
Synthetic Aperture Tracking: Tracking through Occlusions

Neel Joshi† Shai Avidan∗ Wojciech Matusik‡ David J. Kriegman†

†University of California, San Diego ∗MERL ‡Adobe Systems Inc.

Abstract

Occlusion is a significant challenge for many tracking

algorithms. Most current methods can track through tran-

sient occlusion, but cannot handle significant extended oc-

clusion when the object’s trajectory may change signifi-

cantly. We present a method to track a 3D object through

significant occlusion using multiple nearby cameras (e.g., a

camera array). When an occluder and object are at different

depths, different parts of the object are visible or occluded

in each view due to parallax. By aggregating across these

views, the method can track even when any individual cam-

era observes very little of the target object. Implementation-

wise, the methods are straightforward and build upon es-

tablished single-camera algorithms. They do not require

explicit modeling or reconstruction of the scene and enable

tracking in complex, dynamic scenes with moving cameras.

Analysis of accuracy and robustness shows that these meth-

ods are successful when upwards of 70% of the object is oc-

cluded in every camera view. To the best of our knowledge,

this system is the first capable of tracking in the presence of

such significant occlusion.

1. Introduction

Tracking an object through a video sequence is a critical

step in many computer vision applications. Tracking works

by finding a region in each video frame that matches the ap-

pearance of a given target object; however, in the presence

of occlusion this matching process is severely hampered and

often fails. In the case of single-camera tracking, if there is

significant occlusion and matching fails, the only recourse

is to detect the occlusion [1, 4] and potentially predict the

object’s position for the occluded frame [12, 9]. While this

may allow the tracker to recover from transient occlusions,

it is of little help during an extended occlusion where the

object undergoes unpredictable trajectory changes.

By using multiple cameras, one can improve tracking

performance. Previous work has handled occlusion by us-

ing multiple cameras spread over a large area to see around

objects [2, 15] with the hope that at least one camera can

detect a reliable match. However, if all cameras are signif-

icantly occluded, such as shown in Figure 1, tracking can

still fail.

In this paper, we take a different approach. Instead of re-

lying on a few of the cameras to see around an occluder our

contribution is to use all cameras in a dense multi-camera

Figure 1. Tracking through occlusion. Frames from a single cam-

era from a video sequence of a person moving behind a tree (top

row). Using our method we can track the person successfully (bot-

tom row). We track across the entire 360 frame sequence, which

includes 200 straight frames where the person is heavily occluded.

setup to see through the occluder. This setup is similar to a

“camera array” discussed in recent literature [14, 8, 23, 11],

where a collection of cameras share a common working

volume with all cameras working together as one “virtual”

camera. The difference between our setup and a typical ar-

ray is that we do not require regular spacing.

The key insight is that when observing a scene using a

dense multi-camera setup, different parts of the object to be

tracked are occluded in each camera view. We leverage this

property and aggregate data across cameras to see through

occluders. In recent literature, this property has been lever-

aged by synthetic aperture photography [14, 8, 23]. In syn-

thetic aperture photography, one aligns camera images to a

plane and averages them together to approximate a cam-

era with a very large aperture. These synthetically con-

structed images have very shallow depth of field and they

blur out occluders significantly when focused on an object.

While synthetic aperture has been used previously for see-

ing through occluders, to the best of our knowledge this is

the first time tracking has been performed using this data.

The advantages our our approach are that we can track

even when each camera observes very little of the target ob-

ject – we will show that our system can successfully track

an object when upwards of 70% of the object is occluded in

every camera view. Our method does not perform any ex-

plicit modeling of the scene, allowing it to track in complex,

dynamic scenes with moving cameras.

Figure 2. Two algorithms for Tracking Through Occlusions (TTO)

using a dense multi-camera setup. The key difference between the

methods is the relative order of aggregation and matching. The

linear method first aggregates the data and then matches, while

the non-linear method matches first to detect occlusions and then

aggregates (right).

A further advantage of our setup is that by using all cam-

eras together as a more powerful virtual camera, one can

draw upon the extensive body of single-camera tracking al-

gorithms, as opposed to using the smaller, more specialized

collection of multi-camera methods. In this paper, we show

logical extensions of eigenspace tracking [1]. We present

two methods, where the key difference between the two

is the relative ordering of matching and data aggregation

across cameras.

We have explicitly chosen not to exploit temporal coher-

ence or use a dynamics system for predicting object location

as we do not want to obscure the contribution of using our

setup for tracking through occlusion. We instead treat track-

ing as repeated detection so that it is clear that our methods

enable matching on each frame of sequences that contain

long periods of heavy occlusion.

We show results for a number of scenes filmed indoors

and outdoors with an 8-camera setup and show a compari-

son of tracking accuracy versus occlusion density and num-

ber of cameras used. In the next section, we will discuss

the previous work in this area, followed by an explanation

of our tracking algorithms and implementation specifics.

Lastly, we present results in Section 5 and a performance

analysis in Section 6.

2. Related Work

While there is a large body of literature on the problem of

object tracking from a single video camera, there is signifi-

cantly less work on the use of multi-camera setups for track-

ing and, to the best our knowledge, none that uses dense

multi-camera setups or camera-arrays.

The problem of occlusion, that is central to our work, is

addressed in several different ways. In the case of single-

camera tracking, one can treat the problem implicitly or ex-

plicitly. Implicit methods use filtering techniques such as

Kalman filtering [12] or particle filtering [9] to predict the

location of the object being occluded. Explicit methods of-

ten use a generative model that explains the video sequence

in terms of multiple layers. Jojic et al. [10] use a variational

expectation maximization algorithm to learn a mixture of

sprites from the video sequence. Zhou et al. [27] maintain

a list of foreground and background layers and computes

a Maximum a Posteriori (MAP) estimate that best explains

the observed image sequence in terms of shape, appearance,

motion and layer ordering. Smith et al. [21] use a Bayesian

framework to break an image into layers by tracking edges

between frames. The edge information, in association with

a Markov Random Field prior, gives the relative depth or-

dering of the different motion layers, thus enabling the sys-

tem to reason about occlusions. Zhao et al. [26] use the

ground plane assumption to obtain 3D information from a

single video stream that can then be used to reason about

occlusions in tracking multiple overlapping people. Okuma

et al. [18] use a detector, in tandem with the tracker to re-

cover from occlusions. Wu at al. [24] incorporate an extra

hidden process for occlusion into a dynamic Bayesian net-

work, to explain the observed image and to explicitly model

occlusions. Xiao et al. [25] use a graph cut algorithm to

model occlusions explicitly, a work that is inspired by the

approach taken by Kolmogorov et al. [13] to reason about

visibility in 3D reconstruction from multiple cameras.

Multi-camera setups solve the occlusion problem by in-

tegrating information across multiple cameras. For exam-

ple, Mittal et al. [16] presented a system to segment, detect,

and track multiple people using multiple cameras that uses

intensity information to perform single-view pixel classifi-

cation and derive 3D location. Occlusion is handled by the

construction of a likelihood map on the ground plane that

helps resolve visibility ambiguities. Fleuret et al. [3] use

images from multiple cameras to create a virtual top view

from binary motion detector blobs on which they compute

an occupancy map. It is not clear how such multi-camera

systems can be deployed in a (geometrically) complex out-

door scene (e.g., a forrest).

Another related line of research is the use of a stereo

camera for object tracking [17, 5, 20]. In this case, depth is

typically used as another channel and tracking is performed

on a 4 channel image consisting of R, G, B, and depth. This

is very different from our approach as we do not compute

depth as an intermediate step, but rather look through the

occluder whereas traditional stereo algorithms might find

it difficult to obtain useful and reliable depth estimates in

these regions. This difficulty was empirically studied by

Vaish et al. [22], who investigated match metrics for finding

stereo correspondence in the presence of occlusion. They

showed that stereo reconstruction performance falls off as

occlusion increases, with generally poor results with greater

than 50% occlusion; most of the scenes we are concerned

with have greater than 50% occlusion.

3. Tracking Through Occlusions

In this section, we present two algorithms for tracking

trough occlusions using a calibrated dense multi-camera

Algorithm 1 Linear TTO

Initialization for frame j = 0

• For the user specified 2D window on the first frame,

compute the initial disparity automatically

• For this disparity, compute the synthetic aperture im-

age, this is the first basis image in the eigenspace

• Initialize occluded flag to be unoccluded

For frames j = 1 to k

• Compute synthetic aperture images for a range of dis-

parities centered around the disparity of the previous

frame

• For each of these images, compute match scores to the

eigenspace for windows centered in the 2D search area

• Set the new position to be the location (x, y, d) with

the maximum match score

• Scale the tracker window and basis images to account

for any change in depth

• Project the new window to each camera to get N im-

ages of the target for the current frame, compute the

mean (synthetic aperture image) and variance across

these images

• If the variance is low, the object is unoccluded, there-

fore update the eigenspace with the synthetic aperture

image of the target

Figure 3. Linear TTO.

setup (we will specifically address calibration in Section 4).

The key difference between our two methods: Linear Track-

ing Through Occlusions (TTO) and Non-Linear Tracking

Through Occlusions, is the order of matching and aggrega-

tion in our pipeline, as shown in Figure 2. For both methods,

the user must mark an initial 2D window on the central cam-

era’s image, to specify the location of the object to track.

We then use a plane-sweep method similar to the method

used by Joshi et al. [11], to find the initial depth value. Start-

ing from this initial 3D location, we track the object using

an eigentracking approach – we perform matching to a lin-

ear subspace that is trained to capture the appearance of the

target object. This model is learned online [19], which is

discussed in Section 3.4. We will now describe our two

tracking algorithms in detail.

3.1. Linear Tracking Through Occlusions

Our first method operates by matching on synthetic aper-

ture images [14, 8, 23]. When one of these images is fo-

cused at the depth of a target object, any potential occluders

at a different depth will be severely defocused (blurred). If

this depth difference is significant, given the baseline of the

cameras, the occluder can be seen through.

We track the object by computing synthetic aperture im-

ages for a range of depths centered around the depth for

the previous frame. We then perform matching between the

synthetic aperture images for a number of windows centered

around the 2D location of the object in the previous frame

and pick the 3D location of the object that matches best.

Specifically, let {Ii}N
i=1 denote the set of N camera im-

ages captured at a given time instance. Let f(Ii, Pi, d) be

a warping function that aligns an image Ii to a particular

depth, d, relative to a central reference camera using the

projection matrix, Pi, for the ith camera. Then the synthetic

aperture image for a depth d is:

Id =
1

N

∑

i

f(Ii, i, d). (1)

For ũ, the template eigenspace, we define a matching func-

tion, T(I, ũ, x, y), that returns a scalar score for a fixed size

image window centered at image position (x, y) according

to how well it matches the eigenspace. See Section 3.3 for

details of the matching function.

Now, given a search range of finite 2D image positions

and depths, Ω = (x[min,max], y[min,max], d[min,max]), our

goal is to find the maximum match value, (xm, ym, dm), in

the 3D spatio-depth volume:

(xm, ym, dm) = argmax
(x,y,d)∈Ω

{T(Id, ũ, x, y)} (2)

= argmax
(x,y,d)∈Ω

{T(
1

N

∑

i

{f(Ii, i, d)}, ũ, x, y)}.

3.2. Non-Linear Tracking Through Occlusions

If we process the camera streams individually, we can

handle occlusions more directly. When matching on each

image before aggregating the data, our second method de-

tects occlusion on a per-pixel, per-camera basis by consider-

ing outliers from the eigenspace as occlusions. The advan-

tage being that we can handle very dense occlusion even

with a small number of cameras. In the limit, even if only 1

of N cameras sees a certain part of the object, the algorithm

will detect that area as a match. In contrast, the synthetic

aperture method is more likely to miss the match as the data

from the N−1 cameras that are occluded will dominate and

result in a low matching score.

Just as with the previous method, given finite range

search range, Ω, we seek to find the maximum match value

in the 3D spatio-depth volume:

(xm, ym, dm) = argmax
(x,y,d)∈Ω

{
1

N

∑

i

{f(T(Ii, ũ, x, y), i, d)}}.

(3)
Comparing equations 2 and 3 one can see that the only dif-

ference is the order of the matching operator T and the

Algorithm 2 Non-Linear TTO

Initialization for frame j = 0

• For the user specified 2D window on the first frame,

compute the initial disparity automatically

• For this disparity, project the window to each camera to

get N images of the target and construct the eigenspace

• Initialize occluded flag to be unoccluded

For frames j = 1 to k

• For each camera image, construct “score images” by

computing match scores to the eigenspace for windows

centered in the 2D search area

• Compute the mean of these score images aligned for

a range of disparities centered around the disparity of

the previous frame

• Set the new position to be the location (x, y, d) with

the maximum match score

• Scale the tracker window and basis images to account

for any change in depth

• Project the new window to each camera to get N im-

ages of the target for the current frame, compute the

variance across these images

• If the variance is low, the object is unoccluded, so up-

date the eigenspace using all N images of the target

Figure 4. Non-Linear TTO.

summation. To summarize, Linear TTO aligns images to a

depth, sums, and then matches to an eigenspace trained on

synthetic aperture images, while Non-Linear TTO, aligns

to a depth, matches to an eigenspace trained on camera im-

ages, and then sums the match costs. Each method results

with a match cost defined for a range of possible positions

(image position and disparity) and picks the position with

the best (highest) score. Refer to Figure 3 and Figure 4 for

pseudocode describing each algorithm.

3.3. Robust Matching

In tracking, we aim to find the location in a image that

minimizes the distance, in a robust way, to the eigenspace

appearance model. Our matching function, T(I, ũ, x, y),
computes a match score according to the distance from the

eigenspace. We compute this score by robustly projecting

image data to the eigenspace.

Specifically, given an image patch x (in vector form) and

eigenvectors ũ = [u1, . . . , uk], we use iterative reweighted

least squares (IRLS) and minimize:

OW (x) = ||wuλ − wx||2, (4)

where λ is the vector of coefficients resulting from pro-

jecting the data onto the eigenspace and w is a diagonal

weight matrix that is at first set to identity and is recom-

puted for each iteration to minimize the Minimax robust

norm [7]. This process down-weights outliers and thus oc-

clusions. The weight matrix is updated as follows:

wii =

{

1 |ri| < Θ
Θ
|ri|

|ri| ≧ Θ
, (5)

where r = uλ − x is the residual vector from the previous

iteration of solving the weighted least-squares problem. Θ
was set empirically to 0.05 for image data in the range [0, 1]
and 0.5 for zero-mean, unit-variance normalized image data

(normalization is discussed in the next section).

When this process terminates, we take the sum of the re-

sulting weights as the the match score. As inliers receive

a weight of 1 and outliers are down-weighted, the sum of

the weights is a robust measure of the number of inliers.

IRLS can be quite time consuming, however, we found that

when using a binary weighting, i.e., wii = 1 when |ri| < Θ
and 0 otherwise, the process can be accelerated. For Non-

Linear TTO, representing occlusion as binary is a reason-

able approximation. Thus we use binary weights for the

non-linear method as a speed optimization. Furthermore,

we use a coarse-to-fine strategy to increase the speed of the

matching algorithm.

3.4. Online Learning in Occluded Scenes

We build an eigenspace model for our object online by

adding image data for the object from tracked positions us-

ing incremental PCA [19]; we use the 16 most significant

eigenvectors as our basis. There is one shared eigenspace

updated using frames from all camera views. To limit drift

in the online learning process, we store the template from

the first frame for the central reference camera and, after

each update, we find the orthogonal component of the first

frame’s template with the updated basis and then include

this orthogonal component as an additional basis vector.

This ensures that the template for the first frame is always

in the basis [6].

To ensure that occluded pixels are outliers and therefore

down-weighted during IRLS, the object and occluder must

differ in appearance and the eigenspace should only cap-

ture the object’s appearance. Thus, when performing online

leaning, we only update the eigenspace when there is no oc-

clusion. We assume that the first frame is unoccluded so we

have at least one frame for training.

We determine whether the object is occluded by look-

ing at the per-pixel variance across camera images for a

particular frame versus that of the first frame. Since the

disparity and 2D location for the first frame are chosen to

align the target across all N cameras, the variance taken

per-pixel across cameras should be relatively low. In sub-

sequent frames, the variance can be high when the pixel

is not well aligned due to occlusion or due to tracking to

an incorrect depth. We consider any pixels with variance

less than γ (we use γ = 500, variance data is on the order

of [0, 255]2) to be well-aligned and “occlusion-free”. The

number of occlusion-free pixels is stored for the first frame.

For any subsequent frame this number is recomputed and

if it is below a percentage threshold τ (we use τ = 95%)

of the number of unoccluded pixels in the first frame, we

consider the object “occluded”.

Specifically, the per-pixel variance image for depth d is:

Vd =
1

N − 1

∑

i

(f(Ii, i, d) − Id)
2. (6)

where Id is given by equation 1. We update the occluded

flag after tracking a frame k as such:

occludedk+1 =

(

∑

∆k

{V k
d < γ} < τ

∑

∆1

{V 1
d < γ}

)

, (7)

where ∆k is the tracker window for the current frame and

∆1 and V 1
d are the first frame’s tracker window and vari-

ance image, respectively. We have found that this relatively

simple measure works quite well.

We train our eigenspace and perform matching on RGB

data. For Linear TTO, we operate on zero-mean, unit-

variance normalized image patches. The motivation be-

hind this is to correct for contrast loss that can occur due

to blurred out occluders. Consider the simple case of a

blurred black occluder in a synthetic aperture image, any

pixel occluded in even one camera view, will be averaged

with black in computing the synthetic aperture image. This

“occluder haze” causes a loss of contrast; working in a nor-

malized space counteracts this effect. This is not an issue

for Non-Linear TTO, as occlusion is more binary and there

is no blurred occluder during matching.

4. Implementation Details

Our method requires a calibrated dense multi-camera

setup where the cameras share a common working volume.

There are no particular constraints on layout, i.e., camera

positions can be arranged with 1D, 2D, or 3D layouts, spac-

ing can be regular or irregular, and the setup can move as

long as the cameras remained fixed relative to each other.

For the examples in this paper, we use a horizontal linear ar-

rangement of 8 640x480 pixels (Bayer pattern) Basler cam-

eras mounted with 3 inch spacing, as shown in Figure 5.

Figure 5. Our array of 8 VGA resolution video cameras.

Figure 6. Person behind a wooden plank. Here we show two

frames from a video sequence several seconds apart. From a single

camera view (top row), the person is completely occluded. How-

ever, with synthetic aperture (bottom row), the plank blurs out and

we can track him.

We geometrically calibrate our cameras (both extrinsics

and intrinsics) using bundle adjustment after capturing cor-

responding points by tracking an LED. We choose a cen-

tral camera as the reference camera and align relative to

this camera. We perform basic color calibration by plac-

ing a Macbeth color checker in the scene so it is viewable

by all cameras and then compute a color transform for each

camera to match its image of the color checker to that of

the central reference camera. We also perform vignetting

calibration by imaging a constant intensity light-panel and

computing per-pixel multipliers for each camera image to

correct for falloff across the image plane.

The time complexity of our method is no worse than

eigenspace methods on a per-camera basis. With our cur-

rent system there is an additional time penalty as we process

each video stream serially on a single CPU. Disk, memory

I/O, and bus bandwidth limitations can add additional over-

head. It would be a relatively straightforward extension to

parallelize the processing of video streams using a multi-

core CPU or a small cluster of PCs. Currently, tracking

using RGB data from 8 cameras at 320 × 240 resolution

with a 50 × 50 pixel target runs at 0.2 FPS using the linear

method.

5. Results

In this section, we present results using our two

algorithms. For each result we show two frames

from significantly longer video clips. The reader

is encouraged to view these clips and additional

sequences online at http://vision.ucsd.edu/kriegman-

grp/research/synthetic ap tracking/.

In Figure 6, we show frames from results using Linear

TTO for a relative simple 200 frame sequence of a person

walking behind a wooden plank. Tracking the person in this

Figure 7. Tracking a person in a crowd. The person in a single

camera is significantly occluded by different people in the group

(top row). Using Non-Linear TTO we can track the person suc-

cessfully (bottom row).

scene is impossible without the additional camera data, as

from the single camera view, shown in the figure, the person

is completely occluded. However, with synthetic aperture

the plank blurs out and we can track the person.

In Figure 1, we show results using Non-Linear TTO on a

360 frame sequence of a person walking behind a tree out-

doors. Of interest is that the view of the person in a single

camera is significantly occluded by the tree, yet we are able

to successfully track across the whole sequence. In addi-

tion, we panned the camera setup across the scene to keep

the person in the field of view. This panning does not dis-

rupt our algorithm even though it causes the background

and occluders to change drastically from frame to frame. In

our video available online, we show results for another tree

sequence using both our methods. We further show that we

can track this sequence using only 4 of 8 cameras using our

second method, and we can track at both 320 × 240 and

160 × 120 resolution. In Figure 7, we show results using

Non-Linear TTO for 100 frame sequence of a person walk-

ing in a plaza with several other people walking in front.

In Figure 8, we show results from Non-Linear TTO on a

90 frame sequence of a person moving as he waves a stuffed

animal around in front of him. We track multiple objects by

running our tracker independently for each object.

In Figure 9, we show results for a 200 frame sequence of

dynamic random dot videograms with random dot occlud-

ers. This sequence was created from a planar square with

a random dot pattern that was placed in front of a planar

dynamic random dot background and behind a planar, 70%
dense random dot occluder. Each object was warped appro-

priately according to the projection matrices for 8 virtual

cameras in a linear arrangement according to the 3D loca-

tion of the background, square, and occluder. We picked

depths for the objects so that they would be similar to the

real-world scenes we filmed. The occluder was effectively a

Figure 8. Tracking two objects. The person is occluded by the

stuffed animal (top row). We track the person (middle row) and

the occluder (bottom row) using Non-Linear TTO. Note that both

the 2D position of the objects and relative depth have changed – in

the second frame the person has moved the stuffed animal closer

to his face.

couple meters from the cameras, the background was many

meters away, and the square moved between these two. The

occluder and background have a dynamic appearance and

static locations. The square has a static appearance but

moves in a spiral-like path away from the cameras. The

results for this sequence were generated using Linear TTO.

One interesting aspect of this sequence, in contrast with the

previous sequences, is that tracking the object in one view

would be quite difficult even for a human observer; how-

ever, our tracker successfully tracks the whole sequence.

6. Performance Evaluation

To analyze the performance of our two algorithms as

a function of occlusion density and number of cameras,

we constructed several datasets with synthetic occluders

of varying density. We first tracked an unoccluded multi-

camera sequence of a person walking around an office room

to get “groundtruth” results and then used view interpola-

tion to synthetically produce 20 virtual camera streams. We

combined these data streams with randomly generated syn-

thetic planar occluders translated appropriately according to

their fixed depth – about a meter from the virtual cameras.

Using this process, we created datasets similar to that in

Figure 1 except with a regular synthetic leaf-like occluder at

three different densities: 50%, 70%, and 90%. We then ran

our methods using subsets of sizes [2, 4, 6, 8, 12, 16, 20] of

Figure 9. Random dot videograms with random dot occluders. The

background and 70% dense random dot occluder have dynamic

texture. A small (statically) textured square moves between them.

The view from a single virtual camera several seconds apart (top

row). The tracked locations using Linear TTO (bottom row). The

tracked locations are within 1% of groundtruth.

the 20 cameras. The cameras were selected by always using

the right and left-most cameras, to ensure the baseline was

fixed across trials, and equally spacing the cameras selected

between the two extreme positions. Figure 10 shows results

for these data sets. In these plots, we show the percentage

of a 180 frame sequence that was correctly tracked. Our re-

sults show that the ability to track with synthetic aperture is

highly dependent on the number of cameras and at higher-

levels of occlusion the method performs quite poorly with

a small number of cameras. Note, however, that at 70%
occlusion we still track 100% of the frames with only 8

cameras. The results for Non-Linear TTO shows that this

method is much more robust with smaller numbers of cam-

eras, and it tracks 100% of the frames with only 2 cameras

for 50% and 70% occlusion.

7. Discussion and Future Work

We showed how to track objects in the presence of sig-

nificant occlusion using Linear and Non-Linear TTO. The

linear method is very efficient, as the time consuming op-

eration of matching is performed on a single video stream.

The main advantage of the non-linear method is that it can

handle very dense occlusion, even with a small number of

cameras, at the cost of increasing the number of matching

operations linearly in the number of cameras. Having an-

alyzed the performance of the two methods, we conclude

that when there is significant occlusion and a large number

of cameras at one’s disposal, Linear TTO is preferred due

to its speed. When fewer cameras are available, Non-Linear

TTO is preferred.

An interesting benefit of our work is its scalability –

one could imagine building improved multi-camera sys-

tems, such as room-sized tracking systems [2, 15] where

each camera is itself a synthetic aperture tracking camera.

Our methods are robust and handle a wide variety of situ-

ations; however, some limitations remain. We cannot track

the object if the cameras’ baseline is not large enough to

“see around” an occluder given its depth, width, and the

distance from it to the object. Also, when the object is too

close to the occluder or the occluder is too wide relative to

the baseline our methods could fail.

As shown in Section 6, the density of the occluder af-

fects the number of cameras needed, and, as a general rule,

more cameras are needed as occlusion density increases.

We showed that our linear method can track in 70% occlu-

sion with 8 or more cameras, while our non-linear method

can track with 70% occlusion with even 2 cameras. These

methods cover a large range and can track as long as there

is enough appearance difference between occluder, object,

and background. In the case of ambiguous appearance, e.g.,

a scene with similarly colored and textured objects, our

methods can fail.

Another limitation of our current algorithm is that we do

not update the eigenspace in the presence of occlusion. As

a result, if significant appearance changes occur when the

object is occluded, the tracker will drift. We do not update

the model in this case to avoid errantly adding the occluder

to the model; however, for the non-linear method, as we do

have a mask for the occluder, we could, in principle, up-

date the model using only the unoccluded pixels. However,

since the mask is likely to have some errors, performing this

update is not trivial. This is something we are investigating.

Another extension to our work is to improve our track-

ing results by using more sophisticated tracking methods

including dynamics models and sampling techniques. We

believe that a strength of this work is that simple methods

can be very powerful even without models; nevertheless, we

have no doubt that our results could be improved by adapt-

ing more sophisticated tracking algorithms.

Lastly, we think there are many interesting situations left

to be explored using multi-camera systems, such as track-

ing in inclement weather or tracking objects behind glass

windows with strong reflections; we are very interested in

exploring these scenarios.

8. Acknowledgements

We would like to thank the anonymous reviewers for

their comments. We are very grateful to the willing stu-

dents who appeared in our videos. This work was partially

completed while the first author was an intern at MERL; he

was additionally funded by NSF grant DGE-0333451.

References

[1] M. J. Black and A. D. Jepson. Eigentracking: Robust match-

ing and tracking of articulated objects using a view-based

representation. In ECCV (1), pages 329–342, 1996.

0 5 10 15 20
0

20

40

60

80

100

number of cameras

%
 t
o
ta

l
fr

a
m

e
s
 t
ra

c
k
e
d

Performance with Linear TTO

50% occlusion

70% occlusion

90% occlusion

0 5 10 15 20
0

20

40

60

80

100

number of cameras

%
 t
o
ta

l
fr

a
m

e
s
 t
ra

c
k
e
d

Performance with Non−Linear TTO

50% occlusion

70% occlusion

90% occlusion

Figure 10. Tracking robustness as a function of occlusion and number of cameras. Linear TTO (left). Non-Linear TTO (right).

[2] Q. Cai and J. Aggarwal. Tracking human motion using mul-

tiple cameras. In Proc. of Intl. Conf. on Pattern Recognition,

1996.

[3] F. Fleuret, R. Lengagne, and P. Fua. Fixed point probabil-

ity field for complex occlusion handling. In IEEE Interna-

tional Conference on Computer Vision (ICCV), pages 694–

700, 2005.

[4] G. D. Hager and P. N. Belhumeur. Efficient region tracking

with parametric models of geometry and illumination. IEEE

Trans. Pattern Anal. Mach. Intell., 20(10):1025–1039, 1998.

[5] M. Harville, A. Rahimi, T. Darrell, G. G. Gordon, and

J. Woodfill. 3d pose tracking with linear depth and bright-

ness constraints. In ICCV, pages 206–213, 1999.

[6] J. Ho, K.-C. Lee, M.-H. Yang, and D. Kriegman. Visual

tracking using learned linear subspaces. cvpr, 01:782–789,

2004.

[7] P. J. Huber. Robust Statistics. John Wiley and Sons, New

York, 1981.

[8] A. Isaksen, L. McMillan, and S. J. Gortler. Dynamically

reparameterized light fields. In Proceedings of the 27th an-

nual conference on Computer graphics and interactive tech-

niques, pages 297–306. ACM Press/Addison-Wesley Pub-

lishing Co., 2000.

[9] M. Isard and A. Blake. Condensation – conditional den-

sity propagation for visual tracking. International Journal

of Computer Vision, 29(1):5–28, 1998.

[10] N. Jojic and B. J. Frey. Learning flexible sprites in video

layers. In Proc. of Intl. Conf. on Computer Vision and Pattern

Recognition, volume 1, pages 199–206, 2001.

[11] N. Joshi, W. Matusik, and S. Avidan. Natural Video Mat-

ting using Camera Arrays. ACM Transactions on Graphics,

25(3), July 2006.

[12] R. E. Kalman. A new approach to linear filtering and predic-

tion problems. Transactions of the ASME - Journal of Basic

Engineering, 82:35–45, 1960.

[13] V. Kolmogorov and R. Zabih. Multi-camera scene recon-

struction via graph cuts. In ECCV ’02: Proceedings of the

7th European Conference on Computer Vision-Part III, pages

82–96, London, UK, 2002. Springer-Verlag.

[14] M. Levoy and P. Hanrahan. Light field rendering. In Com-

puter Graphics, SIGGRAPH 96 Proceedings, pages 31–42,

New Orleans, LS, Aug. 1996.

[15] A. Mittal and L. Davis. Unified multi-camera detection and

tracking using region matching. 2001.

[16] A. Mittal and L. Davis. M2tracker: A multi-view approach

to segmenting and tracking people in a cluttered scene. Inter-

national Journal of Computer Vision, 51(3):189–203, 2003.

[17] L.-P. Morency, A. Rahimi, N. Checka, and T. Darrell.

Fast stereo-based head tracking for interactive environments.

Face and Gesture Recognition, 00:0390, 2002.

[18] K. Okuma, A. Taleghani, N. de Freitas, J. Little, and

D. Lowe. A boosted particle filter: Multitarget detection

and tracking. In European Conference on Computer Vision,

pages 28–39, 2004.

[19] D. A. Ross, J. Lim, and M.-H. Yang. Adaptive probabilistic

visual tracking with incremental subspace update. In T. Pa-

jdla and J. Matas, editors, Proc. Eighth European Conference

on Computer Vision (ECCV 2004), volume 2, pages 470–

482. Springer, 2004.

[20] D. B. Russakoff and M. Herman. Head tracking using stereo.

Mach. Vision Appl., 13(3):164–173, 2002.

[21] P. Smith, T. Drummond, and R. Cipolla. Layered motion

segmentation and depth ordering by tracking edges. IEEE

Trans. Pattern Anal. Mach. Intell., 26(4):479–494, 2004.

[22] V. Vaish, M. Levoy, R. Szeliski, C. L. Zitnick, and S. B.

Kang. Reconstructing occluded surfaces using synthetic

apertures: Stereo, focus and robust measures. In CVPR 06,

pages 2331–2338, 2006.

[23] V. Vaish, B. Wilburn, N. Joshi, and M. Levoy. Using plane +

parallax for calibrating dense camera arrays. In Proceedings

of CVPR04, 2004.

[24] Y. Wu, T. Yu, and G. Hua. Tracking appearances with occlu-

sions. In Proc. of Intl. Conf. on Computer Vision and Pattern

Recognition, volume 1, pages 789–795, 2003.

[25] J. Xiao and F.-M. Shah. Motion layer extraction in the pres-

ence of occlusion using graph cuts. IEEE Trans. Pattern

Anal. Mach. Intell., 27(10):1644–1659, 2005.

[26] T. Zhao and R. Nevatia. Tracking multiple humans in com-

plex situations. IEEE Trans. Pattern Anal. Mach. Intell.,

26(9):1208–1221, 2004.

[27] Y. Zhou and H. Tao. A background layer model for object

tracking through occlusion. In ICCV ’03: Proceedings of the

Ninth IEEE International Conference on Computer Vision,

page 1079, Washington, DC, USA, 2003. IEEE Computer

Society.

