A tangle performing the permutation =
[1,4,2,5,6,3], with 7 moves.

structure. We may visualize a tangle as follows. Considerstbquence
of permutations written in one-line notatian= [7(1),...,n(n)] in a col-
umn from top to bottom as in Figure 1(a), with equal horizbatel vertical
spacings between symbols. Then, for each 1,...,n, draw a polygo-
nal path connecting all occurrences of the numb&om top to bottom, as
in the figure. The path corresponding to elemeist calledpath . Each
line segment of a path is either vertical or at an angle-¢3° to the verti-
cal. We call a maximal non-vertical line segment of a pathave Thus,
a move corresponds to a maximal sequence of swagp$ that occur be-
tween the adjacent elements in some interval of permutabtbthe tangle,
and with their locationg; forming an arithmetic progression with common
difference+1. See Figure 1(b). It is convenient to illustrate the strrestu
by shading the area occupied by swaps, as in Figure 1(c). @@usfis on
minimizing moves among tangles that perform a given pertimurta

Our first main result is that any permutation can be perforined tan-
gle with a bounded number of moves per path (and therefgre moves
in total asn — o). In contrast, various natural greedy algorithms for con-
structing a tangle (including one proposed in [18]) reqgif@?) moves in
total in the worst case. (See Figure 3 for examples.)

Theorem 1. For any permutationr € S, there is a tangle performing
that has at mosi moves in each path.

Shifting our attention taotal moves, we can reduce the constant froam
to 4.

Theorem 2. For any permutationr € S,,, there is a tangle performing
that has at mostn moves in total.
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On the other hand, for all sufficiently largethere are permutations that
require at least moves in some path, and permutations that require at least
2n — 2 moves in total. (The latter is easily seen to hold for the rewe
permutationn,n — 1, ..., 1], while the former apparently requires a quite
involved argument — see Proposition 17). It is an open proléeclose the
gap between the boundsand5 for moves per path, and between — 2
and4n for total moves.

Figures 2(a) and 2(b) give examples of the constructiongndehheo-
rems 1 and 2. The tangles will be constructed by combininmpwuar‘gad-
gets” — smaller tangles that are capable of performing p&tions in cer-
tain restricted classes. Specifically, we will considerggd that perform
(and are in bijective correspondence with) Grassmanriiaivavoiding,
213-avoiding, andi 32-avoiding permutations.

Despite the relatively small numbers of moves, the tandjlestiated in
Figures 2(a) and 2(b) arguably have some undesirable &satuhich we
discuss next. Firstly, they have many “holes” — small ind¢negions con-
taining no swaps, shown unshaded in the figures. Secondiyea pair of
paths may cross multiple times. We will show that some versidhe first
issue is unavoidable if the number of moves is to be linear.irOn the
other hand, we do not know whether the second issue can beealoi

Rather than holes, it will be convenient to work with a sligttifferent
notion, to be defined next. First we observe that countingesds essen-
tially equivalent to counting corners (see also [4])cétner is a vertex of
a path, at which its direction changes between any two oftireetpossi-
ble directions. Assume that a tangle has its initial and foemutations
repeated at least once, so that each path starts and ends weittical seg-
ment. In addition, count “double corners” (at which a pathrues from
one non-vertical direction to the other) with multiplicy With these con-
ventions, the number of corners in a path equals twice théoeunf moves.

In our geometric interpretation of a tangle, we think of tixaps as lo-
cated at the elements of the integer lattie Therefore, the elements of
the permutations, and thus also the corners, are locatddraeets of the
shifted lattice(Z + £)?. Specifically, take theth elementr, (i) of the tth
permutationr, in the tangle to be located at the point- %,t — %), where
the first coordinate increases from left to right, and theosdacoordinate
increases from top to bottom.

Given a tangl€l’, consider the graph whose vertices are the corners of
T, and with an edge between two corners if their locations atiimw/>-
distancel. We call the connected components of this gralisters (See
Figure 16.) The idea is that clusters generalize the notiboles discussed
above. Our next result implies that,7as—+ oo, for some (in fact, almost all)
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FIGURE 2. Examples of the tangles corresponding to the
main results. Shading is added to illustrate the structure.
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permutations, if a tangle has ordy(n) corners (equivalently)(n) moves)
then it must have at leaSkt(n) clusters. Indeed(n) clusters necessitates
Q(nlogn) corners. The proof will use a counting argument.

Theorem 3. Letd € (0, %) and suppose > 6~%/%, For at least a propor-
tion1—e~" of the permutations € S,,, any tangle performing has either
atleast(1 — #)n clusters or at leasf6n log n corners.

We now turn to the second issue raised above. We call a tang[de if
each pair of paths has at most one crossing. It is again eaggtihat every
permutation admits a simple tangle. In a simple tangle pevifty a per-
mutationr, pathsr (i) andn(j) cross each other if and only (ifr(:), 7(j))
is aninversion of 7, i.e.i < j andn (i) > 7(j).

The article [4] by the current authors characterizes a cdfgsrmutations
for which there exissimpletangles that have the minimum moves among
all tangles. However, there exist permutations that requiietlgt more
moves for a simple tangle than for a general tangle. Agaie,[4Efor
details.

In contrast with the case of general tangles discussecdegaolir upper
and lower bounds for numbers of moves in simple tangles dnerdar
apart:O(nlogn) and2(n) respectively as — oo. Closing this gap is our
principal open problem.

Proposition 4. For any permutationr € S, there is a simple tangle per-
forming~ that has at mosflog, n| moves in each path.

Proposition 5. For everyn > 1, there is a permutation € S,, such that
any simple tangle that performs it has at least-c,/n moves, where > 0
is an absolute constant.

While our focus is on moves, one can attempt to optimize atbpects of
a tangle. For instance, we may define tlepth of a tangle to be the length
of the sequence of permutations comprising it (includiregfthal permuta-
tion but not the initial one, say). It is not difficult to chetikat anyr € S,
can be performed by some tangle of depth at most1 for evenn and at
mostn for oddn (and these bounds are optimal; they are attained by the
reverse permutation). Our constructions for Theorems 12aawld Propo-
sition 4 perform reasonably well in this regard, having de@t mosBn,
7n/4 and3n/2 respectively.

Background. Further material on tangles and moves appears in a compan-
ion paper [4] by the current authors. The main result of [4] surprisingly
complex characterization of the set of permutations thatbEperformed
by a simple tangle in which each path has at most one move im édiac
rection, together with a polynomial-time algorithm for ognizing such a
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permutation and constructing the tangle. (In particulas set turns out to
include every permutation ifig, but no permutation containing the pattern
7324651.) Tangles and related objects have been studied in sewettialgs
by other authors, although the problem of minimizing mowascprners)
does not appear to have been considered prior to [4].

Wang in [18] considered essentially the same notion in theeca of
VLSI design for integrated circuits. However, the researcfi8] targets,
in our terminology, the depth of a tangle, and the total Ibrgftthe paths.
The algorithm suggested by Wang produces tangles @jt¥) moves for
some permutations.

In algebraic combinatorics, Schubert polynomials can loeeéad as sums
over diagrams called RC-graphs or pipe dreams [5, 9], whiai be inter-
preted as tangles of a certain type. Specifically, an RCrdragorresponds
via a45° rotation to a simple tangle whose swaps are restricted tdadd
cations in a triangular region (the same region as our “rigftagadget” in
Section 2.3). Reduced words for permutations are extdgstadied; see
e.g. [3, 10, 14, 21]. In our terminology, a reduced word ismapde tangle
with only one swap between consecutive permutations.

Decomposition of permutations into nearest-neighbounsjasitions
was considered in the context of permuting machines andrpatéstricted
classes of permutations [2]. In our terminology, Alber&gt[2] proved that
it is possible to check in polynomial time whether for a giyermutation
there exists a tangle of depikh for a givenk. Tangles and the associated
visualizations also appear in sorting networks [1, 14], magements of
pseudolines [8], and in the context of change ringing (Egktyle church
bell ringing) [20]. In the terminology of change ringing,angle with min-
imum corners is a “link method with minimum changes of di@ct; each
permutation represents an order of ringing the bells, anaraec requires
a ringer to change the speed of their bell, which involvesaephysical ef-
fort. Also related is the problem of decomposing a permartatnto the
minimum number of block transpositions — see [7].

Tangles appear naturally as a sub-problem in the contextrajihg
drawing, and this was our original motivation for the prob&econsidered
here. In order to simplify a visualization of a large graghsisometimes
advantageous to “bundle” sets of nearby edges togethelfl5Since the
edges may be required to appear in different orders at themas of a bun-
dle, they must be permuted along its length, and it is deleitaldo this in a
helpful and visually appealing way. Paths with few moves¢ar corners)
tend to be easy to follow.

With practical applications in mind, it is worth noting thite tangles
resulting from our constructions can often be improvedhgligby local
modifications. For example, in Figure 2(a), one may elinanite two
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(b) Odd-even sort: at alternate steps,
apply swaps in all odd positions, or
all even positions, wherever the two
elements form an inversion.

WTXJQOL73HCMAFIE KBUV NOG YD

(a) Bubble sort variant: use one R-
move to route each path to its correct
position, starting from the rightmost,
m(n). Pathi may have2(i) L-moves.

FIGURE 3. Tangles constructed according to two natural
greedy algorithms. Both requite(n?) moves in the worst
case as — oo.

swaps where the tail and body of the “fish” meet, reducing thetit in

Figure 2(b), the isolated swap in the middle of the leftmaéticin may be
moved upward to meet the swaps at the top, eliminating a n#weh mod-
ifications may be iterated, but will not improve the worsteasymptotic
performance of the constructions.

Further notation and conventions. As mentioned above, it is convenient
to consider a tangle in terms of its swaps, and we think of thaps as
located at elements of the integer lattié& If 7, 7., € S, are two con-
secutive permutations in a tangle, and they are related byomerlapping
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swaps thustr, - s(p1) - - - s(px) = ™1, then we say that the tangle has swaps
atlocations(py, t), . .., (p, t). The first coordinate is sometimes called po-
sition, and increases from left (West) to right (East) (frono n» — 1); the
second coordinate is called time, and increases from toptliNtm bottom
(South). If a tangle consists of permutationsSinthen we sometimes call

n thewidth of the tangle.

We identify two tangles if they have the same set of swap ionaf thus,
we consider the tangle with permutations . . ., 7; to be the same as that
with permutationsy - 7y, ...,y - m, for any permutationy. In particular, a
tangle that performs a permutatiarmay be equivalently be considered as
starting atr—! and ending aid, thus “sorting”z~!. The latter convention
was adopted in [4]. It will also be useful to allow times of gsdo takeany
value inZ, and to identify two tangles if one is obtained from the otixer
adding a constant to all swap times (thus translating iicaty).

As mentioned earlier, we will construct tangles by combgngmaller
tangles (called gadgets), and for this it will be useful emslate horizon-
tally as well as vertically. Thus, lett < n and suppose thdt is a tangle
performingr € S,,, with its swaps at locationS C [1,m — 1] x Z. Then
for integersa, b, we may form a tangl&”of sizen by placing swaps at the
translated locations’ := {(i + a,t +b) : (i,t) € S}; this performs the
permutationfl, ..., a,7(a+1),...,7(a+m),a+m+1,... n]. Moreover,
we may combine several tangles by taking the union of thés seswap
locations (perhaps after applying various translations).

A swap locationz, t) is calledevenor odd according to whether +¢ is
even or odd. All the tangles we construct will have their ssvegstricted to
locations of one parity. As indicated above, a convenient twahighlight
the structure of such a tangle is to draw a shadiéerotated square centered
at each swap, as in Figure 1(c). Recall that a move is a maxiomai/ertical
segment of a path. We call it damove if it runs in the North-East to
South-West direction, and &rmoveif it runs North-West to South-East.

Pattern-avoiding permutations will play a key role. (Seg §l1] for
background.) Apattern is a permutatiorp € S,,. Forn > m, we say
that a permutatiom € S,, (or, more generally, a sequencerodlistinct real
numbersr) contains the patterry if there exist indiced < i; < -+ <
im < msuchthat, foralll < j < k& < m, we haver(i;) < =(i) if and
only if p(y) < p(k). If = does not contaip thenr is said to bep-avoiding.

The following concept will also be useful. For positive igées

ay,...,ar With sumn, consider the partition ofl, n] into the intervals
[1,a41],[a1 + 1,a1 + agl,...,[n — a; + 1,n] with these lengths. We say
that a permutationr € S, is (aq, ..., ax)-split if it maps each of these

intervals to itself.
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(a) Splitter gadget. (b) Merger gadget.
FIGURE 4

Organization of the paper. In Section 2 below we introduce the gadgets
that will be used in our constructions, and prove their resgiproperties.
Proposition 4 and Theorems 1 and 2 are then proved in Se@idnespec-
tively. We prove the bound Theorem 3 in Section 6, via a coatioimal ar-
gument. In contrast, the lower bound in Proposition 5 andatithat some
permutations requirg@ moves in some path (Proposition 17) are proved by
explicitly exhibiting suitable permutations, in Sectiohand 8 respectively.
Although the permutations in question are very easy to desdhe proofs

of both results are surprisingly delicate.

2. GADGETS

In this section we introduce the gadgets that will be useddogTheo-
rems 1 and 2. They come in three main categories, with sevariaints in
each.

2.1. Splitter and Merger. Our first gadget comes in two variant forms,
which are reflections of each other about a horizontal axsplAter gadget
has swaps at locations
(Z—j—i-a,—l—j),

forall j > 0and0 < i < b(j), wherea is an even integer, anlis a
non-decreasing integer-valued function of bounded supgdwus, a split-
ter consists of swaps at all even locations in a region badifdéow by
two line segments running South-East and North-East, anddex above
by an interface comprising any sequence of North-East anthSeast seg-
ments. See Figure 4(a) for an example. The idea is that iraegzathe
paths into two arbitrary sets, and places them on the leftrayid sides
while maintaining the relative order within each set.

To formalize this: a permutation = [x(1),...,n(n)] is calledGrass-
mannian if it has at most one descent, i.e. at most one inkeuch that
(k) > n(k+1).
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FIGURE 5. A direct tangle, performing 321-avoiding per-
mutation.

Lemma 6. A permutation can be performed by some splitter if and onty if
is Grassmannian. Furthermore, the correspondence betwpkiters and
Grassmannian permutations is bijective.

For the purposes of the claimed bijectivity, recall that timagles are
identified if they have the same set of swap locations.

Proof of Lemma 6The identity permutation is clearly performed by the
trivial tangle containing no swaps. Any other Grassmanipi@mutation

7 has exactly one descent; sayk) > n(k + 1). We takea = k, and

b(i) = m(k —i) — (k—1)for0 < i < k—1, andb(:) = 0 fori > k.
The functionbd is easily seen to be non-decreasing. The lower boundary of
the splitter consists of steps South-East followed by — k steps North-
East. The upper boundary also consistg @outh-East steps and— &
North-East steps, with the(:)th step being South-East if and onlyi i &.
Fori < k, pathm(i) makes one L-move, starting at positiband ending

at positionr(z). Fori > k, pathz (i) similarly makes one R-move. The
pathsr (i) for i < k maintain their order relative to each other, as do those
for: > k. See Figure 4(a). By similar reasoning, any splitter penfoa
Grassmannian permutation. Since different splittersgoeridifferent per-
mutations, the correspondence is bijective. O

A merger is obtained by reflecting a splitter about a horizontal akfsus
it has swaps at all locations

(i—j+ai+yj),
for a andb(-) as above. See Figure 4(b). The corresponding permutation
is the inverse of that performed by the splitter. A permotatt is the
inverse of a Grassmannian permutation if and only if, for sérthe values
1,...,k appear in increasing order in the sequence [r(1),...,m(n)],
and so ddk + 1, ..., n. The proof of the following lemma is immediate.

Lemma 7. A permutation can be performed by some merger if and only if
its inverse is Grassmannian. Furthermore, this correspore is bijective.

Both splitters and mergers are special cases of a more dgetesa of
tangles considered in [4], calladirect tangles. A direct tangle is one in
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FIGURE 6

which each path has at most one move. Modulo a suitable ctoueme-
garding split permutations (in which the parts of the tangleresponding

to different splitting intervals may be translated vetfiga such a tangle
consists of swaps at all even locations within a region bedraboveand
below by interfaces comprising North-East and South-Eeginents. See
Figure 5. It is shown in [4] that a permutation admits a ditacigle if and
only if it is 321-avoiding. (Grassmannian permutations and their inverses
are indeed21-avoiding.) The correspondence is again bijective.

2.2. Matrix gadget. Letn = 2m be even, and let € S,, be a permuta-
tion. Thematrix gadgetindexed bya consists of swaps at the locations

(i%_j _'17i__j)
for all pairsi,j € {1,...,m} exceptthose witha(i) = j. In other words,
a square angled db° to the axes is filled with swaps at all odd locations,
except for those locations corresponding to the suppohefrotated) per-
mutation matrix ofo. See Figure 6(a) for an example. The idea is that a

matrix gadget performs any given permutation on one had;ftlowing
result says that the effect on the second half is the invessaytation.

Lemma 8. Letn = 2m and leta € S,,. The matrix gadget indexed ly
performs the permutation

[a(1),a(2),...,a(m), o ' (1)+m,a ' (2)+m,...,a  (m)+m] € S,.

Proof. This is straightforward to check. Suppasé&) = j. Then pathj
makes an R-move until it encounters the “omitted swap” cpoading to
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T+ m

1+ m

FIGURE 7. A pair of complementary paths in a matrix gad-
get. Horizontal positions are indicated along the top line.

the pair(i, 7), and then makes a vertical segment of lerigtbllowed by an
L-move, finishing in position. Similarly, pathi + m finishes in position
j + m after an L-move and an R-move. See Figure 7. U

The matrix gadget is fundamentally more powerful than oheogad-
gets, in the sense that it can perfofny2)! different permutations ir¥,,,
whereas each the others can only perfanf”) permutations for some
constants:. The matrix gadget is the source of the “holes” (or, more gen-
erally, clusters) mentioned in the introduction. Theorenefects the fact
that some such construction is a requirement if we are to baleinearly
many moves.

For some of our constructions, we will need the followingi@ats of the
matrix gadget for oda.. Letn = 2m — 1, and leta € S,,,. Thetruncated
matrix gadget indexed by« is simply the matrix gadget of the larger size
2m indexed byq, but with the rightmost swap (in locatiof2m — 1,0))
omitted (whether or not it is present in the original matradget). See
Figure 6(b) for an example. This gadget performs a pernurtatf the
form

[(1),a(2),...,(m), ...] € Sam-1;
i.e.« on them leftmost positions, andomepermutation on the: — 1 right-
most positions. The precise nature of the permutation omigié will not
matter for our applications. Similarly, we may truncate anmayadget on
the left side to obtain any desired permutation on the rigistm. positions.

Finally, note the following subtle variation. H = 2m and the index
permutation satisfies(1) = 1, then the standard matrix gadgéteadyhas
no swap in the leftmost column. Figure 6(a) is an example.rdtbee, it
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(a) A left reflector. (b) A right reflector.

FIGURE 8

can also be regarded as a gadget involving only positions , 2m, and
performing any desired permutation on the positidns., m. (And it may
then be translated one position leftward, for example).

2.3. Reflectors. Our final gadget also comes in two complementary forms,
this time related by reflection in a vertical axis. right reflector gadget
consists of swaps at locations

(i+j+1,7—1)
forall j > 0and0 < ¢ < b(j), whereb is a non-decreasing integer-valued
function of bounded support. Thus, a right reflector cossidtswaps at
all odd locations in a region bounded on the left by two lingmnsents run-
ning South-West and South-East, and bounded on the right Inyterface
comprising a sequence of South-West and South-East segifeee Fig-
ure 8(b). In this case, this rightmost bounding interfacesihstiay to the
left of the horizontal coordinate. Therefore it corresponds to a Dyck path.
The idea of the right reflector is that every path starts witifiRamove, then

has a vertical segment (now possibly of length greater thaand then is
“reflected” back with an L-move.

Lemma 9. A permutation can be performed by some right-reflector if and
only if it is 132-avoiding. Furthermore, this correspondence between gad-
gets and permutations is bijective.

Proof. We prove the “if” direction by induction on. Forn = 1, the claim
is clear. Fom > 1, suppose that is 132-avoiding. Consider the location
of element in 7, and writer = [«a, n, 3], whereq, [ are the sequences of
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n

n

N

FIGURE 9. Inductive construction of a right reflector. The
rectangle is chosen so as to route patlo its correct lo-
cation, and the two remaining triangles are then filled with
smaller right reflectors.

numbers to the left and right af. Note thatn andg are bothl 32-avoiding.
Also, every element ofv is greater than every element ©f otherwise we
would have al 32 pattern including.

We construct a right reflector as shown in Figure 9. There4§°aec-
tangle filled with swaps, with one corner(@t 0) and an opposite corner at
(n — 1,n — 2r~1(n)); pathn has a vertical segment until it hits this rec-
tangle just above its rightmost corner, and then has an Lem trivial
case is whemr—!(n) = n, the rectangle is empty, and pathis vertical).
Finally, we use the inductive hypothesis to insert two Hrismaller right
reflectors, which perform the permutations correspondinglative orders
of a andg, in the triangular regions to the North-East and South-&&t$te
rectangle.

We now turn to the “only if” direction. Suppose that a rightleetor
gadgetl’ performs a permutation. We first note thaf" is simple. Indeed,
every path consists of an R-move, then a vertical segmeat,dh L-move
(where it is possible that one or both of these moves is empiyge two
paths can only cross during the R-move of one and the L-motreeafther,
they cannot cross more than once. Now suppose for a cortitadtbatr
contains al32 pattern. Thus, there exigst< v < w with 7(u) < m(w) <
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7(v). Consider the locatiom of the unique swap between path@) and
7(w). By the definition of the right reflector, every odd locationthe45°
rectangle with cornersl, 0) andx contains a swap. However, patffu)
starts to the left of path(w), and traverses the entire rectangle during its
R-move, and crosses patiiw) at the South-East side of the rectangle. This
contradicts simplicity.

To check bijectivity, since clearly every gadget perfornméycone per-
mutation, it is enough to check that the two sets have equdiredity. The
number of132-avoiding permutations it%,, is given by the Catalan num-
berC,,. A right reflector gadget is encoded by a Dyck path descriligg
right boundary. Therefore the number of them is al§p See e.g. [17,
Ex. 6.19]. O

We remark that the standard Catalan recurrefige, = > C:C,,_;
is implicit in our inductive construction above. Argumestmilar to ours
appear in the context atack sortingsee [19, p. 14] and [13]).

A left reflector gadget is simply the image of a right reflector under the
reflection in the vertical line through the center of the patation. Thus it
has swaps at locations

(n—i—j,j—1i)
for i, 7 andb(-) as before. See Figure 8(a). The next result follows immedi-
ately by symmetry.

Lemma 10. A permutation can be performed by some left reflector if and
only if it is 213-avoiding. This correspondence is bijective.

In our applications, we will prove and use two propertie$3#-avoiding
(or 213-avoiding) permutations that are interesting in their ovght: (i)
any permutation can be decomposed into a cyclic permutatioinal32-
avoiding permutation (Section 4); (ii) B82-avoiding permutation can be
found that maps any given subset{df ..., n} to any other subset of the
same size (Section 5).

3. LOGARITHMIC MOVES PER PATH

Our simplest construction uses only splitters to obtainnapte tangle
with logarithmically many moves per path.

Proof of Proposition 4.See Figure 10 for the construction and Figure 2(c)
for an example. Letr € S, be any permutation and let = |n/2].
Let L = {n(1),...,7(m)} andR = {w(m + 1),...,m(n)}. Consider
the Grassmannian permutatiprobtained by writing the elements @fin
increasing order followed by the elements Bfin increasing order. By
Lemma 6 there is a splitter than performsWe first apply this splitter. It
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(1) -+ wa(m)mr(m+1)---7m(n)

FIGURE 10. Construction for Proposition 4. After the ini-
tial splitter, the two rectangles signify smaller recuetjude-
fined versions of the same construction.

remains to performp= - 7, which is an(m, n — m)-split permutation. Thus,
we can split into two subproblems. We then recursively apbé/ same
procedure to each, and place the resulting tangles belowitied splitter,
after appropriate translations.

Each path performs at most one move within each splitteittleatoun-
ters (perhaps fewer, since some may splitters involve ncerfanvthe path,
and some pairs of splitters may be positioned to abut onéhanato that
two moves coalesce). A path encounters at nilegf, n| splitters.

The tangle is simple, since if two paths cross in the firstigplithen they
subsequently remain in the two distinct halves. O

We remark that the above construction can be modified tobttngle
with only one cluster, and(logn) moves per path, thus matching up to
constants the extremal cage % of Theorem 3. After the first splitter,
route pathm(m) alongside the South-West boundary of the splitter to its
correct positionn. This path then remains vertical for the rest of the tangle,
keeping the two halves apart and preventing formation aésolterate on
the two intervalg1, m — 1] and[m + 1, n|, and ensure that the subsequent
splitters are translated upward until they touch some swagp mrevious
stage.



REPRESENTING PERMUTATIONS WITH FEW MOVES 17

4. BOUNDED MOVES PER PATH

In this section we prove Theorem 1. The construction will meksential
use of reflector gadgets. We use the following key proper8i dfavoiding
permutations, which we will then extend to other patterntenfith3. A
permutation is calledyclic if it has only one cycle (or orbit).

Lemma 11. For any permutationr € S, there exists &12-avoiding per-
mutationo such thatr - 7 is cyclic.

Proof. Assumen > 2, otherwise the result is trivial. We use an iterative
procedure to compute a suitabte We start withz, and pre-compose it
by a sequence of suitably chosen disjoint cycles. The coitipo®f these
cycles will be312-avoiding. Given the current permutation(which is
initially equal tor), a rainbow interval is an intervalja, b] such that all
elementsi € [a,b] belong to distinct cycles of. A maximal rainbow
interval [a, b] is one that is not a proper subset of another; thus, either we
havea = 1, ora — 1 belongs to the same cycle as some elemeft,éf; a
similar condition holds at the other end.7fis not cyclic, then there exists
some maximal rainbow intervét, b] of length at leas2. We now replace
with the permutation’ := « - 7, where

K= [1,...,&—1, a+1l,a+2,...,b,a, b+1,...,n|,

(i.e. a rotation of the intervak, b]; note thatx is 312-avoiding). The effect
of this change is to unite all the distinct cycles of the eleta@®f|q, b] into
one cycle; all other cycles are unchanged. Consequenthe iterate this
operation, the rainbow intervals used at successive stépbendisjoint,
and eventuallyr will be cyclic. Moreover, the various cycles used at
different steps commute with each other, and their comjoosit is 312-
avoiding. O

Corollary 12. For any permutationt € S,, and any patternp <
{312,231, 213, 132}, there exists a-avoiding permutatiom such thatr - 7
is cyclic.

Proof. Lemma 11 is the case = 312. Letrev := [n,n—1,...,1] € S,
be the reverse permutation. For the case- 231, apply Lemma 11 to
the conjugate permutatiareyv -7 - rev—! to obtain a312-avoidingo with
o -rev-m - rev_! cyclic. The conjugate of the last permutationiey ! is
rev !.g-rev-m-rev ! .rev = (rev ! .o -rev) - m, which thus is cyclic also.
The permutatiomev—! -0 - rev is 231-avoiding, as required.

Forp = 213, apply Lemma 11 teev -7, to obtain a312-avoidings with
o - rev - cyclic. Theno - rev is 213-avoiding. Finally, forp = 132, apply
the conjugation trick to the = 213 case. U
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FIGURE 11

Here is the main step in the proof of Theorem 1.

Lemma 13. For n even and anyn/2, n/2)-split permutationr € S, there
is a tangle with at most moves per path that performs

Proof of Lemma 13Let n = 2m. Sincer is (m,m)-split, there exist
m, T € S, such thatm;, = (w(1),...,m(m)) andmy, = (7(m + 1) —
m,...,m(2m) — m). We construct the required tangle using two matrix
gadgets, one above the other, together with a left reflecgbaaight reflec-
tor (each of widthn) in the two spaces between them, as in Figure 11.
Leta, 8 € S, be the permutations indexing the upper and lower matrix
gadgets respectively (see the definition of a matrix gadget), p» € S,,
be the permutations performed by the left reflector and thiet reflector
respectively. Clearly such a tangle performs(anm)-split permutation,
for any choices ofy, 3, p1, p2. Our task is to choose these permutations so
as to perform the required
Recall from Lemma 8 that a matrix gadget performs its indgxiarmu-
tation on the left and the inverse permutation on the righusl our tangle
performsr if and only if

1) a-p-B=m and a tpy- BT =m.
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The first equation gives; ' - « - p; = 7', and substituting into the second
givesa™! - p, -7 - - p; = m,. Rearranging,
) promit=an(mypt) o
There exists an satisfying (2) if and only if the two permutatiops - 7!
andm, - p;* are conjugate. By Corollary 12, for amy, we can choose a
132-avoidingp, such thatp, - ;' is cyclic. Similarly, for anyr,, we can
choose a&13-avoidingp; such thatp, - 7, ' is cyclic, whence the inverse
7y - py b is cyclic also. The permutations, p, can be performed by the
appropriate reflector gadgets by Lemmas 9 and 10. Thus, thpewnuta-
tions mentioned above are both cyclic, and therefore cat@jgnd so we
can choose satisfying (2). Finally, we can compute= p;'- o' - 7,
and (1) will be satisfied.

The resulting tangle has at masimoves per path: a path has two moves
in each matrix gadget, and these moves continue into thet@fe since
the gadgets abut each other. O

Proof of Theorem 1First consider evem = 2m. See Figure 2(a) for an
example. Using Lemma 6, we first apply a splitter gadget tleafopms
the permutatiorr, wherer(1),...,7(m) arer(1),...,m(m) in increasing
order, andr(m + 1),...,7(2m) arem(m + 1),...,7(2m) in increasing
order. We then use Lemma 13 to obtain a tangle that perforeg:thm)-
split permutation-—! - 7, and we place this tangle below the splitter. The
splitter adds at most one move to each path.

For oddn = 2m + 1, we modify the construction as shown in Figure 12.
The initial splitter separates the paths into sets of sizesdm + 1, with
path at the extreme right being= max{m(m + 1),...,7(2m + 1)}. We
then proceed as before for the figst. paths. Finally, we insert pathinto
its proper place int by an L-move alongside the South-East side of the
lower matrix gadget. Pathhas only2 moves, and every other path still has
at most> moves. O

We remark that the last trick for adding an additional patthvainly 2
moves could be iterated, to obtain an inductive constraatilarger tan-
gles. However, in general this would incur a quadratic nunatbenoves in
total, for similar reasons to the construction in Figure) 3(a

5. LINEAR TOTAL MOVES

We begin with another fact aboui2-avoiding permutations. Write
k] :=A{1,...,k}.

Lemma 14. If A, B C [n] have equal cardinality then there existd 32-
avoidingr € S,, witht(A) = B.
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FIGURE 12. The construction for Theorem 1 for oddthe
largest element in the right half of the permutation is rdute
along the right side.

Proof. The proof is by induction om. If n = 1 then the claim is obvious.
Suppose that the theorem holds forsll< n. We will deduce it forn. A
pair (i, j) is calledconforming if eitheri € Aandj € B, ori ¢ A and

j ¢ B. (In other words, if we are allowed to assig(i) = ;). We consider
several cases.

Case 1.Pair(n, 1) is conforming. Without loss of generality, suppose that
n ¢ Aandl ¢ B; otherwise take complements dfand B. Consider the
setB —1:= {i —1:4 € B}. By the induction hypothesis, there exists
a 132-avoidingo € S, _; with 0(A) = B — 1. Definer € S, by setting
m(n) = 1,andr(i) = o(i)+ 1 fori < n. Thenr is 132-avoiding, and maps
A'to B, as required.

Case 2Pair (1,n) is conforming. Without loss of generality, ¢ A and

n ¢ B. ConsiderA — 1 := {i — 1 : i € A}. By the induction hypothesis
there exists d32-avoidingo € S,,_; with (A — 1) = B. Definer € S,
by (1) =nandn(i) =o(i — 1) fori > 1.

Case 3.Pair (n,n) is conforming. Apply the inductive hypothesis to
1,...,n—1and setr(n) = n.

Case 4 None of the pairgn, 1), (1,n), (n,n) is conforming. Without loss
of generality,l € A. Thenn ¢ B becausé1,n) is not conforming. Then
n € A becausén,n) is not conforming. Then ¢ B becausé€n, 1) is not
conforming. In summary, we haden € Abutl,n ¢ B.
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We claim that there exists an integemwith 2 < k£ < n — 2 such that
AN (k]| = |BN([n]\ [n—Ek])|. Indeed, we haveA N [1]] =1 > 0 =
|BO([n]\[n—1])|, whereagAn[n—1]| = [A| =1 < [B[ = [BN([n]\[1])];
but the differencéA N [j]| — |B N ([n] \ [n — j])| decreases by at mokas
jisincreased by; thus it must bé) for some;.

Let A/ = AnfklandB = (BN ([n] \ [n — k])) — (n — k). By the
induction hypothesis, (since < n) there exists d32-avoidingm; € S
with 7 (A") = B'. Let A" = (AN ([n]\ [k])) —iandB” = BN [n — k.
By the induction hypothesis, (sinee— k£ < n) there exists d32-avoiding
Ty € Sp_k With my(A”) = B”. We definer by settingr(j) = m1(j) +n—k
for j < k, andn(j) = mo(j — k) for j > k. Thisr is 132-avoiding: if
u < v < w form a132 pattern, then we cannot have all threg/hor all
three in[n] \ [k]. On the other hand, we cannot have< k& < w: indeed,
foralli < k < jwe haver(i) >n —k > 7 (j). O

The following is a major ingredient of the proof of Theorem 2.

Proposition 15. Let 7 € S,, be a([n/2], [n/2])-split permutation. The
permutationr can be performed by a tangle all of whose swaps are within
the triangular region{(z,t) : —z < t < z}. The tangle accepts paths
running in the South-East direction on its North-West edg®] outputs
them running in the South-East direction on its South-Edgeeand has at
most4n moves including these input and output segments.

Proof. We first assume that = 2m is even, sor is (m, m)-split. The
construction of the required tange is recursive: it consists of a matrix
gadgetM, together with a right reflectak of width m placed to the North-
East of the matrix, and a smaller, recursively-construeegdionC” of itself
(performing a suitable permutation of size placed to the South-East of
the matrix. See Figure 13(a).

We now explain how to choose the gadgets. Let € S, be the per-
mutations performed by the right reflect8r(when translated to the right
half [m + 1,n]) and the matrix gadget/, respectively. Since the right-
reflector does not affect positions in the left hglfm|, we require that
n(1),...,u(m)] = [7(1),...,7(m)](€ Sn). Therefore we choose the ma-
trix gadget to be indexed by this last permutation. Now adesthe right
half. The tangle”” can perform any desiredm /2], [m/2])-split permuta-
tion on positionsn+1, ..., 2m. Therefore, letting) = [m+ [m/2]+1,n|
be the set of positions in the last quarter/bfr], we need to choose so
thatp - u(Q) = 7(Q). Since|u(Q)| = |7(Q)|, by Lemmas 9 and 14, there
is a right reflector that achieves this.

In the case whem = 2m + 1 is odd, the construction is modified as
follows. The matrix gadget is replaced with a truncated ieergwith the
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FIGURE 13

rightmost swap deleted), so that we may choose it to perfoenwaquired
permutation on positions, ..., m + 1.

Finally, we count moves. Suppose that all paths start rgnmnthe
South-East direction. Then each path makes at most 2 mové® ire-
flector together with the matrix, including the input patht bot including
the final R-move in the case of the paths in the right half. &these moves
continue intaC”, writing A(n) for the maximum number of moves required
by our construction for a permutation of sizewe have

A(n) < 2n+ A([n/2]).
By induction,A(n) < 4n. O

Proof of Theorem 2The construction is illustrated in Figure 14, and Fig-
ure 2(b) is an example. We first assume tha a multiple of4, and write

n = 4m. As shown in Figure 14, the tangle finishes with a mexgehat
(by Lemma 7) intersperses the paths in locations . , 2m with those in
2m + 1,...,4m in an arbitrary way while maintaining the relative order
of each. Therefore, the remainder of the tangle (above thigemneneeds
to perform an arbitrary2m, 2m)-split permutation. On the other hand, the
tangle starts with two splitterS; and.S,, placed in the first and second
halves. By Lemma 6 each of these splitters can map any desatedf
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FIGURE 14. Construction for Theorem 2: splittefs, S5,
matrix gadgetsi/;, M,, mergerG, and a tangleC from
Proposition 15.

m

paths into its own first half (of widtim). Therefore, the task for the remain-
ing portion of the tangle (i.e. everything apart from the gegrand the two
splitters) is to perform an arbitraryn, m, m, m)-split permutation.

The remainder of the tangle is composed of two matrix gadgsgether
with a tangle constructed via Proposition 15. Both matridggs have
width 2m. The upper matrix gadgel/; occupies the middle halin +
1,3m] of [1,n]. The other matrix gadgel/,, abuts)M, to the South-West
and occupies the first half, 2m]. The tangleC from Proposition 15 also
has width2m, and is located on the right, partially abutting .

We now explain how to choose these gadgets. The matrix gadget
chosen so as to perform the required permutation in the firstter[1, m].
Then); chosen so that the required permutation in the second qiiarte
1,2m] is performed by the left half o/, composed with the right half of
M,. Finally, C' needs to perform an arbitrafyn, m)-split permutation (on
positions[2m + 1,4m]). This can be achieved, by Proposition 15.

We now count moves. We first total the moves within each corapbn
When two components abut each along a common boundary, thesmo
crossing this boundary will be double-counted. Therefoeetlven subtract
a term corresponding to the total length of the common bouesla The



24 BEREG, HOLROYD, NACHMANSON, AND PUPYREV

1234567890ABCDEFG 34567890ABCDEFGH
1234567890ABCDEF 234567890ABCDEFGHI

396E4CA2DO0F3175 60F8CDB2EAG317 FAGD9HACE1B6327 H9AGIO74EBDF1C63285

@n=0 mod4. (0)n=1 mod4. (c)n=2 mod4. (d)n=3 mod 4.

FIGURE 15. Variations of the construction for Theorem 2,
according to the congruence classwof

upper splitters each contribu2e: moves; the two matrix gadgets each con-
tribute4m moves; the final merger contributés: moves; and the tanglé
contributest(n/2) = 2n moves, by Proposition 15. The total over-counting
from common boundaries is + m + 3m + 3m. Therefore, there are at
most24m — 8m = 16m = 4n moves.

Finally, we describe how the construction is adjusted whes not a
multiple of 4. Letn = 4m + r wherem is an integer and € {0, 1,2, 3}.
Depending on the value of we choose a suitable splitting into quarters,
and use carefully chosen truncated matrix gadgets. Thitespland merger
are adjusted to that the remaining central section of thgdéamust perform
a permutation that is split as follows:

r=20: (m, m, m, m)
r=1: (m, m, m+1, m)
r=2: (m, m+1, m+1, m)
r=3: (m+1, m+1, m+1, m).

The caser = 0 was described above. In the case- 1, the matrix gadget
M is not truncated, but has width(m + 1), and is chosen to have no
swap in its leftmost column. In the case= 2, the matrix\M; is truncated

on its left side. In the case= 3, both matrices have width(m + 1), and
neither is truncated. For eachiof= 1, 2, 3, the tangle” has odd width, and
performs am + 1, m)-split permutation, as stated in Proposition 15. These
choices ensure that the various components can still abbtather without
introducing extra moves at the boundaries. See Figure l&xtonples. [
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FIGURE 16. Corners and clusters (for a tangle constructed
according to the proof of Theorem 2). Corners are circled,
and corners connected by thick lines belong to the same clus-
ter. There are three clusters.

We remark that, in the above construction, while the averageber of
moves per path is onk, some paths may have as manydsg n) moves
—this is a consequence of the recursive construction ind3iopn 15.

6. CLUSTER BOUND

In this section we prove Theorem 3. Recall that swaps areddcat
elements of the integer lattié&?, and thus corners are located at elements
of (Z + %)2. Recall that a cluster is a connected component of the graph
whose vertices are corners, and with an edge between twersoifrtheir
locations are withirf>-distancel. See Figure 16 for an example.

We start with a standard estimate for counting clusters. Z2ebe the
graph with vertex seZ? and an edge between any two elements that are at
¢>-distancel from each other. By a-animal we mean a finite subset of
7?2 that induces a connected subgraptZéf Thesizeof a x-animal is the
number of its vertices. Twe-animals are said to bequivalent if one can
be obtained from the other by a translatiorZ3f

Lemma 16. The number of equivalence classes-@nimals of sizen is at
mostA™, whereA = 77 /6°.
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Proof. Apply the argument of Eden [6], adapted to thé&ttice. See also
e.g. [12]. O

Proof of Theorem 3Fix 6 € (0,1) andn > 6-5/°. Suppose for a contra-
diction that there are at least™n! distinct permutationg € S,, each of
which has a tanglé, with fewer thank := (3 — )n clusters and fewer
thanC := 16nlogn corners.

For any tangl€l’, suppose that there are no corners at the ﬁinﬁne%.

It is easy to check that all segments must be vertical at that,pgo the
three permutations corresponding to tintes %,t + %, t+ % are all equal.
Therefore we can remove one of these permutations from tiigesee to
obtain a new tangle. This operation preserves the numbesraecs, and
does not increase the number of clusters. We can therefetanasthat
each of the tangles,. defined above has depth at most equal to its number
of corners. We may further assume that the time of the firsne]ois%.
Therefore all corners are within a fixed rectanglef areaC'n. (Recall that
there are at most' corners).

If we are given the set of locations of corners of a tangleetiogr with
the directions of the two incident path segments at eachecatimen we can
recover the tangle. At any given corner there are at 3fostS = 6 possible
choices for this pair of directions.

We now bound from above the number of possible tanglesA cluster
of sizem corresponds to &animal together with a location in the rectangle
R. Therefore the number of possible tangles is at most

> erencn)

TN genny mi =1

where the sum is over all sequendes;);—; , with £ < K, andm; > 1
and) . m; < C, and where is the constant from Lemma 16. The number
of choices of suctim;),—;.. , is at most2®, so the above expression is at
most(Cn)X (12A4)¢.

Since eaclT’; corresponds to a different permutatioypwe have

e "n! < (Cn)¥(124)°.

.....

Taking logarithms, substituting far and K, and usindog(n!) > nlogn —
n, we obtain

nlogn —2n < (5 — 0)nlog(Cn) + s0nlognlog(12A).
Usinglog(12A) < 6 and simplifying gives
tlogn —2< (3 —0)logC.
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Sincel < % —0< % andlog C' < logn + log log n, this implies
Ologn < 2+ %loglogn.

It is straightforward to check that this gives a contradictif n > 68/,
O

We remark that there is nothing special about the choicg“edlistance
1 in the definition of clusters, except that it is fairly natuirathe context
of the tangles that we have constructed. The above arguroesttgrough
(with different constants) for other choices of norm ane#mold distance.

7. LOWER BOUND FOR SIMPLE TANGLES

Proof of Proposition 5.First assume that = r2 + 2. Consider the permu-
tation

) 7=
[n, r+1,r....2, 2r+1,2r,....r+2, ..., n—1,....n—r, 1|.

~~

Thus,r consists of blocks of length-, with each block having its elements
in reverse order, and with andn in reverse order at the two ends. For
example, for- = 3 the permutation is = [11, 4,3,2, 7,6,5, 10,9,8, 1].
Define block i to be the setB(i) = {ir + 2,...,ir + r + 1} for
1=20,1,...,r — 1. LetT be a simple tangle that performs Every path
other thanl andn has at least two moves, since it crosses pathad1 in
different directions. Observe that pathsifi) and B(;) do not cross each
other fori # j. Call a pathbad if it has at leasB moves, and call a block
terrible if it contains at most one non-bad path. Next, we show thakthe
are at mos8 non-terrible blocks, from which the result will follow eési
Since paths from different blocks cannot cross each otbegrfy: < 7,
all elements of3(i) precede all elements @f(j) in any permutation of the
tangle. Now consider the locatidm, ¢) of the unique swap between paths
1 andn. Recall that(z, t) occurs between permutations andr;;, and
swaps the elements in locationgndx + 1. Let

H:={mz—-r—-1),....,m(z+7)}

be the set of elements that are within distanaan the left and right just
before this swap. The séf has exactly2r elements including andn.
Thus, by the previous observatiof, contains elements from at mo3t
blocks. We will show that any block having no elementgiins terrible.
Suppose thaB(i) N H = (). By the argument of the previous paragraph,
either all elements oB(i) are before all elements @f in the permutation
7, Or they are after. Without loss of generality, assume tmséo. This
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1 P

FIGURE 17. The key step in the proof of Proposition 5. The
paths of H’ must all cross path before times, therefore at
least as many paths must cross patiuring the same time
interval.

implies that each path dB(:) crossed before it crosses. Letp < ¢ be
any elements oB(i). We will show that at least one of pathg; is bad. Let
(y, s) be the location of the swap @fandg, and consider the permutation
5. We consider six cases.

Suppose firstthat, = [...,1,...,p,q,...,n,...] (which is to say that
p andq swap in the region above pathsndn). Pathp has an R-move (to
swap withg), then an L-move (to swap with), then an R-move (to swap

with n). Thereforep is bad. The case;, = [...,n,...,p,q,...,1,..]
(wherep andq swap below path$ andn) can be treated symmetrically.
Suppose now that, = [...,p,q,...,1,...,n,...] (which is to say that

p andq swap in the region left of pathisandn, and at or before timg so

s < t). The argument for this case is illustrated in Figure 1%.if not bad,
then patlp has an L-move (to swap with 1), followed by an R-move during
which it swaps with botly andn. Let H' := {m(z —r — 1),...,m(z)}.
All elements ofH’ are betweemp andn in 7;. These elements do not swap
with p after timet, becauser,(z) = 1 has already swapped wigh while
the others belong to different blocks and so never swap withet v be
the time of the swap of andn. Sinceu > ¢, all elements ofi/’ must
swap withn strictly before timeu. Thereforeu — ¢ > r. Therefore, path
p has at least swaps at times in the interv@l, v) (sinces < t, so its
unique R-move is in progress throughout this interval).c8ipathp also
swaps withl andn, it has at least + 2 swaps in total, which contradicts
simplicity, sincep is involved in onlyr + 1 inversions. Thusy is bad. The
casers =[...,p,q,...,n,...,1,...] can be treated symmetrically.
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Finally, the casesr, = [...,1,...,n,...,p,q,...] and 7y, =
[...,n,...,1,...,p,q,...] areimpossible, since together with our assump-
tion aboutr, they imply contradictions to simplicity.

Now we count moves. There at least 3 terrible blocks, each of which
has at least — 1 bad paths, which have at le&stnoves, so the total number
of moves is at least

3(r—3)(r—1)>3(r*—4r)>3n—cvn

for somec > 0.

For generah, we use the same construction with= |/n — 2|, add an
extran —r? — 2 < 2y/n + 1 elements at the end of the permutation, and
adjust the constant. O

It is tempting to try to extend the ideas of the above prooftiovs that
there are permutations for which any simple tangle lsasn moves as
n — oo (perhaps evefl(nlogn)). A candidate permutation might be con-
structed recursively: a “levetpermutation” would have the same structure
ast above, except with each block replaced with a smaller lével-1)
permutation; the number of levels might be chosen to be afrdoed n (or
at least something> 1). We have not succeeded in completing such an
argument. Indeed, we do not know whether in fé¢t.) moves (or even
O(1) moves per path) suffice for a simple tangle.

8. PER PATH LOWER BOUND

Finally, we prove a lower bound on moves per path that apphes for
non-simple tangles, as mentioned in the introduction.

Proposition 17. For anyn > 8 there exists a permutatian € S,, such that
any tangle performing has a path with at least 3 moves.

Our proof of this seemingly simple statement is surprigingtricate,
and involves the two lemmas below. The permutation will be

mi=1[n, 3,2, n—=3,n-4,...,54 n—1n-2 1].

Recall that a pair of elements;j is said to be an inversion of a permutation
mif i < jbutr=1(i) > 771(j).

Lemma 18. Let 7" be a tangle performing any permutation of the form
7 = [n,..., 1] with each path making at mo3tmoves. Lel < i < j < n.

If 4, 7 is an inversion then pathsand; cross each other exactly oncei lf

is not an inversion then pathsand j either do not cross or cross exactly
twice. In the latter case, the permutation at the tifrjast before pathd
andn crossis of the form, = [....7,...,1,n,... i, ...].
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FIGURE 18. lllustration of the proof of Lemma 19: the re-
gion formed by pathg, b, 1,n, and the four types of path
that may intersect it. An RL path necessitates an LR path,
but an LR path requires two further moves in order to cross
pathsn andl.

Proof. Paths andj must cross an odd number of times,ij is an inversion,
and an even number of times if not. Since each path has at2moetes,
they cannot intersect more than twice.

Suppose that pathsand j cross twice. Thern must have an R-move
followed by an L-move, and vice-versa fgr Since any path other than
andn must cross patih during an L-move and cross path during an R-move,
the claimed form ofr, follows. O

Lemma 19. Let T be a tangle performing a permutation of the form=
[n, ..., 1] with each path making at mo8tmoves. Let < a < b be some
paths of!" that first cross: and then cross. If path z crosses neithed nor
b, thena andb do not cross each other.

Proof. Suppose on the contrary that pathandb cross. By Lemma 18,
they cross only once. Pathcannot cross beforen, since therb would
have more thaB moves. Similarly, patth cannot cross after 1, sincea
would have3 moves.

Therefore, patlb crosses:, thena, thenl. Let N, E, S, W be the inter-
section points of the pairs of patlis, a), (a,b), (1,b), (1,n) respectively,
all of which are unique by Lemma 18. These points are condectelock-
wise order by four portions of the pathsb, 1,n, which bound a region
NESW. See Figure 18. Note that any path other thaor n has exactly
one L-move and one R-move. Therefore, the sidds and £S (which
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form part of paths: andb) are straight line segments. On the other hand,
the sidesSTW and W N may each contain at most one vertical segment,
since pathg andn may have two moves in the same direction separated by
a vertical segment.

Let /(SW') denote the number of intersections of the sid& with paths
other thanl, n, a, b (which corresponds to the length of its non-vertical por-
tions), and similarly for each of the other three sides. Byabove obser-
vations,

((WN) <UES); ((SW) < ((NE).
Every path other thaih, n, a, b than intersect®V £ ST must do so either in
a single L-move or R-move, or with an L-move followed by an Rva, or
vice-versa. Lep(L),p(R),p(LR),p(RL) denote the numbers of paths in
each category. We have

((WN) =p(RL) + p(R); ((NE) = p(LR) + p(L);
((ES) = p(LR) + p(R); ((SW) = p(RL) + p(L).
Combining these equations with either of the above inetieslgives
p(RL) < p(LR).

We havep(RL) > 1, because of path. However,p(LR) > 1 gives a
contradiction, because such a path has at leastves, in order to cross,
a, bandl. O

Proof of Proposition 17 Consider

To= [n 3.2, n—3n—4,....54 n—1n—2 1.
=~ - -

g g

We denoted = {2,3}, B={4,...,n—3},andC = {n —2,n — 1}.

Suppose for a contradiction that there exists a tafigigerformingn
in which each path has at madtmoves. First suppose thatis simple.
In each permutation of the tangle, the elementsl gfrecede the elements
of B, which precede the elements 6f Lett be the time of the swap
1,n, and suppose that some elemerppears to the right of this swap, i.e.
m=1[.,Ln...;z,...]. Ifz € AUBthenpathst <n—-1<n-—2
contradict Lemma 19. Thuse C. Similarly, if 7, = [...,y,...,1,n,.. ]
theny € A. Thus there is no possible location for the elements of 7,

a contradiction.

Suppose on the other hand thais not simple. Thus there exist pathg
thatdouble-cross(i.e. have two crossings). By Lemma 18, the pairis
not an inversion, therefore j are from two different sets among, B, C.
We claim that there exist € A andj’ € C whose paths double-cross.
Suppose not. Without loss of generality, assume that A andj € B
double-cross. Since pattand any path of” do not double-cross, they do
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not cross at all by Lemma 18. Since pathas an R-move then an L-move,
we haver; = [...,1,n,...,i,...]. Sopaths < n —1 < n — 2 contradict
Lemma 19. Thug/, j/ exist as claimed.

Sincen > 8 and|B| > 2, there are at least two elementsv of B
that either both cross beforen, or both cross: beforel. Without loss of
generality, assume the latter. Since patl@du both move right then left,
they cannot double-cross, and therefore by Lemma 18, theytoross.
By the same reasoning,andv do not cross. But now the patlis< u < v
give a contradiction to Lemma 19. U

ACKNOWLEDGEMENTS

We thank Omer Angel, Franz Brandenburg, David EppsteintiM&mk,
Michael Kaufmann, Peter Winkler and Alexander Wolff for wable con-
versations.

OPEN PROBLEMS

1. Whatis the asymptotic behavioras— oo of the maximum over permu-
tationst € S,, of the minimum number of moves amosgnpletangles
that performz? In particularly, is itO(n)? Our results show only that it
is betweerBn — o(n) andO(nlogn).

2. Similarly, what is the asymptotic behavior of the numbemmves in
the worst path (again, for the best simple tangle perforntimegworst
permutation)? Our bounds atendO (logn).

3. For general (not necessarily simple) tangles, what isthallest con-
stanta for which there exists a tangle with at mast moves for every
permutation inS,,, for everyn? And what is the smallestfor which we
can achieve at mostmoves per path? We know that< « < 4 and
3<b<b.

4. Many natural questions arise concerning permutatioaisdan be per-
formed by tangles of various restricted types. For exanguppose that
the swaps of a tangle occupy all even locations in a simplyneoted
region bounded above and below by interfaces consistingoofhN\East
and South-East steps, and on the left and right by interfat&outh-
West and South-East steps, as in Figure 19(a). Note in pkatithat
there is one cluster, and no “holes”. It is not difficult to shthat any
permutation can be performed by such a tangle of depth at Mos?)
(see Figure 19(b) for the idea), but this seems far too largeat is the
minimum depth needed? Is there a simple characterizatitimecdet of
permutations that can be performed if the depth is restrictée at most
n (say)?
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(a) A tangle occupying a simply con-
nected region bounded by monotone
interfaces, as discussed in open prob-
lem 4.

12345678
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(b) A greedy construction of such a
tangle: we apply alternate rows of

swaps in odd and even positions un-
til path (n) is in the rightmost po-
sition, then continue in the same way
with locationsl, ... ,n — 1.

FIGURE 19
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