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I. 

Abstract 

Image texture is useful for segmentation and for computing surface orientations of uniformly tex- 
tured objects. If texture is ignored, it can cause failure for stereo and gray-scale segmentation algo- 
rithms. In the past, mathematical representations of image texture have been applied to only specific 
texture problems, and no consideration has been given to the models' generality across different com- 
puter vision tasks and different image phenomena. We advocate. the space/frequency representation, 
which shows the local spatial frequency content of every point in the image. From several different 
methods of computing the representation, we pick the spectrogram. The spectrogram elucidates many 
disparate image phenomena including texture boundaries, texture in perspective, aliasing, zoom, and 
blur. 

Many past shape-from-texture algorithms require potentially unreliable feature detection and 
"magic numbers" (arbitrary parameters), and none of them were developed in the context of a more 
general texture-understanding system. Toward this end, we show that the spatial frequency shifts 
caused by perspective can be approximated by an &ne transformation which is a function of the tex- 
tured surface's surface normal. We use this relationship in three different shape-from-texture algo- 
rithms. TWO of them require no feature-finding and work on the raw spectrogram, giving a high-level 
scene parameter directly from low-level image data. The first algorithm includes an analytical sensi- 
tivity analysis. The third algorithm works with just the peak frequencies and gives a fast way of com- 
puting local surface normals from periodic texture. The algorithms need only a few magic numbers. 
On real textures, the average error in computed surface normal is only about four degrees. 

We use the third algorithm to solve a long-standing problem in image texture analysis: segment- 
ing images of textured, 3D surfaces. Past work in texture segmentation and shape-from-texture is 
based on assumptions that make this problem impossible to solve. 3D perspective effects warp the 
otherwise uniform textures so segmentation fails. We develop a region-growing algorithm that 

accounts for the surface normals by unwarping the frequency distribution. It uses a minimum descrip- 
tion length merge criterion. Our algorithm successfully segments images of real texture. We conclude 
by showing how the spacelfrequency representation has the potential for unifying several different 
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Chapter 1 Analyzing Image Texture 

1.1 The Theses of This Thesis 

Automatic recognition and understanding of image texture is critical for machine understanding 
of general images. Almost every scene, either natural or man-made, contains some texture. Texture 
analysis is important because it can tell us many things about the scene. If an object is uniformly tex- 
tured, then the object’s surface normals can be computed from the perspective distortion of the texture 
in the image (shape-from-texture). Regions with similar texture are likely from the same object -- a 
good clue for image segmentation. Understanding texture is also important because texture can con- 
found algorithms that do not account for it. For instance, segmentation algorithms are usually based 
on an assumption of smoothly varying gray levels, which is not true for texture. Stereo matching 
often fails on repetitive texture. Thus, to avoid errors with other algorithms and to exploit what we 
can from texture, we need to recognize and understand it in images. 

This thesis presents algorithms for analyzing images of textured objects based on the spacelfre- 
quency representation. This representation shows an image’s local spatial frequency characteristics at 
every pixel. Since texture is a phenomenon of repeated patterns, its spatial frequency distribution is 
an effective way to understand it. 
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Analyzing Image Texture 

Our major algorithmic results are programs for shape-from-texture and for the segmentation of 
textured, 3D surfaces. All use the spacdfrequency representation, and the segmentation program uses 
one of the shape-from-texture algorithms as a subroutine. Although there have been algorithms devel- 
oped previously to perform each of these tasks separately, we are the first to solve them simulta- 
neously by doing segmentation and shape analysis in the same image. This attests to the power and 
versatility of the space/frequency representation. 

The theses of this thesis are: 

1. 

2. 

3. 

4. 

The spacdfrequency representation is an effective method of analyzing texture in 
images. It is a natural way to reason about texture, and it makes many phenomena 
obvious and understandable. 

Although there are many ways to compute the space/frequency representation, the 
spectrogram is best for understanding many phenomena as well as doing shape- 
from-texture and segmentation. 

The spacdfrequency representation is a natural one for shape-from-texture. The 
resulting algorithms are simple, accurate, and do not require feature-finding or 
many “magic numbers.” 

Shape-from-texture and texture segmentation are not separate problems, but must 
be solved simultaneously in order to understand texture as it occurs in the real 
world. The spacdfrequency representation can be used to solve both problems in a 
relatively simple manner by explicitly accounting for shape effects. 

The next section of this chapter discusses various texture models that have been used for image 
texture analysis and explains the advantages of the spacdfrequency representation. We then present 
several different images of textured objects showing various effects like shape, aliasing and blur. We 
show how the spectrogram (one version of the space/frequency representation) makes these phenom- 
ena clear and how it can be used to understand them. 

Chapter 2 illustrates some important issues in computing the space/frequency representation. We 
need to understand this tool before using it for fixing computer vision problems. It is impossible to do 
a perfect job of computing the representation, especially when faced with the nonstationarities in 
most images. We explain some of the inherent trade-offs we must contend with. After analyzing the 
representation, we survey several different methods for computing the representation and explain 
why we chose the spectrogram. 

In Chapter 3 we develop three different shape-from-texture algorithms based on the spectrogram. 
The algorithms exploit depth-induced, local spatial frequency shifts to find surface normals. We get 
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accurate results on both periodic and irregular textures. The algorithms require no strong assumptions 
about the textures and do not use many “magic numbers” to guide them toward the solution. 

Chapter 4 uses one of the shape-from-texture algorithms as part of a texture segmentation algo- 
rithm. By explicitly accounting for shape, we can successfully segment images of textured 3D sur- 
faces. 

We summarize the thesis and present future research directions in Chapter 5. 

1.2 Models of Image Texture .__ 

A texture model is a transformation (and normally a compression) of an image texture into a set of 
quantities that describe the texture. Usually the image data itself is inadequate for this task, because it 
is incoherent in its raw form. A texture always varies quickly in gray level, and a good texture model 
gives a description of this variation. A simple example is a sinusoidal texture: instead of simply list- 
ing the raw intensity values, it makes sense to describe it in terms of its amplitude, frequency, phase, 
and constant offset. 

We must chose a texture model before we can analyze image texture. The left column of Table 1 
lists some frequently used texture models in computer vision. The next column gives the reference to 
the first significant use of the model for image texture. These are papers that show how the particular 
model can be used to concisely express certain features of the texture or to generate realistic looking 
textures. There are also texture surveys in the literatUre[35][112][10~]. 

There are three primary problems in computer vision that can be solved using texture models: tex- 
ture classification, texture segmentation, and shape-from-texture. Brief definitions of these problems 
are: 

Classification: Assign a texture image (or part of a texture image) to one of a finite 
number of previously defined texture classes. 

Segmentation: Group together the pixels in the image that have the same texture. The 
number and type of textures are not known in advance. 

Shape from Texture: Given an image region covering a uniformly textured, 3D sur- 
face. find the surface normals of the surface. 

A cross product of texture models and texture problems gives the matrix of Table 1. The elements 
of this matrix are citations of significant, early use of the model for the particular problem. For each 
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Classification 

Haralick et a/. 
1973 1341 

Galloway 1975 

Chellappa 8 
Chalterjee 1985 

Kaneko and 
Yodogawa 1982 
1521 

[301 

11 41 

Representation 
first-order 
statistics 
cooccurrence 
matrices 

Segmentation 
Muerle and Ailen 
1968 [74] 
Holyer 8 
Peckinpaugh 
1989 [41] 

Cohen & Cooper 
1987 I201 

run length 
matrices 
autocorrelation 

Mark& random 
fields 

fractal Brownian 
surfaces 
random mosaics 

Wold 
decomposition 
low-level features 

high-level features 

local frequency 
filters 

Modeling 

Krueger 1988 1551 

Hassner 8 
Sklansky 1980 

Mandslbrot 1977 
1371 

[e91 
Schachter et a/. 
1978 [93] 

1993 1281 
Francas et a/. 

Rosenfeld 8 
Lipkin 1970 [90] 
Bajcsy 1973 141 

Thurston 1971 

Shape 

Brown 8 
Shvaytser 1990 
I111 ~. 

Patel & Cohen 
1992 [82] 

Pentland 1984 
k331 . .  

Witkin 1981 [I151 

Kender 1979 [53] 

Jau 8 Chin 1990 
1 6 1  

Table 1: Texture models and significant, early applications to texture 
problems in computer vision. 

entry, there are usually several other related works that could be cited as well. Not all models have 
been used for all the problems, because not all the models are expressive enough, We note that the 
local frequency filter model that we advocate has been used for modeling, classification, segmenta- 
tion, and shape, indicating that it is indeed very expressive. The next several subsections give brief 
descriptions of the models in Table 1 along with their applications. We summarize and compare the 
models at the end. This dissertation advocates the spacdfrequency representation for modeling tex- 
ture. 

1.2.1 First-Order Statistics 

First-order statistics are quantities like mean, variance, and skew. Some textures can be distin- 
guished by these numbers. Muerle and Allen[74] compare histograms (sample probability distribu- 
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tionsj from small sections of the image for segmentation by region growing. Although this model is 
appropriate for distinguishing most textures, some textures could have identical first-order statistics 
and still appear to be quite different. For instance, a sinusoidal image texture will have the same 
mean, variance, and histogram regardless of its frequency. This is because the model does not account 
for the spatial pattern of the texture. This deficiency also means the model is inadequate for exploiting 
the spatial distortions necessary for doing shape-from-texture. It is also sensitive to lighting varia- 
tions, which is a disadvantage. 

1.2.2 Cooccurrence Matrices 

This is also called the “gray tone spatial dependence” approach[35], and it was first popularized 
by Haralick et al. in 1973[34]. The cooccurrence matrices are a sort of histogram telling how often 
each possible pair of gray levels occur in a given spatial relationship. The spatial relationships 
between pairs of pixels are parametrized by d and 0, where d is the separation in pixels and 0 is the 
angle between the pixels. There is one cooccurrence matrix for each ( d ,  0) pair. In practice, the pos- 
sible spatial relationships are limited by the grid structure of the image pixels. If the number of possi- 
ble gray levels in the image is N g ,  then the cooccurrence matrices have dimensions Ng x N p .  The 
matrices are given by P(i ,  j ; d ,  e ) ,  where i and j represent the two gray levels. Each entry tells how 
many times gray levels i and j occurred at (d ,  0) with respect to each other. 

The matrices are computed over a given region in an image for a given set of (d, 8) pairs. From 
each matrix, certain scalar features are computed. For instance, the “angular second-moment” is the 
sum of the squares of the matrix elements. This will be high for images with a few, dominant gray 
level transitions. Other features are “contrast,” and “correlation.” Haralick et a1.[34] describe 14 dif- 
ferent features that can be computed from the cooccurrence matrices. They go on to use these features 
for texture classification. 

Cooccurrence matrices and their associated features have proven to be powerful texture descrip- 
tors, and are still being used frequently for texture classification and more recently for texture edge 
detection by Holyer and Peckinpaugh[41]. New work is concentrating on deriving better features 
from the matrices. Although cmcurrence matrices do account for the spatial pattern of the texture 
(as opposed to first-order statistics), they have not been used for shape-from-texture. 

1.2.3 Gray Level Run Length Matrices 

Gray level run length matrices (GLRLMs) are similar to cooccurrence matrices in that the matri- 
ces are computed from the image data and then scalar descriptors are computed from the matrices. 
The GLRLM is a histogram of the gray level and length of linear runs of pixels of equal gray level in 
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a given direction. There is one GLRLM for each direction (usually B = 0”, 45”, go”, or 135’). and 
each GLRLM is N g  x N g .  The matrix element P(i, j ; 9 )  gives the number of run lengths of gray level 
i of length j in direction 9. Galloway[30] defines five scalar features based on these matrices with 
names like “short runs emphasis,” and “gray level nonuniformity.” She uses these features for texture 
classification. Like cooccurrence matrices, GLRLMs do not lend themselves to 3D texture analysis. 

1.2.4 Autocorrelation 

The autocorrelation function of an image texture measures the correlation between the texture’s 
gray levels as a function of their relative positions. For a continuous image function flx, y ) ,  the auto- 
correlation is 

where * means complex conjugate. The autocomelation of a real function (the only kind we deal with) 
is real and symmetric. If the texture is random, then A(x, y )  is usually a unimodal function. The auto- 
correlation functions of random rough textures drop off more quickly than those of random smooth 
textures. Periodic textures have periodic autocorrelations. A(x, y )  and the power spectrum are Fourier 
transforms of each other, so there is a theoretical link between the autocorrelation model and the fre- 
quency filter model. 

Krueger[55] describes how to use various autocorrelation functions of surface height to generate 
realistic-looking random textures for computer graphics. Chellappa and Chatterjee[ 141 used estimates 
of the autocorrelation function over 21x21 pixel windows for texture classification. Brown and 
Shvaytser[ll] use the autocorrelation function for shape-from-texture. They assume the frontal tex- 
ture has a circularly symmetric autocorrelation, and they compute slant and tilt based on the devia- 
tions from this symmetry. 

Our shape-from-texture and segmentation algorithms both use local power spectra, which are just 
Fourier transforms of local autocorrelations. The Fourier domain is better because it lets us easily 
express such effects as aliasing and blur that would be harder to formulate with the autocorrelation. 

1.2.5 Markov Random Fields 

The Markov random field (MRF) model says that the probability density function governing a 
pixel’s intensity is a function only of that pixel’s neighbors. A Gaussian MRF models each pixel 
intensity as a linear combination of the intensities in the neighborhood plus zero-mean, Gaussian 
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noise. A first order MRF model defines the pixel's neighborhood as the four-connected neighbors. A 
second order model uses the eight-connected neighbors. The order of the model can be arbitrarily 
high, but real implementations are usually no higher than fourth-order, which involves a surrounding 
neighborhood of 20 pixels. 

Some of the first work in using the MRF model for image texture was in generating textures based 
on the model. Hassner and Sklansky[37] generated binary textures using first-order, binary MRF's, 
and Chellappa[l3] reproduced some textures from the Brodatz[lO] album by fitting fourth-order and 
eighth-order models. Kaneko and Yodogawa[X?] fit Gaussian MRF models to various textures and 
use the parameters in a distance measure for texture classification. Cohen and Cooper[20] give a 
detailed account of an algorithm for segmenting images based on MRF models. The MRF model 
allows them to apply the algorithmic tools of maximum likelihood to the segmentation, resulting in 
very accurate region boundaries. In their shape-from-texture work, Pate1 and Cohen[82] use a Gauss- 
ian MRF model for texture. They first find a frontal texture by looking at a pair of windowed regions. 
They compute surface normals by finding the surface orientation most consistent with the deforma- 
tion this frontal texture. This MRF is a popular texture model, and several other researchers are 
exploiting it. 

1.2.6 Fractal Brownian Surfaces 

A fractal Brownian surface z = f ( x ,  y )  has Gaussian distributed increments 
f ( x 2 ,  y2) -f(x,, y l )  with variance proportional to a power of the Euclidean distance separating the 
two planar points[l09]. That is 

H controls the roughness of the surface. This is the model that Mandelbrot used to produce realistic 
looking mountainscapes[69]. He and others have shown how fractals can model many different natu- 
ral phenomena. Pentland[83] argues that most natural surfaces follow a fractal model not only in their 
height distribution but also in their surface normals. From this he concludes that these natural fractal 
surfaces produce fractal intensity images (assuming Lambertian reflection and constant albedo), He 
goes on to develop an algorithm using this model that does shape-from-texture and shape-from-shad- 
ing simultaneously. 

1.2.7 Random Mosaics 

A random mosaic is an image that has been randomly divided into regions, each with a randomly 
assigned gray level. Schachter et aL[93] review some random mosaic models, including 
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Occupancy Model: A Poisson process puts points on the image, and the region bound- 
aries are given by the Voronoi diagram. 

Poisson Line Model: Boundary lines of the form xcose + ysine = p are randomly 
chosen from the space (p, 9) by a Poisson process. 

Rotated Checkerboard Model An (x, y) origin and orientation are randomly chosen, 
and the image is divided into a grid of square cells of a given dimension along 
these axes. 

Bombing Model: Points are put onto the image like the occupancy model, and each 
point serves as the center of a predefined shape (e.g. a circle of a given radius). 
This divides the image into a foreground and background. 

The Poisson line model and the rotated checkerboard model are amenable to statistical analysis, 
and Schachter et al. fit theses models to actual texture images. Certain mosaic models are appropriate 
for certain kinds of texture, but none of their models appear general enough for a wide class of tex- 
tures. We have not seen any classification, segmentation, or shape algorithms based on these models. 

1.2.8 Wold Decomposition 

The Wold decomposition expresses a signal as the sum of a random and deterministic part. In the 
context of texture modeling, Francos er a1.[28] model textures as the sum of a deterministic periodic 
component, an evanescent component, and a purely random component. The periodic component is 
extracted from the peaks of the Fourier transform of the texture, and the evanescent component comes 
from extended, straight ridges in the Fourier transform. The remaining texture is modeled as an 
autoregressive process. They successfully reconstruct a variety of textures based on this model. Since 
the idea is new, there have not been applications to classification, segmentation, or shape, although 
the model’s generality is attractive for these tasks. 

1.2.9 Low-Level Features 

By “low-level features” we mean easily-detectable, simple image features like edges. Even 
though most textures are not made up of tiny line segments, the density, dimtion, or size of the edges 
found by an edge detector may vary depending on the type of texture or its surface orientation. Rosen- 
feld and Thurston[91] show how to find texture boundaries based on edge density. Witkin[l15] uses 
simple edges in his shape-from-texture algorithm. He detects edges as the zero-crossings after com- 
puting V2G of the image. The slant of the surface causes a nonuniform distribution of edge direc- 
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tions, and he finds the surface normal that best accounts for this deviation. Edges are really just local, 
high-frequency effects, so these methods are related to the local frequency filter model. 

1.2.10 High-Level Features 

High-level features are discrete texture elements like line segments, circles, and polygons. Some 
textures can be thought of as a feature along with a placement rule for copies of that feature. Rosen- 
feld and Lipkin[W] discuss several different placement rules, both deterministic and probabilistic. 
Using a set of region-splitting heuristics based on the moments, areas, and perimeters of texture-ele- 
ments, Tsuji and Tomita[ 1051 describe how they segmented images of textures with discrete texture 
elements. For shape-from-texture, Kender[53] defines the “normalized textural property map.” This 
idea applies to a variety of texture-element features such as orientation, length, interior angles, area, 
and density. The maps allow him to constrain the possible surface orientations of a textured plane 
based on assumptions about the unprojected texture elements. 

This high-level-feature model applies only to textures made of discrete elements that are large 
enough to be detected. Detecting these features in an image is difficult. Blake and Marinos said in 
1990: 

Our greatest practical problems arise from isolating independent ori- 
ented [texture] elements from an image.[7] 

And Aloimonos said in 1988: 

There is no known algorithm that can successfully detect texels from a 
natural image.[2] 

1.2.11 Local Frequency Filters 

These models consider texture as a spatial frequency phenomenon, and they treat the image data 
in a few or many frequency bands. Bajcsy[4] defines several different features for describing textures 
based on windowed power spectra of an image texture, Using six features based on the power spectra 
taken from 32 x 32 pixel windows, Gramenopoulos[33] classified eight different kinds of terrain 
from aerial photographs. Triendl[lO3] segmented aerial terrain images using filtered and smoothed 
images that corresponded roughly to “brightness” (low spatial frequencies) and “roughness” (high 
spatial frequencies). Even though some textures can be discriminated in the frequency domain, Julesz 
and Caelli[48] show that humans can discriminate some textures with identical Fourier power spectra. 
Jau and Chin[45] used the Wigner distribution to do shape-from-texture by exploiting the frequency 
shifts caused by 3D effects. 
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1.2.12 Summary of Models 

The best possible model of image texture would apply to all kinds of texture and work effectively 
for all three texture problems. It would be versatile enough to account for the inevitable annoyances 
of scale change, noise, blur, and aliasing. At their current state of development, none of these models 
can do all these things, but some come closer than others. 

First-order statistics apply to any texture. Since they are independent of the spatial pattern of the 
texture, they are independent of scale and aliasing. This also means they are insensitive to the tex- 
tured surface’s surface normal, and thus cannot be used for shape-from-texture. Several very differ- 
ent-looking textures can have the same first-order statistics, meaning that this model’s discriminatory 
power is low. The mean and variance of the texture’s gray levels can be altered arbitrarily with an off- 
set and scaling. This is a case of “model aliasing,” a term introduced by Shafer[94]. It means that the 
model is not expressive enough to make the distinctions that are important, mapping different states 
(image textures) to the same model. 

Cooccurrence matrices and run length matrices remedy one of the problems with first-order statis- 
tics: they are second-order statistics that account for the spatial pattern of the texture. The heuristic 
features based on these matrices work very well for classification, meaning that they are expressive 
enough to describe a variety of textures. For run length matrices, Loh et al.[63] show how to factor 
out effects of variations in scene depth (scale), 2D rotation, and 3D slant angles (with a previously 
known tilt angle). We have not found any work using either of these matrices for shape-from-texture, 
probably because they have no clear relationship to 3D shape. 

The implementations using autocorrelation, Markov random fields, and fractal Brownian surfaces 
all use specific models of the textures’ second-order statistics. They naturally allow considerations for 
noise, The fractal model is probably the most restrictive, in that it has been applied only to random, 
crinkly surfaces. Markov random fields can model a wide variety of textures, from random to periodic 
and in between. The segmentation results using this model are impressive. We have found only one 
reference[82] to its application to the shape-from-texture problem, and this seems like a promising 
research area. In their work using autocorrelation for classification and shape, respectively, Chellappa 
and Chatterjee[ 141 and Brown and Shvaytser[ll] assume special forms for the autocorrelation. Tom- 
ita and Tsuji[lO2] point out that the power spectrum, autocorrelation, and autoregressive (Markov 
random field) models can all be derived from each other. They also point out the interrelationships 
between these and cooccurrence matrices and the Fourier transform. 
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Both the random mosaic and high-level feature models of texture apply only to a restricted class 
of textures. They operate at a high level, and therefore cannot account for low-level phenomena like 
noise, aliasing, and blur. 

The low-level feature model is like a thresholded version of the local frequency model. Points 
with enough high-frequency energy are marked as edge features. This nonlinear step makes it difficult 
to account for noise, aliasing, and blur. 

We note that there are other simple texture models. Several of these were considered by Tamura el 
aL[100] in 1978. They gave them the names coarseness, contrast, directionality, line-likeness, regu- 
larity, and roughness. These early attempts at texture analysis were largely heuristic, with no consid- 
erations or expectations for versatility. 

We think the local frequency model is, on whole, the best texture model. It has been used for clas- 
sification, segmentation, and shape. Since it is grounded in signal processing, it comes with deep, 
well-documented theory, including noise considerations. We show in the next section how several dif- 
ferent, important effects in computer vision can be easily expressed in terms of local spatial fre- 
quency. None of the other models are this expressive. 

One important effect that we will consider briefly here is scale. The problem with scale is that 
many textures have energy at different scales. For instance, a school of fish is a texture with the fish as 
texture elements. However, if we scale to the scale of the fishes’ scales, they are also a texture. 
Changes in scene magnification due to zoom or relative depth, as well as variations in focus blur, 
cause texture at different scales to appear and disappear. Texture models that work only at a small 
number of discrete scales (e.g. coOccurrence matrices, run length matrices, Markov random fields) 
cannot easily account for these changes. (Although sometimes these problems can be solved with a 
multiresolution analysis.) By using a dense set of local frequency filters, we account for scale changes 
implicitly, because we cover frequencies from almost zero up to the Nyquist limit. 

There are few empirical comparisons of texture models in the literature. The most commonly 
cited comparison was done by Weszka et al. [ 1141 for the task of terrain classification. They compared 
the local frequency model, cooccurrence matrices, first-order gray level difference statistics (which 
we have not discussed), and gray level run length matrices. The local frequency model consisted of 
16 intersections of rings and wedges computed from 64x64 windows. This model proved to be the 
poorest for classification, while the other three were about equal. A follow-up study by Dyer and 
Rosenfeld[25], in which they suppressed the aperture effects of the discrete Fourier transform, did not 
change the results significantly. Two more recent, albeit smaller-scale, studies indicate that different 
variations of the local frequency model are superior. Tan and Constantinides[lOl] compare their 

11 



Analyzing Image Texture 

Gabor filter texture features to cooccurrence matrix features on a texture classification task. They find 
the Gabor features work better, even with significant amounts of added noise. Lonnestand[64] shows 
that texture features based on the Haar transform, which can be considered a frequency decomposi- 
tion, work better for texture classification than features based on the cooccurrence matrix or run 
length matrix. 

1.3 Seeing Image Phenomena in SpacdFrequency - 
~ - 

The significant strength of the space/frequency representation is that it can efficiently represent 
several different image phenomena. This is important, because one of the things that makes computer 
vision difficult is the variety of image phenomena that combine to make an image from a scene. Typ- 
ically. computer vision algorithms are written to exploit one effect at a time and to implicitly ignore 
other phenomena. For instance, all previous texture segmentation algorithms have been written to 
exploit texture differences, but they assume away any 3D perspective effects. The advantage of the 
spacdfrequency representation is that it gives a basis for expressing the effects of many different 
image phenomena simultaneously. This means we can use it write computer vision algorithms that 
account for the inevitable combination of phenomena that go into every realistic image. 

Some effects in computer vision are best described in spatial coordinates and some are best 
described in frequency coordinates, as we show in the following list: 

SpBtial effects hauencv effects 
segmentation discrete sampling 

shape moire patterns 
shading optical effects 

perspective texture 
stereo filtering 

When these effects are combined, as they inevitably are in most images, they should be explicitly 
accounted for. If the effects have different preferred representations, then we need to find one repre- 
sentation to accommodate all of them. The spacdfrequency representation is an ideal solution, 
because it combines the preferred representation of many important effects. 

On representations in computer vision, Marr said 

A representation is a formal system for making explicit certain entities 
or types of information, together with a specification of how the system 
does this.[70] (p. 20) 
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The space/frequency representation takes a variety of implicit frequency-related image phenomena 
and makes them explicit. It reveals certain coherence properties and trends that are only visible when 
plotted as a function of both space and frequency simultaneously. This section illustrates a number of 
different image phenomena in terms of their effects in spacdfrequency. It is not intended to demon- 
strate deep technical details nor to develop specific algorithms. Rather we show some images along 
with spectrograms of their rows. Specifically, we illustrate texture segmentation, 3D shape effects, 
aliasing, zoom, and focus. (We develop specific algorithms for shape-from-texture in Chapter 3 and 
for segmentation in Chapter 4.) This suggests that the representation is a remarkably rich one, in that 
its behavior can be easily characterized for a wide variety of phenomena. While the space/frequency 
representation is not necessarily optimal for analyzing each of the phenomena independently, it is the 
only one so far presented that works well for all of them. 

We use the spectrogram to compute the spacdfrequency representation. We discuss alternatives in 
the next chapter. In this section, we are only concerned with showing spectrograms of image rows, so 
the input signals are 1D. The spectrogram of a signal f ( x )  is simply a series of windowed power 
spectra of the signal. We illustrate its computation in Figure 1 ,. 

It is defined in terms of the Fourier ha 

s (x, u)  = 

- - 

,form' as 

I -m 

where w (n) is the window function. The frequency u is measured in cycledpixel. S (xo, u )  is com- 
puted by windowing a neighborhood of f(x) centered at xo, and then taking the squared magnitude 

1. Our notation for the 1D Fourier transformhas u as the frequency variable, measured in cycledunit distance. The 
1D Fourier transform off ( x )  is given by 

- 
-j2nur 

F ( u )  = 3 , , " W X ) )  = Jf(x). 

f ( * )  = 3 ; L x { F [ u ) }  = j F ( U ) t - d U  

The I D  inverse Fourier transform is given by 

- 
-* 

We use uppercase functions to indicate the Fourier transform of the corresponding, lower-case functions. 
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function 

window 

Fourier transform 

product of function and window 

magnitude, throw away (symmetric) neg- 
ative frequencies 

spectrogram 4 
U 

- 

Figure 1: The spectrogram of a 1D signal is a series of Fourier power spectra 
computed from windowed versions of the signal. 

of the Fourier transform of this windowed neighborhood. Since the power spectrum of a real signal is 
symmetric, we can throw away the part corresponding to negative frequencies. For the spectrogram in 
this chapter, we used a “BlackmawHarris minimum four-sample” window, recommended by experts 
for Fourier analysis[36][23]. It is 

2rr. 4n 6n 
w(l) = wo+wlcos(-I) +w*cos(rI) +w3c0s(-I) L -  1 L -  1 - 1  (4) 

where L is the (even integer) width of the window in pixels, 0 I I I (15 - 1) /2. The coefficients are 
(wo, w l ,  w2, w3) = (0.35875,0.48829,0.14128,0.01168) . We used a window 64 pixels wide. 

A typical spectrogram computed this way is shown in Figure 2 as the rectangular block superim- 
posed on the image. The x-axis is horizontal and the u-axis is vertical. The x-axis is registered with 
the appropriate columns in the image. The frequency runs from zero to one-half cycles/pixel. We have 
zeroed the low frequencies because they tend to dominate the more interesting activity in the higher 
frequencies. 
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1.3.1 Texture Segmentation 

It is often the case that the only common characteristic across a region in an image is its texture. In 
order to locate texture boundaries, we need a texture model that transforms uniform texture into some 
uniform set of quantities and that transforms different textures into different sets of quantities. We dis- 
cussed several texture models in Section 1.2. 

The spectrogram is a good model for texture segmentation. This idea is not new, as it was used for 
aerial image segmentation as long ago as 19731331. And even though it is not necessarily the best 
choice in terms of classification accuracy[ll4][25], it serves our purpose because the same spacdfre- 
quency representation can be used for shape-from-texture as well. In addition, we show in Sections 
1.3.3 and 1.3.6 that the spacelfrequency representation is affected in a predictable and orderly way by 

aliasing and focus blur. It is not at all clear such a simple characterization could be found for other 
texture transformations. 

Figure 2 shows the spectrogram of the center row of an image with two different, periodic tex- 
tures. The textures are from the Brodatz[lO] book of textures, which we scanned using a high-resolu- 
tion page scanner. The textures are cotton canvas 0 7 7 )  and woven aluminum wire (D6). It is clear 
from this figure that the spectrogram succeeds in maintaining coherence over uniform texture and dis- 
tinguishing between different textures. This suggests that an edge-detection or region-growing algo- 
rithm could be applied to segment the textures. We apply a region-growing algorithm in Chapter 4. 

Since both the textures in Figure 2 are periodic, a 1D slice through them can be described with a 
Fourier series? The Fourier series for fln) is 

m 

2. Any periodic function that meets the Dirichlet conditions can be described with a Fourier series[32]. For a function 
Ax), the Dirichlet conditions are that in any interval x ,  5 x 2 x2, the function must 

1. be single valued, 

2. 

3. 
have a finite number of extrema, 
have no infinite discontinuities, and at most a finite number of finite discontinuities. and 

=* 
4. be absolutely integrable, i.e. RX)~ dx < m. I 

XI 

Any physically realizable function will satisfy the Dirichlet conditions. 
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Figure 2: Two periodic textures and the spectrogram of the center row. The 
spectrogram over similar texture is similar and changes 
significantly over the boundary. This suggests that the spectrogram 
is a good basis for segmenting textures. 

where uo is the fundamental frequency and the c, are the complex Fourier series coefficients given 

bY 

X 

This integral is taken over any one period of the function. The spectrogram of this Fourier series 
(derived in Appendix I) is 
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If W (u )  , the Fourier transform of the window, is sufficiently narrow and/or the fundamental fre- 
quency uo is sufficiently large, the harmonics will not overlap significantly and the cross terms in the 
double summation will be negligeable. Then the spectrogram of this periodic function will be a series 
of power spectra of the window function, shifted in increments of uo and weighted by the squared 
magnitudes of Fourier series coefficients. This is what we see in the spectrogram in Figure 2. The 
ridges correspond to the lcJ21 W (u  - rug) 1’. Since the power spectrum ofa  real function is even 
symmetric, we only show the non-negative frequencies, corresponding to the non-negative values of 
r and n in Equation (7). 

If the textures are not periodic but random, the Spectrogram looks different. Figure 3 shows the 
spectrogram of the center row of an image with two different, random textures. The textures are Bro- 
datz beach sand (D29) and pigskin (D92). Here the power spectra have much less structure than in the 
periodic case. For these two textures, the spectrogram still shows a degree of coherence across like 
textures, and it still shows a distinction between them. Unfortunately, this coherence is only apparent 
after a significant amount of averaging. The spectrogram in this figure is actually the average of the 
spectrograms taken over the center 201 rows of the image. By contrast, the spectrogram for the peri- 
odic texture in Figure 2 was averaged over only the center 21 rows. The power spectrum of a random 
signal is itself random. Using only the center 21 rows of the random textures, we get a much less 
coherent spectrogram, as shown in Figure 4. Because it takes more spatial averaging of the spectro- 
gram, random textures are more difficult than periodic textures to “understand” with the spectrogram. 

1.3.2 3D Shape 

Even though most texture segmentation algorithms assume that textures in images are flat and 
viewed frontally, this is usually not the case. The changing depth on a non-frontally viewed texture 
cause the image texture to change. The texture elements on a flat, receding surface appear smaller as 
they go into the distance. This smallness translates into higher frequencies in the space/frequency rep- 
resentation. An example is shown in Figure 5. This is the Brodatz cotton canvas (D77) texture 
mapped onto a receding, flat plate with a computer graphics program. The spectrogram of the center 
row shows that the frequencies are rising as the plate recedes to the right. This is because the texture 
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Figure 3: Two random textures and the average spectrogram of the 201 center 
rows. Random textures require more frequency averaging to make 
their similarity and differences obvious. 

elements appear smaller, which means they have a smaller period, which means they have a higher 
frequency. (We attribute the bump in frequency to a locally denser region of the canvas weave.) The 
frequency gradient has a mathematical relationship to the surface normal of the plate. We develop this 
relationship and exploit it in our shape-from-texture algorithms in Chapter 3. 

The same kind of frequency shifts occur for random textures, as shown in Figure 6. This is the 
Brodatz beach sand (D29) texture, and the spectrogram in the figure is the average of 201 spectro- 
grams taken on the center 201 rows of the image. Except for the texture, the plate is the same as the 
plate in Figure 5. Since the power spectrum of this texture is much less sharp than that of periodic tex- 
tures, it is more difficult to detect the changes in frequency. Super and Bovik[98] have had some suc- 
cess with these kinds of textures by tracking the second-order moments of the frequency distribution 
from point to point. In Section 3.5.4 we modify our basic shape-from-texture algorithm to work on 
random textures by averaging the spectrogram. 
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Figure 4: Two random textures and the average spectrogram of the 21 center 
rows. Less averaging (as compared with Figure 3) leads to a noisier 
spectrogram. 

Figure 7 shows an interesting correspondence between an object’s vanishing line and its spectro- 
gram. Perspective effects impose a vanishing line on the plate. Moving to the right along the plate, the 
line of sight comes closer and closer to being parallel with the plate. None of the plate can project 
onto the image plane past this parallel line of sight. This column in the image is the vanishing line of 
the plate. 

This plate’s texture is a simple sinusoid, so the spectrogram shows only a single peak in fre- 
quency. The projected frequency increases without bound up to the vanishing line. Thus, the vanish- 
ing line for the plate is also an asymptote for the plate’s frequency peak. In practice, however, the 
spectrogram is bounded above by the Nyquist limit, so the sinusoid is aliased after a certain point. 
This is shown in the actual spectrogram in Figure 7 as the fuzz just to the left of the vanishing line. 
We demonstrate some details of aliasing and the spectrogram in the next section. 
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Figure 5: The surface normal and changing depth combine to cause a 
frequency gradient on this receding, textured plate. 
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Figure 6: The frequency shifts due to 3D effects for this random texture are 
more difficult to detect. 
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actual spectrogram 

ideal spectrogram anishing 
line 

Figure 7: The vanishing line in the image is also an asymptote in the 
spectrogram. The actual spectrogram has an upper bound in 
frequency due to the Nyquist limit. 
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Figure 8: A moire pattern due to aliasing was accidently produced on the roof 
of the house in this image. The inset shows the pattern enhanced by 
thres holding. 

1.3.3 Aliasing 

Aliasing in digital images is caused by the finite spatial sampling rate of the image sensor. It is 
common for digital images to have some aliasing, because camera operators rarely take steps to avoid 
it. An example of accidental aliasing is shown in Figure 8.  This is an image of a scale model village 
taken in the Calibrated Imaging Laboratory at Camegie Mellon University. The shingles on the roof 
of the building in the center of the image were so close together that they made a moire. pattern caused 
by aliasing. The binary inset is a threshold4 region of this image that shows the low-frequency, sinu- 
soidal moire pattern whose ridges are at about 30' from the horizontal. 

In most texture models, it is not clear how aliasing can be expressed, but in terms of the spectro- 
gram, it has definite, simple structure. Figure 9 shows a plate with a sinusoidal texture and the spec- 
trogram of the center row, According to the Nyquist limit, the spectrogram cannot show any 
frequencies above 0.5 cycledpixel. Thus, the frequency range of all the spectrograms in this chapter 

23 



Analyzing Image Texture 

Figure 9: Aliasing causes the frequency peak to bounce in the spectrogram. 

are 0 S u 5 0.5. When the projected sinusoid's frequency exceeds 0.5 cycledpixel, aliasing occurs. 
The frequency peak appears to bounce off the top of the spectrogram and head toward zero. It 
bounces again and goes back up. This bouncing would continue if the plate were longer. Everything 
on the plate to the right of the first bounce is aliased, and the spectrogram is showing the frequency of 
the resulting moire pattern. 

Figure 10 shows a graphical explanation of this bouncing. On the left are eight sinusoids of 
increasing frequencies, starting at 0.15 cycledpixel and ending at 0.85 cycles/pixel. Each of these 
sinusoids was sampled at unit intervals (every pixel) and then reconstructed using standard 
sinc ( x )  = sin (nn) / ( E X )  function interpolation. As long as the original frequency is below the 
Nyquist limit of 0.5, the reconstruction is perfect. But, any frequency above this limit causes aliasing, 
and the reconstructed sinusoid has a lower frequency than the original. In fact, the frequencies of the 
four aliased sinusoids are a mirror image of the four unaliased sinusoids. If we tried to reconstruct 
even higher frequency sinusoids, the aliased frequencies would oscillate between zero and one-half, 
like in the spectrogram. 

To explain the bouncing mathematically, we imagine that the texture brightness is a simple sinu- 
soid, f ( x )  = cos ( Z X U , ~ )  . Its Fourier transform is a pair of delta functions placed symmetrically in 
frequency, F ( u )  = 0.5 [ S ( u  - uo) + 6 ( u  + uo) ] . Sampling at a frequency of ux cycles per unit 
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Figure 10: Each of the sinusoids on the left was sampled at a rate of one 
sample per unit distance. The ticks mark the sampling points. Any 
sinusoid with a frequency above 0.5 cycles per unit distance is 
aliased, and it appears as a lower frequency sinusoid. 

distance is modeled in the spatial domain by multiplying the function by a series of equally-spaced 
delta functions. The sampled signal is 

Its Fourier transform is the convolution of the Fourier transform of the signal and the Fourier trans- 
form of the sum of delta functions. This is 
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This is a series of repeated versions of the Fourier transform of the original function. The repetitions 
are indexed by os, which corresponds to the “spectral order” of the repetition. The locations of these 
delta functions are illustrated in Figure 11. Since the spectrogram only covers frequencies from zero 
to u , / 2 ,  it shows different spectral orders depending of the frequency of the original signal. If the 
spectral order is zero, there is no aliasing. If we happen to know the spectral order, the location of the 
frequency in the spectrogram will be 

U O  if us=O 

osus - sgn (us )  uo if us * 0 
u =  ( 

where 

If there is more than one sinusoidal component in the signal, the individual frequency peaks will 
bounce independently in the spectrogram. This is shown in Figure 12, where the plate’s texture is the 
sum of two sinusoids. Most periodic textures are composed of a fundamental frequency and overtones 
at integer multiples of the fundamental. A good example is Brodatz woven aluminum wire (D6) 
shown mapped onto a receding plate in Figure 13. As the fundamental frequency grows, the top har- 
monic is the first to bounce, then the second from the top, and so on. Most other texture models would 
have a hard time accounting for aliasing. It is easy to account for it with the spectrogram. In Section 
3.5.3 we show how one of our spectrogram-based shape-from-texture algorithms can work in spite of 
aliasing. 
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sampling rate is us samples per unit distance 

equency range(shaded) 

Example: The Fourier transform of a sam- 
pled version of cos ( 2nuon) will have delta 
functions at these points for this value of uo. 

Figure 11: For a single sinusoid of 
delta functions of its 
u0. The frequency range covered by the spectrogram intersects 
different spectral orders depending on the value of u0. This explains 
the bouncing frequency peaks in the spectrogram. 
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Figure 12: Different sinusoidal components bounce independently of each 
other when they are aiiased. 
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Figure 13: The highest harmonics in a periodic texture are aliased first, then 
the next highest and so on. 
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Figure 14: Effect of zooming an imaged signal by a factor of M. 

1.3.4 zoom 

Much research in “active vision” concerns the control of the three lens parameters: zoom, focus, 
and aperture. We show in this section and the next section how these parameters affect the spectro- 
gram, which in turn provides new insights into how they affect the image. This point of view can lead 
to algorithms that let us deduce intrinsic scene parameters by purposefully altering the lens settings. 

In equifocal camera lenses (such as most one-touch zoom lenses) a change in mom can be mod- 
eled as simply a change in magnification. We can imagine the situation in Figure 14a, where the sec- 
tion of the signal that falls on the center window of the spectrogram extends from -1/2 to 1/2.  We 
will arbitrarily call the magnification here one, and we will say that the entire portion of the signal 
seen by the camera is of length L. Both 1 and L are measured on the image plane. If there are n pix- 
els in the spectrogram window, the sampling frequency is ( n  - 1) / I  pixels per unit distance, making 
the highest observable frequency (n - 1) / (21) . The spectrogram resulting from this signal will 
cover the region indicated by the short, wide box in Figure 15. 
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Figure 15: Zoom changes the region covered by the spectrogram in space1 
frequency but not the area. 

Figure 14b shows what happens to the sampling rate after the magnification is changed from one 
to M .  The n samples in the center spectrogram window are spread over a distance of i / M ,  meaning 
that the highest frequency in the spectrogram is M ( n - 1)  / ( 2 L )  . The entire signal seen by the cam- 
era goes from - I /  (2M) to I /  (2M) . 

The spectrogram after the magnification change is shown in Figure 15. For an increase in magni- 
fication, the spectrogram covers more in frequency but less in space. The “area” of the spectrogram 
(actually a unitless quantity, “spatial dynamic range”) is ( L  (n - 1) ) / (21) and is independent of the 
magnification. Thus for changes in zoom, there is a direct trade-off between coverage in space and 
spatial frequency. These arguments also apply to the four-dimensional hypervolume of the spectro- 
gram of a two-dimensional signal. 

Figure 16 shows a horizontally split image of a textured plate at two different zoom settings. The 
lower half was zoomed about 1.09 times the upper half. The spectrograms of the center rows of both 
are shown in the same figure. Until the first aliasing-induced bounce, the peak frequency is in the 
same location in both spectrograms. However, once aliasing sets in, the peak shifts. This is because 
the position of the aliased peak is a function of the sampling rate. 
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Figure 16: Two plates taken at slightly different zoom settings. Aliased peaks 
are shifted with respect to each other in the spectrograms. 
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1.3.5 Dealiasing with Zoom 

We will briefly depart from the series of pictures here to develop a small algorithm for dealiasing 
simple signals using the spectrogram. It depends on the explanation of aliasing and zoom in the previ- 
ous two sections. The method works by using two images of the signal at slightly different zoom set- 
tings. 

Suppose as above that we have a sinusoid cos (2rcu0x) , whose frequency uo cycles per unit dis- 
tance is sampled at a rate of us samples per unit distance. The signal may be sampled above or below 
the Nyquist rate. Referring to Figure 11, we can see there will be only one spectral order contributing 
to the spectrogram for any frequency uo. We will arbitrary say that the magnification of the first 
image of the signal is M = I .  If the spectral order of the signal is os, its apparent (possibly aliased) 
frequency u1 seen in the spectrogram of the first image will be given by Equation (IO): 

UO if os=O 

osus - sgn (os) uD if os # 0 u l =  ( 
If the same signal is re-imaged at a slightly different magnification M, then the effective sampling 
rate measured in cycles per unit distance of the unrnagnijied image will be M u s .  The apparent fre- 
quency u2 in the spectrogram will then be 

UO if os=O 

u 2 =  ( osMus - sgn (os) uo if os # 0 

We can eliminate the unknown frequency of the original signal by subtracting Equation ( 12) from 
Equation ( 13). Solving this difference for the spectral order gives 

This equation applies for both os = 0 and os # 0. Thus, the difference in apparent frequency 
between the two images is proportional to the spectral order. After solving for os, we can use Equa- 
tion (12) or (13) to solve for uo, which is the true frequency of the signal. The dealiasing does not 
require the solution of a correspondence problem, since the two signals are related by a simple differ- 
ence in magnification. 

An implicit assumption here is that os remains the same in both images. This will be true for 
small changes in magnification unless the frequency peak is very close to either extreme of the spec- 
trogram’s frequency range. 
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Figure 17 The differences in the aliased frequency peaks can be use to find 
the true, unaliased frequency of the signal, no matter what its 
frequency. 

We have applied this technique to the two spectrograms of the receding plate in Figure 16. We 
extracted the peak frequency in each spectrogram, and these are plotted in Figure 17. The frequency 
data from the magnified image has been adjusted so it is shown in terms of the space and frequency 
units of the unmagnified image. The dotted line shows the dealiased frequency based on the technique 
outlined above. Except for the glitches at the frequency extremes, the figure shows correctly the 
dealiased frequency. Thus, the spectrogram has been dealiased without detailed a priori knowledge of 
the scene. It could be argued that with twice the number of samples (because we have two images), it 
is of course possible to double the Nyquist limit of a single image. This is true, but we have gone 
beyond twice the Nyquist limit. This is primarily because we limit the input to a single sinusoid. With 
more careful matching of frequencies between the two spectrograms, it should be possible to extend 
this algorithm to more general signals. 
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1.3.6 Focus and Aperture 

Changes in the lens’ focus and aperture combine to change the point spread function (psf) of the 
lens, which can be easily visualized with the spectrogram. (The psf is a function which is convoluted 
with an ideal, sharp signal to model the effects of blur.) In general, points in sharper focus will show 
more high frequencies than if they are blurred. For blurred parts of the image, a smaller aperture tends 
to have the same general effect as sharper focus. In fact, in the pinhole camera model, the aperture is 
infinitesimally small, meaning that every point in the scene is in perfect, sharp focus. 

We can generalize the pinhole model to account for focus and aperture by introducing a single, 
thin lens with a variable aperture as shown in Figure 18. The aperture of the lens is a, the focal length 
of the lens is b, and the distance to the image plane is d. We can approximate the effects of focus and 
aperture with geometric optics. Each point in the scene with a different value of Z ,  will be in sharp 
focus at only one point behind the lens. This point, Zj, is given by the Gaussian Lens Law: 

1 
Zi -Z b 
- + -  1 1  - - - 

0 

If the image plane is not at the proper distance behind the lens for a given point, i.e. d # Zi ,  the point 
will be spread into a blur circle. Using geometric optics, the radius of the blur circle is given by[96] 

A point can be out of focus by having the image plane in front of or behind the point of best focus. 
The equation above applies to both cases. r(Z,) goes to zero when l/d - l /Zj  = l /b ,  which is a 
restatement of the Gaussian Lens Law above. In the one-dimensional imaging case illustrated here, 
the shape of the blur “circle” is actually a rectangle of width 2r(ZJ Thus, the point spread function 
of the ID camera system is 

where we have normalized so the area under the rect ( x )  is one. The corresponding transfer func- 
tion, H, is the Fourier transform of h with respect to n: 

3. This psf ignores three optical effects. One is diffraction, whose magnitude is much smaller than 
defocus effects in typical TV images. The second is the fact that points which are occluded in the 
pinhole image can actually be seen by parts of the lens in an image with a finite aperture. The third 
is that, by normalizing the area of the psf to one, we are ignoring the most obvious effect of a 
change in aperture: a change in the overall brighmess of the image. 

35 



.... 

Analyzing Image Texture 

Figure 18: Thin lens camera model for deriving effects of focus and aperture. 

H(u, Z,) = sinc [2ur(Z,)1 (18) 

In order to calculate the effect of h(x, Z,) on the spectrogram, we suppose there exists a function 
Ax) which is an unblurred, pinhole projection of the scene. The new image, f&), taking into account 
the point spread function, is a convolution of the unblurred image with h.  Thus, 

where the Z, (x) is the depth corresponding to x on the image plane. This equation holds for changes 
in the camera’s aperture. It does not apply for change in the focus distance d ,  because this causes a 
change in magnification as well as a change in the point spread function. 
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The point spread function h is nor space-invariant, because it depends on the depth of the surface. 
This means that the Fourier convolution theorem does not apply to the Fourier transform of the whole 
signal. If h were space-invariant. e.g. if the depth of the scene were constant, then the effect on the 
spectrogram would be simple to describe: each windowed Fourier transform would be multiplied by 
the Fourier transform of the point spread function. This is also approximately true for the space-vari- 
ant point spread function if the surface depth varies slowly andor the window used for the spectro- 
gram is small. The spectrogram of the unblurred signal is 

Then the spectrogram of the blurred signal is 

where % ( x )  is a representative depth value for the region centered at x .  Each windowed Fourier 
transform has associated with it its own transfer function that depends on the approximate depth of 
the region within the window. As the blur circle becomes larger, its Fourier transform H(u, Z) 
becomes narrower in frequency and attenuates more of the high frequencies. 

This is the approximation used for most depth-from-focus and depth-from-defocus algorithms in 
computer vision. The spectrogram can be used as a criterion function to calculate the point of best 
focus over several images taken at different focus settings, as shown by Krotkov[54]. The setting 
closest to perfect focus is the one that gives the most high frequency energy in the spectrogram at that 
point. Knowing this setting, along with a precalibrated table of focus distances, the depth to all points 
in the scene can be calculated. Pentland[84] uses a spectrogram, essentially, to calculate depth from 
defocus based on only two focus settings. He uses the two spectrograms to directly calculate the depth 
to each scene point by calculating the width of the psf. 

We can see the effects of this space-variant point spread function in the spectrogram. Figure 19 
shows an example scene. It is Brodatz woven aluminum wire (D6) mapped onto a flat, receding plate. 
The spectrogram of the center row shows the frequencies increasing to the right due to the 3D effects. 
At the right side, the topmost harmonic is aliased, as evidencd by the bounce, This image was pro- 
duced using a pinhole camera model, so every part is in sharp focus. 

Figure 20 shows the same scene as in Figure 19, except the simulated camera had an aperture 
opening corresponding to f/4. The camera was focused on the left side of the plate, and the small 
depth-of-field means the right side is out of focus. The corresponding effect on the spectrogram is that 
the higher frequencies on the right are attenuated. The blurring here could even be considered benefi- 
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Figure 19: Everything in thls image is in sharp focus, because it was produced 
with a pinhole camera model. 

cia], because the aliased harmonic has been blurred away. Figure 20 shows the same scene with an 
aperture opening of f/2. The depth of field here is even smaller, and the attenuation is more severe. 

Formulating the effects of the psf in terms of the spectrogram is a natural way to reason about the 
space-variant nature of the transfer function. For example, it reveals how precisely each point can be 
focused. Points in the scene with no high frequencies will never show high frequencies no matter how 
well they are focused, meaning that a focusing criterion function based on frequency would not be 
sensitive to such points. Another issue is the separation of the space-invariant part of the psf (due to, 
say, pixel averaging and the camera electronics) from the space variant part. It may be that the space- 
invariant psf is so large that depth effects are insignificant. 

Matters of focus are very clear when formulated in terms of the spectrogram. Accounting for this 
effect with most other texture models would be difficult. 

38 



Seeing Image Phenomena in Space/Frequency 

Figure 20: This is the same scene as in Figure 19, except the aperture is now f/ 
4 instead of a pinhole. The camera is focused on the left side of the 
plate. The spectrogram shows the effect of the varying amount of 
blur due to the shallow depth of field. 
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Figure 21: This is the same scene as in Figure 19, except the aperture is now W 
2 instead of a pinhole. The camera is focused on the left side of the 
plate. The depth of field Is even smaller than the f14 image in Figure 
20, and the spectrogram makes this obvious. 

1.3.7 Summary 

This section gives an idea of the versatility of the space/frequency representation for work in 
image texture. We showed that it is simple to express how the local spatial frequency content of an 
image texture can be used in algorithms for texture segmentation and shape-from-texture, and for the 
analysis of aliasing, zoom, and focus. An while we used the spectrogram to illustrate these effects, 
other spacedfrequency representations could be similarly adept. On the other hand, we cannot think of 
any non-frequency-based texture model that is this versatile. 

40 



C hap t e r 2 The SpaceFrequency 
Representation 

2.1 The SpacelFrequency Representation 

The spacdfrequency representation makes explicit a signal's behavior in frequency as a function 
of time or space. Signals whose frequency characteristics change over time or space are. called nonsta- 
tionary, and the traditional Fourier transform is inadequate for representing this behavior. Figure 22a 
shows an example of such a signal. It consists of two sinusoids - a sinusoid of 20 cycleshnit distance 
on the left, a sinusoid of 40 cycles/unit distance in the middle, and the sum of both on the right. The 
nonnegative side of this signal's Fourier power spectrum (squared magnitude of the Fourier trans- 
form) is shown below the signal. The power spectrum is a function of frequency u in cycleshnit dis- 
tance. It shows peaks corresponding to the two constituent frequencies, but it does not show where 
they occur. This is the inadequacy of the Fourier transform for nonstationary signals: each point in the 
Fourier transform is a function of the signal for its entire duration, meaning that the Fourier transform 
destroys the time or spatial coherence of the input. Although all the information of the original signal 
is preserved in the Fourier transform, its time or space information is hidden in complicated phase 
relationships. 
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1 "  Figure 22: a) Nonstationary signal consisting of two sinusoids 
b) Fourier power spectrum of signal 
c) Idealized space/frequency representation of signal 

A better representation of the nonstationary signal in Figure 22a is the space/frequency represen- 
tation in Figure 22c. This is a two-dimensional function of both space and frequency, with the x axis 
running horizontally and the u axis running vertically. Each point in the x- u plane corresponds to one 
frequency at one point in space. It shows the local frequency characteristics of the signal. Thus, the 
ridge on the left is at 20 cycles/unit distance, and the ridge in the middle is at 40 cycledunit distance. 
The right side shows both ridges, corresponding to both sinusoids. This is a much more intuitive r e p  
resentation of nonstationary signals, and it makes analysis much easier. 

Unfortunately, the crisp spacdfrequency representation in Figure 22c is impossible to compute 
using any practical, generally applicable methods. Any real spatidfrequency representation computed 
from the original signal would have wider, smoother peaks and less sharp transitions from ridge to 
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ridge. This is because no technique of decomposing a spatial function into space/frequency can 
achieve arbitrarily high resolution along both axes simultaneously. 

The next section examines this issue more closely, showing that we can never get a perfect repre- 
sentation of general signals with standard techniques. We conclude, though, that we can do well 
enough if we remember the inherent limitations. The last section reviews several different methods of 
computing the space/frequency representation and explains why we chose the spectrogram. 

2.2 Whv It Cannot Be Perfect 

The most common way of computing the spacdfrequency representation is with the “short time 
Fourier transform” (STFT), where the frequency distribution at a particular xo is computed with a 
Fourier transform of the signal in the neighborhood around that point. The implied assumption is that 
the signal is locally stationary. The neighborhood around xo is established by multiplying the signal 
f(x) by a window centered at xo, w (x - xo) . This window is normally symmetric and falls to zero a 
short distance from its center. The spacdfrequency representation is then 

dx -j2nux w (x - x o ) f ( x )  e 

* where means convolution. This can also be thought of as filtering f ( x )  by sets of windowed sinu- 
soids centered at various points in space/frequency. Of course, we need a way of analyzing 2D func- 
tions instead of 1D. We will concentrate on 1D signals in this chapter for purposes of illustration. All 
the principles we outline for 1D signals apply to 2D in a straightforward way. 

In the next several sections we outline the problems with computing an ideal spacelfquency rep- 
resentation, Although the basic concept of the spaadfrequency representation is easy to understand, 
there are several subtle issues involved in its actual realization. These issues limit what we can 
accomplish with the representation and also guide us in making choices for how to compute it. We 
need to understand these limitations and choices before we can apply the representation to computer 
vision problems. Ultimately we will apply the spacelfrequency representation to 2D signals, but we 
will use only 1D signals for the explanations in this section. 
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2.2.1 The Ambiguity Function 

Another way to think of building up a spacdfrequency representation is that of looking for basis 
functions centered at different locations in space and frequency. These functions are usually based on 
a symmetric window function w ( x )  centered at the origin. The function can be moved to (xo, uo) in 
space/frequency by translating in space and modulating in frequency, giving 
w (x - xo)  exp ( j2xu0x)  , where j = fi. The usual method of detecting a given basis function in 
an input signal f ( x )  is by complex cross correlation. This is the same as using a matched filter. Using 
this linear method, the space/frequency representation is 

-m 

Except for the conjugation of w (x - xo) (which is usually inconsequential, since w ( x )  is usually 
real), this is the same as the STFT in Equation (22).  

One way of assessing the resolution of this method is to determine the response of the ba i s  func- 
tion to shifted copies of itself. If f ( x )  is exactly the same as the basis function, i.e. 

f ( x )  = w ( x  - xo)  exp ( j 2nuox) ,  the response will be 

m 

-m 

Ea 

= I w (x) w* ( x )  dx 
-_ 

(24) 

which is just the energy of the window function w (x) . What really matters is how nearby basis func- 
tions in the space/frequency representation will react to this f ( x )  centered at (x0, uo) . Ideally, the 
basis functions should show no reaction for anything but an exact copy of themselves. However, if the 
basis function is shifted by (Ax,  Au) , the response will be 

m _ _  
j2xuox j 2 x ( u 0 +  Au)  x 

E&, Au = J w ( x  - xo) e [w ( x  - xo - ~ x )  e 
-m 

m 

da A x *  AX -j2nkxn w ( a + - ) w  ( a - - ) e  
2 2 

= e  
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Dropping the phase factor in front of EAx, A,, gives the autoambiguity function: 

m 

d a  Ax * Ax -j2nhcc 
2 2 A ( A x , A u )  = w ( a + - ) w  ( a - - ) e  

Ax * Ax - { w ( a + - ) w  (a--)] - gn*Liu 2 2 

This function is usually used for describing the resolution of range and range rate measurements 
for Doppler radar signals[l07]. In our context, it tells how much response can be expected from the 
basis functions surrounding the one centered on the input signal. In order to get a high resolution 
space/frequency representation, we would like the window function's ambiguity function to be as 

compact as possible in both dimensions, 'Wo examples follow. 

Example 1: Let the window function be a unit energy rectangle of 
width b 

where 

This is like using sharply truncated sinusoids for the STFT. The ambi- 
guity function is 
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where 

for x = 0 ( 1  

otherwise 

This function is plotted for three different values of b in Figure 23. As 
it gains more resolution in space (smaller b )  is wider in frequency, it  
loses resolution in frequency. 

Example 2: If the window function is a unit energy Gaussian with width pro- 
portional to b 

then 
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This corresponds to a STFT with a Gaussian window, and it is close to 
what we actually use for image analysis. Three versions of this function 
for different values of b are plotted in Figure 23. There is still a trade- 
off between resolution in space and frequency, but resolution can be 
adequate in both dimensions simultaneously. 

Both of these examples show that a function centered at some point in spacelfrequency will cause 
a peak not only at that point, but also the points around it. This limits the resolution of the space/fre- 
quency representation. For unit energy signals, the volume of the squared magnitude and the maxi- 
mum of the ambiguity function are both one, i.e. _ _  

(A (0,O) ( = I (A (Ax, A u )  I2dAx dAu = 1 
-_-_ 

(33) 

Furthermore, the maximum is always at the origin. This means there is a “conservation of ambiguity,” 
because the volume cannot be squeezed to an arbitrarily compact shape near the origin, and any 
reduction along one axis will increase the ambiguity somewhere else. 

Four our application, this means that we cannot expect to precisely isolate “events” in space/fre- 
quency. We must tolerate some ambiguity. It also guides in our choice of a window function. 
Although the rectangle gives good spatial resolution, it has a lot of spread in frequency. It is general 
better to use windows like the Gaussian that fall smoothly to zero. 

2.2.2 The Uncertainty Principle 
A concept related to the ambiguity function is the uncertainty principle. The basis functions used 

to measure the frequency content of a signal at a given point in spacdfrequency will have some inher- 
ent spread, and thus will not be able to measure the signal’s energy at a pinpoint in space/frequency. 
There is a direct trade-off between a basis function’s spread in space and its spread in frequency that 
is given by the Fourier transform identity 

Decreasing the width in space (by decreasing b) increases the width in frequency. 

Gabor[29] is usually credited with showing that a function cannot be arbitrarily compact in both 
dimensions. If the width of a function f ( x )  and its Fourier transform F ( u )  are defined as their sec- 
ond moments around their centroids j and F, then the widths are 
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b=l 

b=2 

Figure 23: Ambiguity functlons for a rectangle in the left column and a 
Gaussian in the right column. As the width parameter b increases, 
the ambiguity in the spatial direction grows, while the ambiguity in 
frequency shrinks. The Gausslan’s ambiguity function is generally 
more compact than the rectangle’s. 
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5 [ F ( u )  -F] [ F ( u )  - F ] * d u  
-co 

For any function with a Fourier transform, it can be shown that 

1 
(J(J 2- 

x u 4n (35) 

This is called the “uncertainty principle” in signal processing. Gabor showed that the functions with 
the minimum product of widths are Gaussian-modulated, complex sinusoids, This accounts for their 
frequent use in computing the space/frequency representation. Even with these “Cabor functions” as 
basis functions, the uncertainty principle shows that they do have some degree of spread in spacdfre- 
quency, and that any attempt to decrease the spread in one dimension will increase it in the other. 

2.2.3 Side Lobes 
The ambiguity function and uncertainty principle show primarily the effect of the window’s 

width. Its shape is also important. The effect of shape can be seen by imagining f ( x )  as a complex 
sinusoid of frequency uo. The space/frequency representation at x = 0 will then be 

which is just a shifted version of the Fourier transform of the window function. Thus, the Fourier 
transform of the window is an important factor in how the spacdfrequency representation will look. 
The simplest window function is a unit-width rectangle, rect ( x )  , whose Fourier transform is 
3 { rect ( x )  } = sinc (u) . As shown in Figure 24b, this will produce significant side lobes in the 
spacdfrequency representation, which could be mistaken for frequency peaks. 

49 



The SpaceFrequeney Representation 

There are many, better window functions to choose, and the large choice is confusing. Numerical 
Recipes[86] (p. 425) says: 

There is perhaps a lot of unnecessary lore about the choice of a window 
function, and practically every function which rises from zero to a peak 
and then falls again has been named after someone. ... However, at the 
level of this book, there is effectively no difference between any of 
these (or similar) window functions. 

We use a window that has been named after two people, the “Blackman-Harris minimum 4-sam- 
ple” window[23]. It was recommended in Harris’ comprehensive comparison of window shapes for 
Fourier analysis[36]. Its equation is 

where L is the width of the window. The coefficients are 
(wo, w,, w2, w3) = (0.35875,0.48829,0.14128,0.01168). This is plotted for L = 1 in Figure 

24c. The Fourier transform of the Blackman-Harris minimum 4-sample window is 

W ( u )  = wosinc ( L u )  

2 c +- W2L Isinc ~ ( u - - ) ]  2 +sinc ~ ( u - ~ ) ] }  
2 C L  

3 + - w3L{ sinc ’ [ L (u - L -1 + sinc [L ( u  - ;I] 1 2 (39) 

This is shown in Figure 24d for L = 1. Compare this to the Fourier transform of a unit-width rectan- 
gle in Figure 24b. Using the smoothly falling window gives practically no positive or negative side- 
lobes that could be mistaken for peaks or interfere with neighboring peaks. Although there are no 
convenient formulae to show it, the price of avoiding sidelobes is a decrease in frequency resolution. 
This is apparent from the figure, which shows that the Fourier transform of the rectangular window is 
much sharper than that of the Blackman-Harris window. In general, and for our application, it is better 
to sacrifice a little frequency resolution for the reduction in side lobes. 

2.2.4 Frequency Discontinulties 
When computing the spacdfrequency representation of an image with two different, adjacent sig- 

nals, there will be some basis functions that fall onto both signals. In computer vision, this is the situ- 
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Figure 24: Smooth windows are better than sharp windows. 
a) Rectangular window 
b) Fourier transform of “a”, significant side lobes 
c) Blackman-Harris minimum 4-sample window 
d) Fourier transform of “c”, no side lobes 

ation at a texture boundary. This discontinuity causes a broad frequency disturbance. We will 
compute the effect in the simplest configuration possible by assuming the signal consists of two, com- 
plex exponentials’ of frequencies u and u2, one on each side of the origin. The function is 

1. Of course a real image will have only real sinusoids. The Fourier transform of a complex exponential is a single 
delta function at the exponential’s frequency. The Fourier transform of a real sinusoid is two delta functions at the 
sinusoid’s frequency, one on either side of the frequency origin. If there is no significant overlap between the func- 
tions centered on either side of the frequency origin (which there usually is not in this case) then working with only 
one side is sufficient for illustrations. 
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- - 

j 2nu lx  
for x < 0 

~ a1 +a2 for x = 0 

for x > 0 

a l e  

f(x) = 
2 

j2nu2x 1 a2e 

Using a unit-length rectangle as the window function, the short-time Fourier transform is 

STFT(x, u) = 3 a-u {rect ( a - x ) f ( a )  I 

a1 - j 2 m ( u - u l )  . 1 
for x < -- 2 -e smc(u - ul) 2 

1 
2 

3 a1 - j n ( x - 1 / 2 )  ( u - u , )  

a2 - j K ( X + 1 / 2 )  ( u - u 2 )  

-e  2 

+ -e 2 
a2 - j 2 x x ( u - u 2 )  . 
-e sinc(u - u2) 
2 

1 for x > ; 
(41) 

L 

The magnitude of this function for a l  = a2 is plotted as a surface in Figure 25, and the lower 20% of 
the magnitude is plotted as shaded contours in the same figure. There is significant broadening of the 
ridges in frequency as they descend to zero. This is because the window is seeing a shorter and shorter 
section of the sinusoid, causing its Fourier transform to broaden. The frequency ridges coexist in x 

over a length equal to the length of the window, even though the two original frequencies do not over- 
lap. This tends to make a narrower window more attractive. 

2.2.5 Frequency Shifts 

the 3D projection effects of a texture on a nonfrontal surface. For instance, as a textured plate recedes 
from the camera, its frequency appears higher because the projection is more compressed. This tends 
to violate the local stationarity assumption behind the STFT. If the frequency within the STFT win- 
dow varies, it causes a smeared Fourier transform at that point. A simple nonstationary signal is a lin- 
ear, frequency-modulated chirp: 

Texture boundaries cause one type of frequency nonstationarity in images. Another is caused by 
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Figure 25: The spacetfrequency representation of two sinusoids of different 
frequencies shows broadening of the frequency rldges as they 
descend to zero and an unrealistic overlap equal to the width of the 
window. 

Figure 26: Complex exponential linear chirp (real part) and the magnitude of its 
Fourier transform for different window widths b. 

Its "instantaneous frequency" {defined in Section 2.3.1) is u,, + u , x .  An example of the real part of 
such a linear chirp is shown in Figure 26, where uo = 0 and u1 = 6. 

Using a rectangular window of width b ,  the STlT is2 
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where 

x, = E 
and the Fresnel integrals are 

The most apparent feature of this STFT is that it is complicated. Even the simplest frequency shift 
(linear) is difficult to express in terms of a Fourier transform. Thus, for analyzing texture in images, 

2. This comes from Cook and Bernfeld[21] @. 137-138) who show that 

-T/Z 

where 

We made the following substitutions: 

T = b  

0 = 2rcu 

I wo = 2 r c ( U O + U l X )  

p = 2nu1 
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we must be content with making an assumption of local stationarity rather than trying to analytically 
account for higher order frequency shifts. 

The other important aspect of this STFT is its spread in frequency. Since the chirp passes 
smoothly through a range of frequencies over any given window, the corresponding Fourier transform 
will contain energy at all these frequencies. This is shown on the right side of Figure 26, which is the 
magnitude of the STFT of the complex exponential whose real part is plotted at the left. We show 
STFT (1.0, u )  for the window width b going from 0.1 to 2.0. For the small width, the chirp is close 
to a stationary, complex sinusoid, so the S m  is approximately a shifted sinc (u) , albeit a wide one 
since the support in space is small. As the window width grows, the frequency resolution grows, but 

the window covers more and more frequencies of the chirp, causing the Fourier transform to spread. 
In summary, for a small window width, the Fourier transform is smeared due to the uncertainty prin- 
ciple, while for large widths, the Fourier transform is smeared because the spatial function contains a 
range of frequencies. Varying the window width varies the “quality” of the frequency representation 
for nonstationary signals, and this can be adaptively optimized based on the underlying signal[47]. 

2.2.6 The Importance of Phase 

The spectrogram (local power spectrum) is the squared magnitude of the STFT, and thus contains 
no phase information. This can be detrimental in some cases if the goal is to distinguish textures. The 
power spectrum cannot be used to distinguish all textures that appear different to the eye. Julesz[49] 
argues this in an attempt to refute the notion that the human preattentive visual system performs Fou- 
rier analysis. For example, Figure 27 shows sections of five periodic textures that are distinguishable 
by the human eye, and yet have nearly identical power spectra’. 

The reason that the power spectrum cannot distinguish these textures is that it is insensitive to 
phase, and phase is the only significant difference between these textures. We can represent an arbi- 
trary periodic function as a Fourier series 

n = -m 

where uo is the fundamental frequency and the cn are the complex Fourier series coefficients. The 
power spectrum of this function is 

3. The power spectra are only “nearly” identical because we have shifted and scaled the intensities of each of them to 
fit the range of gray levels we can display. 
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Figure 27: These five texture have nearly identical power spectra. 

n = -  

As long as the magnitudes of the Fourier series coefficients stay the same, the power spectrum will 
stay the same. 

We generated the textures in Figure 27 by starting with a truncated Fourier series of a square 
wave, The full Fourier series has coefficients c, = 0.5sinc ( d 2 )  . We zeroed all the c, for In1 z 5 
and plotted the series in the top rows of Figure 27. We generated the other four textures by applying 
different, random rotations to the c,. That is, we picked random On’s, computed c’, = exp GO,) c,, 
and used the c’,’s in the Fourier series. (We had to enforce the hermitian symmetry of the coefficients 
to ensure a real function.) The actual Fourier series coefficients are shown in Table 2. These rotations 
of the complex coefficients only affect their phases and not their magnitudes. It is apparent from 
Equation (47) that the power spectrum is only sensitive to the magnitude of the Fourier series coeffi- 
cients. We can change the phase arbitrarily without affecting the power spectrum. 

In some applications, phase may be important for distinguishing texture. But, for the textures we 
have tested, there have always been significant differences in the power spectra. We discuss other rea- 
sons for ignoring phase in Section 2.3.8 (“Why We Picked the Spectrogram” on page 66). 

2.2.7 Good Enough 

The STFT is only one way to compute the space/frequency’representation, and we look at others 
in the next section. Even though we have used only the S r n  in this section, it does illustrate a com- 
promise common to several different methods of computing the spacdfrequency representation: this 
size of the window. Arguments for a small window are increased spatial resolution and decreased fre- 
quency smearing due to frequency discontinuities and frequency shifts. The main argument for a large 
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1 

2 

n 1 -5 1 -3 1 -1 1 0 1  1 1 3  1 5  

real I0.127 I -0.212 I 0.637 I 1.000 I 0.637 I -0.212 I 0.127 
imaginary 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
magnitude 0.127 0.212 0.637 1.000 0.637 0.212 0.127 

imaainarv 4.056 -0.056 0.622 0.000 -0.622 0.056 0.056 
real -0.114 -0.205 0.134 1.000 0.134 -0.205 -0.114 

I I I I 

magnitude I 0.127 I 0.212 1 0.637 I 1.000 I 0.637 I 0.212 I 0.127 
real I -0.120 I 0.102 1 0.426 I 1.000 1 0.426 1 0.102 I -0.120 

Table 2: Fourier series coefficients of the five textures in Figure 
27. The magnitudes are identical from texture to texture. 
(The coefficients for n = -4, -2,2,4 and lnb5 are zero.) 

window is increased frequency resolution. Any choice is a compromise. Some of the techniques in 
the next section have ways of varying the window size for certain effects, but this still involves some 
size choices. Our experience was that we could find a size that worked well for everything we wanted 
to do. 

Based on this section, we can conclude the following about computing a spacdfrequency repre- 
sentation of a signal: 

We cannot single out isolated “events” in spacdfrequency with arbitrary precision. The 
ambiguity function says that basis functions respond to nearby copies of themselves, and 
that this response neighborhood has a certain minimum sue. 

There is a trade-off in resolution in space and resolution in frequency according to the 
uncertainty principle. Even if we choose the best window shape (the Gaussian), we must 
still pick a size that involves a compromise. 

The shape of the window is important. Windows with a sharp cutoff generally give sharper 
peaks in frequency, but they also cause side lobes. It is usually better to use windows that 
fall smoothly to zero. Although this dulls the frequency resolution, it also reduces the side- 
lobes dramatically. 
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Both frequency discontinuities and frequency shifts cause smearing in the space/frequency 
representation. 

For some applications, it may be important to use phase to discriminate signals. 

Thus the spacdfrequency representation is not perfect. Being aware of these issues allows one to 
make informed choices when using it. In spite of the problems, it is still a powerful representation for 
analyzing image texture. 

2.3 Methods of Computing the SpacelFrequency 
Representation 

There is no single best way to compute the spacdfrequency representation. There is not even a 
definition of what the ideal spacdfrequency representation of an arbitrary signal should be. Different 
methods of computing the representation optimize different criteria. These criteria include simplicity, 
redundancy, resolution, uncertainty, and coverage in spacdfrequency. This section contains a brief 
review of the basic choices and some mention of how they have been used in computer vision, and it 
concludes with our reasons for choosing the spectrogram. 

2.3.1 Instantaneous Frequency 
The instantaneous frequency of a sinusoid l i e  Acos (2xg(x ) )  is defined to be[79] 

u(x) = - [x) (48) f2 
A stationary sinusoid Acos (2n:ux) has an instantaneous frequency of u .  A linear chirp 
Acos (2xax  ) has a frequency that changes linearly with x .  Its instantaneous frequency is 2nx ,  

which is reasonable. For more general signals f ( x )  , the instantaneous frequency is defined as[80] 

2 

I3 where arg(1.z d ) = 8. For real signals, the (complex) analytic version of the signal must be used for 
this definition. 

The instantaneous frequency is a single-valued function of x .  Both these definitions apply only to 

signals that have only a single frequency component, so they do not apply to the more general signals 
that we see in images. 
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2.3.2 Short-Time Fourier Transform and Spectrogram 
The short-time Fourier transform (STFT) off ( x )  is a series of Fourier transforms taken over 

finite, equally long sections of the x axis. For lD, continuous signals, it is 

m 

da (50) 
-j2nau S T F T ( ~ , ~ )  = ~ , = ~ { w ( a - x ) f ( a )  1 = 5 w ( a - x ) f ( a ) e  

-_ 

This can be thought of as decomposing a function into basis functions w (a - x )  exp (-j2nau) , 
which are just complex sinusoids modulated by shifted versions of the window function w (a). The 
window function’s shape and width must be chosen based on the task at hand. 

The coverage of the STFT in the spacdfquency domain is illustrated in Figure 28. Each p i n t  
covers some region whose extend depends on the window function. Since the window is the same for 
every point, the spacdfrequency domain is divided uniformly. The size of the window alters the 
shape of the region according to the uncertainty principle. 

The spectrogram is the squared magnitude of the STFT. It does away with phase and it is never 
negative. Phase is usually not important for texture analysis, as we are only concerned with the tex- 
ture’s constituent frequencies and how they change with position. It is the phase that encodes the spa- 
tial information of a signal, and we are already representing the spatial coordinates explicitly in the 
spacdfrequency representation. The non-negativity of the spectrogram is important from an intuitive 
point of view. It makes sense that all energies should be positive. One common criticism of other 
space/frequency representations like the Wigner distribution is that they are sometimes negative. 

The generalization of the 1D STFT and spectrogram to 2D images is straightfornard. For image 
analysis, the STlT and spectrogram are based on 2D Fourier transforms, and this leads to a four- 
dimensional representation. For a 2D function f (x ,  y )  , the image STFT is 

(5’) 
-m-m 

Each 2D point on the image has a local, 2D Fourier transform. 

The image spectrogram is the squared magnitude of the image STFT. For discrete signals, the 
Fourier transforms are implemented with an FFT algorithm. Except for aliasing, which we analyze in 
Sections 1.3.3 and 3.5.3, all the intuition about the continuous STFT applies in the discrete case. In 
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I X 

Figure 28: The STFT and spectrogram cover the space/frequency domain with 
identically shaped and sized basis functions centered at dlfferent 
polnts in (x,u). (The basis functions actually overlap significantly, 
but we have drawn them adjacent to each other.) (Redrawn from 
[W.) 

practice, it may not be necessary to compute a Fourier transform around every point. This reduces the 
spatial resolution of the representation. 

Bajcsy[4] was the first to propose using the spectrogram for the description of image texture. She 
defines several texture features based on polar coordinates in the local power spectrum and shows 
how these features vary from one texture to another. She and Lieberman[5] went on to show how the 
texture gradient on a receding ground plane is related to frequency shifts in the image spectrogram. 
Gramenopoulos[33] measured the energy in four subsections of each local power spectrum for terrain 
classification. In their comparison of different texture features for classification, Weszka et a!. [ 1141 
used features based on the intersections of rings and wedges of the image’s power spectrum. Brown 
and Shvaytser[ 111 used the autocorrelation of an image of a slanted, textured surface to find the sur- 
face’s normal. This is related to frequency methods since the autocorrelation and the power spectrum 
are Fourier transforms of each other. 

2.3.3 General Filters 
The STFT can be thought of as a decomposition using a set of densely spaced, equally sized, 

equally shaped filters in the spacdfrequency domain. Other versions of the space/frequency represen- 
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tation use a set of filters that are spaced, sized, and shaped to suit the task. This is a broad category of 
space/frequency representation, but we distinguish it in that the spacing, size, and shape of the filters 
used here can be arbitrarily chosen by the user, whereas the filters for the STIT and wavelets have 
some predetermined relationships among them. 

One of the earliest and most basic representatives of this category is Triendl’s 1972 work on tex- 
ture segmentation[ 1031. He decomposed terrain images into a low frequency image (using a 3x3 aver- 
aging filter) and a high frequency image (using a 3x3 Laplacian derivative). Each of these was in turn 
smoothed with an 11x1 1 averaging filter to produce images that corresponded to scalar measures of 
“brightness” and “roughness.” Each pixel was classified based on these two features. Although he did 
not interpret his filters in terms of the spacdfre.quency representation, they could be. so this work 
belongs in this category. Laws’ texture energy measures are a more sophisticated version of this idea. 
He used 1D and 2D filters of dimensions three and five, along with a nonlinear averaging step, to clas- 
sify textures. 

Many researchers use biologically inspired filters for texture analysis. Malik and Perona[66] 
derive and implement a model of human, preattentive texture edge-finding. They use filters consisting 
of linear combinations of two and three Gaussians, because the filters fit physiological measurements 
and are simple to implement. By far the most popular class of biologically plausible filter is the Gabor 
function. Clark et aL[19] segment textures using two or three Gabor filters chosen manually to work 
on the specific textures in the image. Fogel and Sagi[27] use 32 different Gabor filters (four frequen- 
cies, four orientations, two phases) for segmenting textures. They use the smoothed, thresholded out- 
put of the filters as the input to a Laplacian edge detector. For shape-from-texture, Super and 
Bovik[97] used a set of 56 and a set of 80 Gabor filters to estimate the peak frequency at every point 
in an image. In later work[98] they use a set of 72 filters for estimating the moments of the frequency 
distribution at every point, which are in turn used for shape-from-texture. 

For shape-from-texture, it is better to have a dense sampling of the spacdfrequency domain, as 
given by the spectrogram, than a sparse sampling as in the work above. This is because the surface 
orientation of textured surfaces causes slight shifts in frequency, and we measure these shifts to esti- 
mate surface orientation. In Super and Bovik‘s first paper on the topic[97], they found the approxi- 
mate location of the peak frequency and then refined this estimate by searching the area with a denser 
set of filters. In the shape-from-texture algorithms we present in this thesis, we examine the shift of at 
least several frequencies, and sometime the entire frequency plane. This means we require a dense 
sampling in frequency. 
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2.3.4 Wavelets 
Wavelets are basis functions of the form 

1 x  
h a ( X )  = - h ( - )  h a  

These are scaled versions of the “mother wavelet” h (x) , which is usually a function that integrates to 
zero. The scale factor a is inversely proportional to frequency. The continuous wavelet transform 
(CWT)[88] of f ( x )  is 

a - x  
) dcr. 1 

CwT(x, a) = - hi a (53) 

If the mother wavelet is a complex exponential modulated by a window function w ( x )  , i.e. 

h ( x )  = w ( x )  exp ( - j2nu0x) ,  then the CWT will be 

As the scale factor increases, the center frequency u o / a  decreases and the window width grows pro- 
portionally to a .  In this form, the continuous wavelet transform is like a short time Fourier transform, 
only with a window width proportional to wavelength. Thus, the basis functions will cover a constant 
number of wavelengths, meaning that lower frequencies get wider windows and higher frequencies 
get narrower windows. The coverage of some of these basis functions is shown in Figure 29. The 
Gabor filters used by Super and Bovik[97][98], discussed in the previous section, follow this kind of 
scaling. In accordance with the uncertainty principle, the narrower windows at higher frequencies 
will have more spread in frequency than the wider windows at lower frequencies. This width scaling 
makes sense for some applications where frequency effects are expected to persist in proportion to 
their wavelength. 

The idea of using filters whose width is proportional to their wavelength existed long before the 
term “wavelets” was invented. Besides unifying the mathematics of such filters, researchers in wave- 
lets has discovered certain, discrete, finite-width mother wavelets that are orthogonal to scaled and 
translated versions of themselves[22]. This is one of the new, important discoveries in the field. This 
orthogonality means that the wavelet representation can be nonredundant, and therefore can be 
encoded in the same amount of space as the original, discretely sampled function. The discrete wave- 
let transform can be implemented with a cascade of filter banks[88]. The coverages in spacdfre- 
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Figure 29: Coverage of some of the basis functions for the continuous wavelet 

transform. The width in x is proportional to the wavelength. The 
frequency resolution drops as the windows get narrower. 

quency of the basis functions for a discrete wavelet transform are related by powers of two. Each 
successively higher frequency basis function has twice the bandwidth and half the spatial width. This 
is shown in Figure 29. 

The main difference between wavelets and the spectrogram is that wavelets use a variable-size 
window, while the spectrogram uses a constant-size window. 

2.3.5 Wigner Distribution 
The Wigner distribution of f ( x )  is defined as 

m 

This is the simplest of several different bilinear spacdfrequency representations. It is attractive in 
terms of its resolution, preservation of space and frequency support, and other properties. A good 
review of the Wigner distribution is a three-pari series by Claasen and Mecklenbrauk~r[l6]-[18]. 
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A 

1 

Figure 30: Coverage of all the basis functions for the discrete wavelet 
transform. The widths in x and u are related by powers of 
two.(Redrawn from pa].) 

Three examples show an important advantage and an important disadvantage of this method. In 
working with actual data, the WD must be modified with a window function that limits the support of 
the Fourier transform. This is called the “pseudo-WD. This reduces the resolution of the representa- 
tion somewhat, but the basic properties of the WD and pseudo-WD ax the same. 

Example 1: The Wigner distribution of a single, complex exponential 
f ( x )  = exp(j2nuOx) is 

= S ( u - u 0 )  

This constant ridge in space/frequency is just what we would like. 

Example 2: The Wigner distribution of a linear, complex exponential chirp 
f ( x )  = exp l32n (u,,x + u , x 2 / 2 )  ] (same as Equation (42)) is 
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W O ( x , u )  = sa=.u { e x p L i 2 m ( u o + u l x ) l l  

= 6Iu- ( u o + u , x ) 1  

This ridge exactly tracks the instantaneous frequency, which is much 
simpler than the STFT of this signal in Equations (43) and (44). 

Example 3: If the function to be analyzed is periodic with fundamental fre- 
quency uo, it can be expressed as a Fourier series, Le. 

, = -m 

While we would expect the spacdfrequency representation to be a 
series of ridges at integer multiples of the fundamental frequency, we 
show in Appendix 2 that the Wigner distribution is actually 

m 

n = O  m = n + l  

where Re (z) means the real part of z ,  and 

a. = co 

a, = 2c, for n f 0 

The first term of this WD is exactly what we WOL like, but the secon 
term represents the cross terms that occur in the WD of any sum. The 
bilinearity of the WD means that the WD is not linear, giving oscillat- 
ing cross terms in addition to auto-terms. There are several variations 
on the WD that are reviewed in [MI. Some of these represent attempts 
to reduce the magnitude of the cross terms, but they are always still 
there. 

(57) 

Reed and Wechsler[87] use the Wigner distribution for segmenting flat, frontal textures. They 
keep the frequency with the highest energy at every pixel and use a relaxation technique to label 
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regions. Jau and Chin[45] use the Wigner distribution for shape-from-texture by measuring variations 
in high-frequency energy due to 3D effects. 

2.3.6 Adaptive Filters 
All the methods for computing the spacdfrequency representation discussed until now work inde- 

pendently of the underlying function that is being analyzed. Jones and Parks[47] developed an “adap- 
tive time-frequency representation” (ATFR). It is a short-time Fourier transform with a Gaussian 
window given by exp cx , (x - x,,) ’1. The complex Gaussian parameter cx varies from point 
to point in spacelfrequency. The real part controls the width of the window, and the imaginary part 
controls the “chirpiness.” Jones and Park develop a criterion function that measures the peakiness of 
the space/frequency representation at any point (I,,, uo) as a function of this parameter. They per- 
form an exhaustive search over a set of candidate values of cx and pick the one that maximizes 
the peakiness at every point in spacdfrequency. Using several different signals as examples, they 
show how this produces higher-resolution representations than the spectrogram without the cross 
terms of the Wigner distribution. 

L o  0’ 0 

0’. 0 

2.3.7 Specially Tuned Filters 

Superr991 has recently developed a clever, new shape-from-texture algorithm that uses filters 
matched to the frequency distortions caused by 3D effects. His filters have a Gaussian envelope, and 
they are parameterized by pixel location, 2D frequency, and the slant and tilt of the plane viewed in 
the scene. He finds which filter best fits a section of the image and declares that filter’s slant and tilt 
parameters as the surface orientation of the underlying textured plane. 

2.3.8 Why We Picked the Spectrogram 
At first glance, the spectrogram seems to be the simplest, most obvious, and easiest-to-implement 

method for computing the spacdfrequency representation. While this is true, a deeper analysis also 
shows that it is the best method for our particular application (segmentation and shape from periodic 
texture). We arrived at this conclusion essentially by eliminating all the other possibilities. 

Using instantaneous frequency is impractical, because it only makes sense for single sinusoids, 
and textures are hardly ever this simple. 

The STFT is like the spectrogram except that it includes phase. Although it has been shown that 
phase is at least as important as magnitude in representing images[78], and some distinctly different 
textures have identical spectrograms (Section 2.2.6), including phase would have unnecessarily com- 
plicated our algorithm by giving an extra pair of parameters (phase in two dimensions) to search over 
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textured surface 
camera 

Figure 31: Self occlusion of a textured surface can cause a phase discontinuity 
in the image. 

when matching texture patches. Irregular textures, which we analyze in Section 3.5.4, do not have 
coherent phase properties, so it would be a disadvantage to depend on phase for shape-from-texture. 
Also, in some cases as in Figure 31, self-occlusion of a textured surface can cause an apparent viola- 
tion of phase continuity in the image. 

The spectrogram can be considered a special case of using general filters for creating the space/ 
frequency representation. Usually, filters are used to create a relatively sparse sampling of the space/ 
frequency domain, while the spectrogram covers it densely, In shape-from-texture, it is important to 
track small shifts in frequency due to 3D effects, and this calls for a dense sampling in frequency. In 
most of Malik’s work, he uses a set of filters. However, in his work with Rosenholtz on shape-from- 
texture, they used the spectrogram, because the sparse sampling that they tried originally did not 
work[67]. 

The main difference between wavelets and the spectrogram is that wavelets use a variable width 
window, with narrower windows for higher frequencies. For our purposes of analyzing texture, a vari- 
able window size space/frequency representation is less attractive than the spectrogram. Textures usu- 
ally have sharp boundaries and slowly varying frequency content (due to 3D effects), so the high 
frequency components have the same extent as the low frequency components. There is no use, then, 
in having the high frequency windows be narrower than the low frequency windows. Of course, nar- 
rower windows are less prone to being corrupted by texture boundaries because they are less likely to 
overlap into two different textures. But, if a wide-window low frequency component is corrupted, it is 
really no consolation that the high frequency components are still pure. 
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The Wigner distribution and the other, associated bilinear distributions are unsuitable because of 
their inherent cross terms. Besides making the spacdfrequency representation messier, the oscillating 
cross terms would confound attempts at matching frequencies for segmentation or computing shifts in 
frequencies for shape-from-texture. 

The adaptive approach of Jones and Parks[47] to computing the spacdfrequency representation 
is, at each point in (x, u )  , dependent on the signal for its window. In addition to being very slow to 

compute, it is difficult to predict how the signal will affect the window. This approach has potential 
for our problem, but the theory is not mature enough to build applications with it. 

Super’s specially tuned filters for shape-from-texture[99] work well for that problem. More work 
needs to be done to make them work for random textures, which the spectrogram can handle in the- 
ory. It is not clear how to use these filters for texture segmentation either. In addition, the Fast Fourier 
Transform cannot be used to apply these filters. However, this is a promising approach to texture 61- 

tering that deserves more attention. 

2.4 Summary 

This chapter was about the spacdfrequency representation - the representation that we use in the 
next two chapters. It shows a signal’s spatial and frequency characteristics simultaneously. Unlike the 
Fourier transform of the whole signal, the space/frequency representation maintains the spatial coher- 
ence of the signal. Actual computation of the space/frequency representation suffers from several 
effects that limit its resolution. Some of these, like the ambiguity function and the uncertainty princi- 
ple, are important for general applications. Others, like frequency shifts and frequency discontinui- 
ties, are especially important for image texture analysis. There are several ways to compute the space/ 
frequency representation. We chose the spectrogram because it suits our needs better than the other 
methods. 
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3.1 Overview of Problem and Solution 

Shape-from-texture algorithms compute surface normals of uniformly textured surfaces from 
images. A simple example of an appropriate image for this analysis appears in Figure 32. If we 
assume that the plate is uniformly textured, then all the variations in texture. can be attributed to the 
plate’s changing depth and surface normal. As the plate recedes, the texture elements appear smaller 
and closer together. There are mathematical relationships between the texture’s change in appearance 
(e.g. spacing, area, perimeter, frequency) and the surface normal of the textured surface. Shape-from- 
texture algorithms work by detecting this change in appearance and then applying the mathematical 
relationships to find the surface normal. 

Our shape-from-texture algorithm works by comparing the local spatial frequency of different 
regions. An increase in depth causes the texture to appear more compressed in the image. This is 
manifested as an increase in spatial frequency. Figure 32 illustrates this effect. The two light-colored 
patches show the 2D Fourier power spectra (part of the spectrogram) of the underlying pixels. Since 

69 



Orientation of Textured Surfaces fmm Frequency Shifts 

Figure 32: Local Fourler power spectra show frequency shift due to surface 

the texture is periodic, the Fourier transform consists of peaks at the texture’s fundamental and har- 
monic frequencies. The peaks in the right patch are farther from the frequency origin, indicating 
higher frequencies. We show in this chapter that the relationship between the two Fourier transform 
patches is approximately affine. These affine parameters are functions of known quantities and the 
unknown surface normal. Our algorithms work by searching for the surface normal that accounts for 
the affine transformation between two (or more) patches. 

normal. 

Shape-from-texture algorithms can be categorized based on their assumptions about the texture. 
One split concerns whether or not the texture is composed of discrete, observable texture elements 
(texels). Examples of texels include spots on a leopard and bricks in a wall. Textures without texels 
include clouds and dryer lint. As we mentioned in Section 1.2.10 (“High-Level Features” on page 9), 
texture elements are very difficult to reliably find in images. One of the main advantages of our algo- 
rithm is that it does not require the detection of texeIs. 

Another dichotomy concerns periodic versus random textures. Periodic textures are generally eas- 
ier to analyze by shape-from-texture. Although the first algorithm we develop in this chapter applies 
to both kinds of textures, it really only works on periodic textures. Finding surface normals from ran- 
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dom textures usually requires a large region of the texture and strong assumptions about how it would 
appear if viewed from the front. 

A third way of splitting shape-from-texture algorithms concerns the standard to which the shape- 
induced deformations are compared. Some algorithms are based on an assumption about the appear- 
ance of the frontally-viewed texture. Deviations from this assumed form are attributed to shape 
effects. A common such assumption is that the frontally-viewed texture is isotropic in some way. For 
example, Witkin[llS] assumed a uniform distribution of edge directions, while Brown and Shvayt- 
ser[l 1 J assumed a circularly symmetric autocorrelation function. The other type of algorithm com- 
pares the texture to itself in different parts of the image, attributing differences to depth changes 
caused by the surface normal. Our algorithm is of this latter type. We compare the spatial frequency 
of the texture. in different parts of the image and find the surface normal that accounts for the differ- 
ence. This algorithm lets us make fewer assumptions about the frontal texture, but it requires us to 
rely on possibly small depth changes to compute the surface normal. 

Of course, all shape-from-texture algorithms presuppose that the textured surfaces in the image 
have either been segmented or that the image contains only one texture. We make the same assump- 
tion in this chapter, In Chapter 4 we eliminate this assumption and do segmentation and shape-from- 
texture simultaneously. 

The remainder of this chapter describes three different shape-from-texture algorithms. Sections 
3.2 and 3.3 contain a derivation of some basic equations that apply to all the algorithms. They show 
that the local Fourier transform of an image patch from a nonfrontal texture is approximately an affine 
transformation of the Fourier transform of the hntally-viewed texture. Section 3.4 shows that the 
connection between two local power spectra from a similarly textured plane are approximately 
related by an affine transformation. Sections 3.5 and 3.6 use this fact to develop two algorithms based 
on direct comparisons of power spectrum patches. One of them works on any pair of patches (even if 
one is aliased), and the other is designed to work on patches that are close together in the image. Sec- 
tion 3.7 presents a third algorithm based on the assumption that the texture is periodic. 

3.2 Approximate Local Image of a Textured Surface 

This section contains a derivation of the connection between a frontally-viewed texture pattern 
and the approximate image of that pattern when the texture has been mapped to an arbitrary surface in 
the scene and viewed in perspective. We will use this relationship later to develop a relationship 
between the Fourier transforms of texture patches taken from the same textured surface. 
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Figure 33 shows the coordinate frames used in the derivation. The camera’s pinhole is at the ori- 
gin of the (X, Y, Z) frame. This serves as the world coordinate frame, and points defined in it will be 
referred to with upper-case (X, U, Z) . The -Z axis is coincident with the camera’s optical axis and 
points into the scene being imaged. The image plane is the (n, y) frame with its origin on the optical 
axis at a distance d behind the pinhole. It is parallel to the XY plane. d is known as the camera’s 
effective focal length. 

Figure 33: Coordlnate frames used in derivation 

We imagine that each point on the locally planar textured surface has its own coordinate frame 
(s, t, n) , with the n axis coincident with the surface normal. The surface normal is defined with the 

1 
r (p, 4). thus the unit vector along the n axis is A = - ( p ,  q, 1) , with 

world frame. The origin of this surface frame is (Xi, Yi,  Zi) with respect to 
the world frame. 

The 4x4 homogeneous transformation matrix that locates and orients the surface frame with 
respect to the world frame is 
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a single rotation of the (s, f, n )  frame around the unit vector 
angle I$ with cost$ = l / r  and sin@ = ( J1 p + q ) / r .  

We assume the texture on the surface is "painted" on and not a relief pattern. (The resulting algo- 
rithms can work even when this assumption is violated, as shown in Figure 41.) The pattern is locally 
characterized in the (s, t, n) surface frame as a pattern of surface markings given by As, f) . Points on 
this locally planar surface are given by coordinates (s, r, 0) . Applying the transformation matrix, the 
corresponding world coordinates are 

X =  t l l s + t 1 2 t + X i  
Y =  r21s+fut+Yj 
Z = t31S + t32t + Zi  

Under perspective, these points project to the image plane at 

r l l s++ t12 t+Xi  
z f 3 ] S +  t32f+Zi 

Y t ~ + r ~ ~ r +  Yi 
Z t31s + t32t + zi 

x = -d- = -d 

y = -d- = -d 21 

The origin of the (s, t, n) frame thus projects to (x i ,  y i )  = (-dXi/Zi, -dYi/Zj) on the image 
plane. In order to avoid carrying a coordinate offset through the calculations, we define another coor- 
dinate system, (x', y ' )  , on the image plane that is centered at (xi, y i )  with its axes parallel to those 
of the image plane. In terms of s and t, x' and y' are 

t, 1s + tl2t + xi 
t31 s + r32t + zi X I =  x - x . =  - d  - xi  I 

rZls + t22t + Vi 
- Y ;  I t 3 1 ~  + t32r + Z j  

y' = y - y . =  - d  

Solving these two equations for s and t will give equations that give a point in the surface frame for 
any corresponding (x', y ' )  . Doing so, using (X i ,  Y;) = ( -x iZi /d ,  - y i Z j / d )  and the orthonormal- 
ity relationships among the vectors in the transformation matrix, we have 
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Thus, if the brightness pattern on a locally planar patch on a textured surface is As, r ) ,  then the pro- 
jected pattern on the image plane is a nonlinear warping of the pattern given by f[$(~', $), t(x', y')] . 

To make the frequency analysis tractable, we will linearize this warping using a truncated Taylor 
series around (x ' ,  y') = (0,O). The approximation is justified since the spectrogram examines only 
a relatively small window of intensities around each p i n t  of interest. We have 

s(x', y ' )  = 5 2 '  + syy' 
t (x' ,  y')  = txx' + fyy' 

with 

where 

and where we have substituted the values of tij from Equation (61). The projected version of f ls ,  t) is 
then approximately As$ + s,y', '2' + t yy ' ) ,  which is just an affine transformation (without transla- 
tion) of the coordinates. The four affine parameters are functions of the 3D location and surface orien- 
tation of the textured surface and the camera's effective focal length. 

There are other ways to approximate perspective projection with an affine transformation. One of 
them is from Ohta et al . [76] ,  whose approximation assumes that each texture element on a slanted 
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plane is projected to a frontal plane that passes through the element's center-of-mass. Aloimonos[2] 
used the same projection model for some of his work in shape-from-texture. Kanade and Kender[SO] 
developed the basis of their shape-from-texture algorithm by deriving the affine transformation 
between two texels on different planes under orthographic projection. Our approach is different from 
these others in that we write the exact perspective equations and then approximate mathematically 
using a truncated Taylor series. The others make a physical approximation first that leads directly to 
an affine transform. 

3.3 Local Fourier Transform of an Image Texture 

Since we are working with the spectrogram, our real interest is in the Fourier transform of the 
image patch. A property of the Fourier transform is that if a function in space undergoes an affine 
transformation, its Fourier transform will also undergo an affine transformation. This is given by the 
following Fourier transform' pairs[32]: 

3 cflx', Y')} = F(u, v) 

where D = s f - s t . We just showed that the connection between a frontal texture pattern and its 

perspective projection is approximately affine. The relationship above means the connection between 
their frequency distributions is also approximately affine. 

X Y  Y X  

The relationship in Equation (69) does not take the window into account. We show in Appendix 4 

that when a window is taken into account, it is more accurate to drop the l/l DI scale factor. We do 
this in the rest of this thesis and in our algorithms. 

1. Our notation for the 2D Fourier transform has u and v as the fquency variables. measured in cycledunit dis- 
tance. The 2D Fourier transform of f(x, y )  is given by 

The 2D inverse Fourier transform is given by 

-- 
Uppercase functions usually indicate the Fourier transform of the corresponding, lower-case functions. 
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The affine frequency scaling induced on the frontal Fourier transform is not easy to interpret intu- 
itively based on Equations (67). It is easier to interpret if we consider a special case: surface normal 
slanted to the right ( p  > 0) with no vertical component ( q  = 0) that is projected to the center of the 
image ( ( x i ,  yi) = (0,O) ). The affine parameters in the spatial domain then become 

(The Zi turns out to be negated because all points in the visible scene have negative Z values.) The 
affine transformed Fourier transform is 

We can verify these frequency effects with our intuition in two ways. First, an increase in depth 
(larger absolute value of Z) dilates the Fourier transform equally in both dimensions. This makes 
sense, because objects appear smaller at greater distances, which translates into higher spatial fre- 
quencies. Second, slanting the patch more to the right (increased p) dilates the frequency along the 
horizontal direction, but has no effect on the vertical frequencies. This is plausible, since the 
increased slant will compress the texture only in the horizontal direction, leading to increased fre- 
quency along that direction. 

3.4 Affine Connection 

Since there is usually no way to determine what the frontally viewed texture looks like, we resort 
to comparing patches of the same texture at different locations in the image. We showed above that 
the Fourier transform of each patch is related to the Fourier transform of the frontally viewed texture 
by an affine transformation. This means that the Fourier transforms of patches themselves are related 
by affine transformations. We will show that if we assume two patches come from the same textured 
plane, then the affine parameters connecting them are functions of known camera and image parame- 
ters and the plane’s surface normal. 

Suppose the two texture patches in the scene are related to the frontally viewed texture by the 
affine parameters ( s x  , s f f ) and (s s t f ) .The  subscripts differentiate between the 

X2’ Y$  12’ Y 2  
two patches. Transfomng the Fourier transform of the first into the second with affine parameters 

(a,, b,,  a2, b2)  gives 

1 , Y l ’  XI’ Y l  
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where F1(u, v) and F2(u, v)  are the Fourier transforms of the two image patches. Note that we have 
ignored phase differences here. In reality, the Fourier phases of the two patches will be different. This 
difference is masked because each patch is defined with respect to its own local coordinate system. In 
our formulation, phase would only complicate the derivation, since we discard it by computing the 
Fourier transform’s squared magnitude (power spectrum) in our algorithm. 

Equating coefficients on u and v in Equation (72) leads to the following linear equation: 

whose solution is 

(74) 

Thus, the affine parameters connecting the two Fourier transforms are functions of the affine parame- 
ters connecting the two patches to the frontally viewed texture. In order to relate this equation to the 
physical parameters of the camera and the textured surface, we take the values of (sxI, sy , ,  txI  , t ,  , I  1 
and (s s , t , t ) from Equation (67). Before doing this, however, we will make the assumption 
that the two texture patches havethe same surface normal, i.e. (pl, q l )  = (p2 ,  q2) = ( p ,  q )  , and 
that both patches are on the same plane, i.e. 

12’ Yz x2 y2 

(75) 
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Substituting values from Equation (67). the affine parameters connecting the Fourier transforms of 
the two patches are then 

where 

The notable feature of these equations is that the only unknowns are (p, q) . This allows us to 
write a simple algorithm that determines the correct surface normal by finding the (p, q) that gener- 
ates the affine parameters that best transform one patch into another. In our algorithm we actually use 
the squared magnitude of the Fourier transform, but the same affine parameters apply. 

These affine parameters are hard to interpret intuitively, but several special cases support their 
plausibility. One special case is orthography. Mathematica says that as the focal length d goes to 
infinity, the affine parameters go to the identity transformation, i.e. 

This is what we expect. The frequency shifts depend on a depth difference, and the depth differences 
become zero in the case of orthography. We also get the identity transform as the surface normal 
becomes parallel with the camera’s optical axis, that is 

In addition, we get the identity transform when the patches are coincident, which is when both 
x1 = x2 and y ,  = y 2 .  
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Another special case has a planar surface slanted to the right (p > 0) with no vertical component 
(q = 0). If the two patches are both on the center row ( y ,  = y2 = 0) and placed symmetrically 
around the center column separated by a distance a (rl = -a /2 and x2 = a / 2 ) ,  then 

b,  = 0 
n2 = 0 

2d - ap 
b 2 =  2d+ap 

Recalling that the connection between the two local power spectra is 
IF1 (a , u + b , Y, a2u + b2v) \ = IF2 ( u, v) 12,  we see that the frequency shifts in this case are a simple 
scaling of the frequency axes with no shearing. It is usually the case that 2d lapi. In this case, for 
positive p,  both a,  and b, will be less than one, meaning that the patch on the left will have lower 
frequencies than the patch on the right. Since the right patch is more distant in this case, this makes 
sense. 

2 

Typical numerical values can be computed by assuming a 35mm camera ( O m m  < a c 35 mm ) 
with a 50mm lens (d = 50mm). If the surface is slanted to the right at 4 5 O ,  then p = 1. If the two 
power spectrum patches are on opposite sides of the image, then a = 35mm and 
(a , ,  b,, a2, b2) = (0.23,0,0,0.48). Ifthe patches areonly lmm apart on the film, then 
(a, ,  b, .  a2, b2)  = (0.96,0,0,0.98). 

The derivation in Sections 3.2 to 3.4 constitutes the basic math for our first two shape-from-tex- 
ture algorithms. To summarize, we first showed how a locally planar surface patch projects by per- 
spective into the image. Since this projection is complicated, we approximated it with a truncated 
Taylor series. This gave an affine relationship between the frontally viewed texture and the projected 
texture. A property of the Fourier transform says that an affine transformation in space is an affine 
transformation in frequency. Since the Fourier transform of each image patch is related by an affine 
transformation to the Fourier transform of the frontally viewed texture, the Fourier transforms of the 
image patches are also related by an affine transformation. If we assume the two patches are on the 
same plane, the affine parameters that connect their Fourier transforms are functions of known carn- 
era parameters and the unknown surface n o d .  
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3.5 Algorithm1 : SSD Patch Matching 

Our first shape-from-texture algorithm consists of an exhaustive search for the ( p ,  q) that gives 
the best affine parameters between two patches. This section describes the algorithm, gives results. 
shows how it can work in spite of aliasing, and discusses sensitivity issues. 

3.5.1 Search in (p,q) Space 

Our algorithm begins with two points on the image plane chosen by the user. We multiply the 
64x64 neighborhood around each point by a radially symmetric Blackman-Harris minimum four- 
sample window (Section 2.2.3). We compute the power spectrum of these products using a 2D FIT 
program. This gives us part of the spectrogram: S (x , ,  yl ,  u, v )  and S (x2, y 2 ,  u, v )  . We could also 
include phase information by using the STFT instead. Phase could be useful for periodic textures in a 
light-striping-like algorithm. However, the phase information in a random texture would be useless. 
In addition, if part of a texture is occluded as in Figure 31, the phase information would be mislead- 
ing, because the number of wavelengths traversed by the texture in the occluded region is unknown. 
In order to match the phases of two patches, we would have to use a six-parameter affine transfonna- 
tion (including translation) rather than the four-parameter version (no translation) that we use now. 
By ignoring phase, we can reduce the complexity of the affine transformation and speed up the pro- 

gram. 

The last step of our core algorithm is an exhaustive search for the ( p ,  q) that best transforms the 
power spectrum of one patch into another. Given a candidate (p, q) from the search grid, we com- 
pute the corresponding affine parameters from Equation (76), use these to transform the power spec- 
trum of the first patch using bilinear interpolation, and compute the sum of squared differences (ssd) 
between the two power spectra. Our search grid is 60x60, spread linearly over (Ipl, Iql) I (2 ,2)  . We 
take the ( p .  q) that generates the minimum ssd as the solution. 

We summarize the magic numbers in this algorithm in Table 7. We investigate the effect of win- 
dow size in the next section, and the effect of the positions of the two patches in Section 3.5.5 on sen- 
sitivity. 

3.5.2 Results 

In Figure 34 - Figure 43 we show ten images of periodic, textured plates, The first four were cre- 
ated with a computer graphics program. We used a page-scanner to digitize Brodatz[lO] textures and 
mapped these onto four geometrically identical flat plates. Although this eliminates the 3D relief 
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window size 
search grid resolution 
search grid limits 

1 descrintion I value(sl I 
64x64 pixels 

60x60 

(IPl, 141) 5 (292) 

, ,  

Dositions of two image patches I same row, spaced far horizontally I 

Willson’s program first performs an approximate calibration using Tsai’s calibration method[l04]. 
It then uses an IMSL optimization routine to refine the result. This program finds the six extrinsic 
parameters that locate the camera as well as the five intrinsic parameters of focal length, pixel height 
to width ratio, Tsai’s radial lens distortion parameter IC,, and the image center. The focal length for 
these images turned out to be 52.11 mm. We estimated the actual surface normals of the textured 
plates either by trigonometry based on their position on the optical table or by an electronic level on 
the camera platform if the object were lying flat on the floor. 

The results are given in Table 8. The surface normal error varies from a low of 1.2” for the 
“bumpy plastic” texture to a high of 6.1 O for the “cotton canvas” and the “grid paper”. The average 
error for the ten images is 3.5”, which is about as accurate as any shape-from-texture program on 
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Table 4: Results of ssd patch matching on textured plates in Flgure 34 - 
Figure 43. 

these types of texture. (See Table 11 on page 135 for a comparison.). This is better when considered 
with the fact that we are using less than 4% of the pixels in each image, while most shape-from-tex- 
ture programs use 100% of the image pixels. The egg crate texture in Figure 41 shows that the pm- 
gram gives a reasonable result in spite of the effects of 3 D  relief. In this image, the black background 
shows through on the right, but gradually disappears toward the left. 

The ssd search spaces are shown along with each test image. The shape and broadness of the val- 
leys around the minima give some indication of the sensitivity of the solution. We examine these 
shapes more closely in Section 3.5.5. The ssd surfaces are bumpy, and they have multiple, local min- 
ima (indicated by some of the closed contours in the contour plots). This is one reason that we use an 
exhaustive search for the minimum. 

We investigated the effect of window size by running our program on the four Brodatz textures 
with different window dimensions. For these tests, we increased the resolution of our search in 
[p,  q)  space from 60x60 to 200x200 to factor out any effects of a too-coarse search grid. The win- 

dows were centered at the same two points in the images regardless of the window size. The results 
are show in Figure 34. The abscissa is the length of a side of the square window in pixels. The ordi- 
nate shows the surface normal error in degrees. For all four textures, an undersized window causes 
inaccuracy. This is probably because the small window gives only a low resolution Fourier transform. 
For these textures, window sizes between 30 and 120 are best. In this range the error is nearly inde- 
pendent of the window size, which is a good feature of the algorithm. The left and right windows 
started overlapping the left and right edges of the textured regions when the windows’ size reached 
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Figure 34: Textured plate used for testing shape-from-texture algorithms. This 
is a page-scanned Brodatz texture, “woven aiumlnum wire” (D6), 
mapped onto a fiat plate with a computer graphics program. The two 
power spectra shown on the plate were used for the ssd patch 
matching algorithm. The resulting (p,q) search space is shown 
below. 
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-2.12. 

Figure 35: Page-scanned Brodatz “French canvas” (D21) 
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Figure 36:, Page-scanned Brodatz "oriental straw cloth" (D53) 
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actual ( p ,  q )  = (0.614,0.364) 
error is 6.1 O 

Figure 37: Pagescanned Brodak “cotton canvas” (DTI) 
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-2 -1 0 1 

Figure 38: This is an actual image taken in the Calibrated Imaging Laboratory 
(CIL) at CMU. It is a painted metal screen guard. 
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actual @ , q )  = (-1.878,O.O) 
error is 6.1 O 

Figure 39: CIL image of shelf paper with a grid pattern. 
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actual ( p , q )  = (-1.878,0.0) 
error is 1.4" 

-2 -1 0 1 

Figure 40: CIL image of checkered shelf paper 
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actual ( p ,  q )  = (-1.373,0.0) 
error is 4.3" 

Figure 41: CIL image of a plastic, fluorescent light cover wlth an egg crate 
pattern. We get a reasonable result in splte of the pronounced, 3D 
relief effects. 
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actual ( p ,  q )  = (-1.373,0.0) 
error is 1.2" 

^ , .  

-2 -1 

Figure 42: CIL image of a plastlc, fluorescent light cover with small bumps 
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- 

Figure 43: CIL image of a doormat 
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Figure 44: Angle error versus wlndow size for the four Brodatz textures in 
Figure 34 through Figure 37. The windows begin overlapping the 
edge of the textured region at a window size of 90. 

about 90 pixels. This did not adversely affect the accuracy until the size reached 120, at which point 
either the overlapping into the background or the smearing caused by the large shift in the textures’ 
frequencies caused a sharp increase in error for all but one of the textures. 

3.5.3 Aliasing 

Although aliasing can cause real problems in image understanding, it is rarely dealt with explic- 
itly in machine vision algorithms. This section describes how a simple modification to our SSD patch- 
matching algorithm can make it work in spite of aliasing. 

Aliasing occurs when the image projected on the sampling grid has spatial frequencies that are 
higher than half the spatial sampling rate. If the aliased pattern is periodic, moire patterns appear. We 
showed in Figure 8 how a moire pattern was accidentally produced in a stereo pair that caused errone- 
ous results. Another moire pattern is shown in Figure 45. The texture here consists of two fairly high 
frequency 2D cosines. One cosine runs diagonally from the lower left to the upper right, and the other 
is perpendicular to this one. The left side of the plate is not aliased, while the right side is, because the 
projected frequencies have grown beyond half the sampling rate. The series of local power spectra 
across the center of the image show what happens to the frequencies. As the peaks move out from the 
center, they approach the edges of the squares. The squares’ edges are at half the sampling rate, and 
thus represent the highest frequencies that can be successfully sampled. The peaks in the first and 
third quadrants hit the edges in the fourth square from the left. In the next square to the right, they 
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Figure 4 5  Plate showing aliasing on the right. There is no aliasing on the left. 
Going to the right, two of the delta functions in the power spectrum 
move to the edge of the window and then reappear elsewhere. 

reappear in the second and fourth quadrants along with the peaks that were already there. This is the 
onset of aliasing. In the last square the aliased peaks have moved a little more back into the square. 

If the sampling rates in the x and y directions are us and vs respectively, then any ( u ,  v )  outside 
the boundaries (+u,/2,  fv,/2) will be aliased. It can be shown that the aliased frequency will be 
given by 

where 
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‘aliased 

U 

Figure 46: Aliased frequency as a function of actual frequency when the 

with Lxj being the “floor” function, returning the largest integer not exceeding x .  The function 
saw d x )  has a period of T. We show a plot of uiiliased as a function of u in Figure 46. It shows how 
the unaliased frequency rises and then reappears at a different frequency when aliasing occurs. 

sampling frequency is u s .  

Our algorithm allows us to account for aliasing very easily. When we test a given ( p ,  q )  , we 
warp the frequency coordinates in one power spectrum by an affine transformation. We simply put all 
the transformed (u, v)  ’s through Equation (81) to adjust them for aliasing. This way, if a given 
( p ,  q )  causes frequencies to be transformed outside the half-sampling-frequency limits, they will be 
aliased back in at the proper coordinates. This is also a convenient way of making sure both frequency 
patches overlap exactly, instead of having one skewed off the other with no corresponding frequen- 
cies in the other patch after the affine transformation. 

We ran our algorithm on the left and right patches in Figure 45 and got an error of about 4.5’. 
Thus the method successfully accounts for aliasing. The one restriction is the assumption that the first 
patch is not aliased. 

We know of no other shape-from-texture algorithm that can account for aliasing even in this sim- 
ple case. We attribute the ability to the fact that the spaadfrequency representation preserves essen- 
tially all the data in the original signal and that frequency is the natural domain for the analysis of 
aliasing. 

3.5.4 Irregular Textures 

We take “irregular” textures as those that are not periodic (and not skew-periodic, see Appendix 
3). Compared to the periodic textures that we have been working with, it is more difficult to get a 
good estimate of the local spectra of irregular textures, and thus they are harder to analyze using the 
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description 
center-to-center window spacing 
window size 
neighborhood for spectrum patch averaging 
search grid resolution 
search grid limits 

value@) 
16 pixels horizontally and veftically 

128x1 28 pixels 
7x7 patches 

40x40 

(IPl, 141) 5 (232) 

The results of our algorithm on these eight textures are shown in Table 8. The average error for 
the four periodic textures is 4.9”, while the average for the irregular textures is 7.5”. The average 
error for the four periodic textures using this averaging algorithm is not much worse than for the non- 
averaging algorithm. The slight increase in error may be because the larger windows tend to smear 
the shifting frequency peaks. In general, less regularity leads to more error. The periodic textures have 
the lowest error, the two pseudo-periodic textures are next, and the two most random textures have 
the highest error. We note that the ssd surfaces for the irregular textures have much wider depressions 
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128x128 window I 
centers of averaged patc es s 

Figure 47: Scale drawing of windows used for computing surface normals of 
irregular textures. We used 12 unique pairs of windows arranged 
around the perimeter of a rectangle. 

around their minima that for the sharp minima of the periodic textures. Part of this is due to the irreg- 
ularity of the texture, and part is due to averaging the power spectra. Figure 52 shows the ssd surfaces 
for the four periodic textures using this averaging algorithm, We see that these surfaces are smoother 
than those from the original algorithm where we did not do any averaging of the power spectrum 
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texture 
woven aluminum wire (06) 

oriental straw cloth (D53) 
French canvas (D21) 

cotton canvas (D77) 

true (P. 4) true ( 0 , ~ )  (Pi 4) ( 0 , T )  error 
(0.614,0.364) (35.5", 30.7') (0.462.0.2fi6) (27.S0, 29.0") 7.7" 

(0.614,0.364) ( 3 5 . 5 O ,  30.7O) (0.564.0.359) (33.8", 32.5") 2.0" 
(0.614,0.364) (35.5°,30.70) (0.667,0.359) (37.lo,28.3O) 2.1' 

(0.614,0.364) (35.5D,30.70) (0.462.0.256) (27.8".29.0") 7.7" 
. .. 

I 

oriental straw cloth (D78) 
loose burlap (D104) 
handmade paper (D57) 
Dlastic bubbles ( D i l l  I 

I averaae error I I 4.9" I 
(0.614, 0.364) (35.5", 30.7") (0.564.0.256) (31.8°.24.40) 5.1' ' 
(0.614, 0.364) (35S0, 30.7') (0.564.0.359) (33.8O.32.5") 2.0' 
(0.614, 0.364) (35.5', 30.7') (0.461,0.154) (25.9". 18.5") 11.4" 
10.614.0.364) (35.5'. 30.7') (0.359.0.359) (27.0".45.0") 11.3" 

I .  I 

average error I 7 . 5 O  

Table 6: Results of averaged ssd patch matching on periodic textured plates 
in Figure 34 - Figure 37 and on irregularly textured plates in Figure 
48 - Figure 51. 

patches. In general, we conclude that computing surface normals from irregular textures is harder 
than for periodic textures, and that we must use much more of the image data to get good estimates. 
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actual ( p ,  q )  = (0.614,0.364) 
error is 5.1' 

Figure 48: This Brodatz straw cloth (D78) is sort of periodic, but not exactly. 
The two 128x128 power spectrum patches show some peaks but 
also some other, less structured frequency content. 
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actual ( p ,  4) = (0.614, 0.364) 
error is 2.0° 

Figure 4 9  This Brodatz loose burlap (D104) is a perturbed perlodic pattern, 
and the averaging of the power spectrum patches tends to smooth 
out the perturbatlons. 
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actual ( p ,  q )  = (0.614,0.364) 
erroris 11.4' 

Figure 50: This Brodatz handmade paper (D57) is fairly random, and the ssd 
surface is quite smooth, meaning it is more difficult to find a precise 
minimum. 
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i 

1 

C 

-1 

-' 

Figure 51: These Brodatz bubbles ( D l l l )  are fairly random, and the ssd 
surface is quite smooth. 
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woven aluminum wire (D6) French canvas (D21) 

oriental straw cloth (D53) cotton canvas (D77) 

Figure 52: These are the ssd surfaces for the four periodic textures in Figure 
34 - Figure 37 when we use the averaged ssd patch-matching 
algorithm. These surfaces are smoother than with the original 
algorithm. 
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3.5.5 Bias and Variance 

After working with a shape-from-texture program, it becomes apparent that the accuracy of the 
results depends on many factors. Some textures give consistently more accurate surface normals than 
others. The relative positions of the two power spectrum patches also makes a difference. If we can 
characterize these effects, we can make our algorithms more predictable and robust, and we can find 
good ways to set the values of the magic numbers, 

The following sections give an experimental and analytical characterization of the accuracy of our 
ssd patch-matching algorithm. We do experiments on synthetic, sinusoidal textures with added noise. 
These experiments show how the bias and variance of the computed surface normal are affected by 
the underlying texture and by the relative positions of the two power spectrumpatches. The simplicity 
of our ssd patch-matching algorithm lends itself to an analytical examination of the variance in the 
surface normal results by examining the Hessian of the ssd surface at the minimum. We show how 
our analytical variance predictions match the experimental results. 

3.5.5.1 Experimental Bias and Variance 

All our experiments were performed with simulated sinusoidal textures mapped onto a plate with 
a surface normal of (p, q) = (0.257,0.257) . This was achieved by rotating the square, frontal plate 
by 20' around a line from the upper left to the lower right comer. One of the power spectrum patches 
was always placed at the center of the image. Some of the experimental images appear in Figure 53. 
In the first set of experiments we varied the parameters of the sinusoidal texture. In the second set of 
experiments, we varied the location of one of the power spectrum patches. For each configuration of 
texture and patches, we ran our ssd patch-matching algorithm 100 times, Before each run, we cor- 
rupted the synthetic image by adding zero-mean Gaussian noise with a standard deviation of ten. (The 
range of the gray scales is [0,255].) We added the noise to simulate real noise and to induce some 
variation in the results so we could get statistics on the errors. Instead of using an exhaustive search 
for the minimum ssd, we used a numerical, multi-variate function minimizer with a finite-difference 
gradient from IMSL ("dumimf'). Since we knew what the solution was, we could give the actual sur- 
face normal as the initial guess. Using this routine also relieved us from worrying about the speed and 
magic numbers of the exhaustive search used in the original algorithm. 

The left column of Figure. 53 shows some of the images used for the first part of the first experi- 
ment. These textures are single sinusoids at various angles Ou. We let this angle vary from 0" to 170' 
in increments of 10" (Going beyond 180" would have produced the same set of images.) For each 
angle, we computed (p, q j  100 times, each time with different, random noise added to the image. 
The statistics on the results of this experiment are shown in Figure 54. In the. upper left we show the 
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average angle error plotted against Bu . Below that are the errors in p and q . The minimum average 
error is 0.5" at Bu = 20", and the maximum is 34.6" at occurs at Bu = 100". From the plots for the 
errors in p and q,  it is apparent that most of the error in angle is due to the error in 4 .  When Bv is near 
looo, the lines on the slanted plate run almost horizontally through the two patches. The cause of the 
bias is difficult to guess. We note that the sign of the bias in q flips between Bu = 90" and 
Bu = loo", where lines go through horizontal and where the variance is greatest. Part of the bias is 
probably because the texture in the windows is changing due to perspective, while our algorithm is 
based on the assumption that it is locally stationary. More error comes from the truncated Taylor 
series approximation that we made in Equation (66) for the perspective projection. We note also that 
high bias is usually accompanied by high variance. 

Another factor that we thought might contribute to the bias is that, even ignoring the effects of 
discetization and approximation, there is no affine transformation that will make one of the power 
spectra exactly match the other one. This is because of the window effect. We showed that the power 
spectrum patches are related by 

(W 2 2 IF1 (a lu  + blv,  a 2 ~  + b2v) I 5 IF2 (u,  V )  I 
But, we must multiply the patches in the image by a window before computing the power spectra. 
This multiplication in space corresponds to convolution in frequency. The affine connection that we 
test in the algorithm is then 

(84) 
2 2 I W ( a l u  + blv ,  a2u + b2v) * F1 (a,u + blv, a2u + b2v) I = IW(u, v )  *F1 (u, v )  I 

This is quite different from the approximation in Equation (83). However, at least for the single-sinu- 
soid texture we are discussing, we take this effect into account in our analytical examination of bias 
and variance in Section 3.5.5.3. This analysis predicts no bias, so the window effect is probably not 
the reason for the error. 

The right column of Figure 54 shows the variance of the computed surface normals. For both p 

and q ,  the maximum variance occurs at BLr = 90". As we mentioned above, at this angle the lines of 
the texture run almost horizontally through the two patches. Any change in surface normal in this 
configuration will cause only a small change in the texture in the two windows, so noise tends to dom- 
inate the solution. A change in p will be more apparent than a change in q, so the variance for q is 
higher. Figure 55 shows the ssd surfaces for Bu = 20' (which gives a low variance) and for 
Bu = 100" (which gives a high variance). It is clear that the sharper minimum gives a lower vari- 
ance. 
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We ran the same set of experiments on the crossed-sinusoids texture shown in the right column of 
Figure 53. This texture consists of the sum of two sinusoids at a right angle. Figure 56 shows that the 
bias and variance are much smaller and much less sensitive to BU than those for the single-sinusoid. 
(All the bias and variance plots in this section have the same range on their vertical axes for compari- 
son.) The extra frequency content goes a long way toward improving the results, because it helps the 
algorithm accurately localize the solution along both p and q. The variance for q is higher than the 
variance for p because the relative position of the windows makes the algorithm less sensitive to 
changed in q. 

The second experiment examines the effect of the relative position of the two power spectrum 
patches on the computed surface normal. We picked one single-sinusoid image and one crossed-sinu- 
soids image from the previous experiment. We chose the ones with Bu = 50°, because this did not 
give extreme values of bias and variance in the previous experiment. These images are shown in Fig- 
ure 57. One of the power spectrum patches was always at the center of the image, and the other was 
150 pixels away at an angle of ex measured from horizontal on the image. For the single-sinusoid 
texture, the variance is maximum when the lines of the texture are parallel to a line connecting the 
centers of the windows. The is the same phenomenon that we noticed in the first experiment. For the 
crossed-sinusoids texture, whose results are shown in Figure 59, the bias and variance are consis- 
tently lower. 
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Figure 53: 

U 
e O0 

U 
e 1200 

These are some of the images used to test the sensitivity of our ssd 
patch-matching algorithm to the underlylng texture. The left column 
of images has a single sinusoid at various angles, and the right 
column has two sinusoids crossed at a right angle. We get more 
accurate results for the two-sinusoid texture. 
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Figure 54: Bias and variance of surface normal estimates when angle of single 
sinusoidal texture is varied. 
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SSD surface for single-sinusoid texture when e,, = 20" 

SSD surface for single-sinusoid texture when €Iu = 100" 

Figure 55: The ssd surfaces show why the variance in computed surface 
normals for one angle of sinusoids is greater than for another angle. 
A sharper minimum yields less variance. 

109 

J 



Orientation of Textured Surfaces from Frequency Shifts 

Bias of angle for crossed sinusoids 

- 
Bias of p for crossed sinusoids - 4 0 -1 

D 
- 
E - 2 -  

Q 

- 0 . 2  -4  

- 0 . 4  

30 
al 

M 
a 2 5  

5 2 o  

- 
1 5  

1 0  

5 

0 

*.....* ,*..... e . - .  

. -. . o r . .  ..,.. 0 ,  

2 0  4 0  6 0  8 0  1 0 0 1 2 0 1 4 0 1 6 0 1 8 0  

U 
e 

- 
Bias of q for crossed sinusoids N Q  0 -1 

0 
- 
3 - 2 .  

- 0 . 2  - 4 !  

- 0 . 4  

Variance of D f o r  crossed sinusoids 

. .. 0 . .  . * - .  

Figure 56: Bias and variance of surface normal estimates when angle of 
crossed sinusoidal texture is varied. 
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single sinusoid 

crr med sinusoids 

Figure 57: These are some of the power spectrum patches used to test the 
sensitivity of the ssd patch-matching algorithm to the relative 
orientation of the patches. 
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Figure 58: Bias and variance of surface normal estimates when angle between 
power spectrum patches is varied on a single sinusoid texture 
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3.5.5.2 Recipe for Analytlcal Variance Prediction 

Numerical Recipes[Sd] (Section 14.5, “Confidence Limits on Estimated Model Parameters”) 
gives the recipe for predicting the variance of the results of an algorithm that uses ssd. In this section 
we will quickly review the recipe for our particular problem. We Serve the results in Section 3.5.5.4. 

The method depends on examining the shape of the depression around the minimum of the ssd sur- 
face. If this depression is very sharp, the variance in the solution will be small. If it is shallow along p 
or q, the variance will be larger for that variable. The shape of the depression is characterized by the 
eigenvalues and eigenvectors of the Hessian matrix at the minimum point. 

The basis of the recipe is a x2 merit function given by 

where ir is the vector solution to find, (xi, yi) are the measurements, ( T ~  are the standard deviations 
of the measurements of the yi, and y ( x ; & )  is the model to fit. If the errors in the measurements are 
normally distributed, the minimum of this function over & is the maximum likelihood solution. 

In discrete terms, our ssd is given by 

1 - 1  1 - 1  

ssd(p,q) = ( S l [ a l ( p , q ) u + b l ( p , q ) v , Q 2 ( p , q ) u + b 2 ( p , q ) v l  - S , [ u , p 1 1 2  (86) 

j = O  i = O  

where S, ( u ,  v )  and S ,  (u.  v )  are the two power spectrum patches, and Q~ (p. q )  , b ,  ( p ,  q )  , 
a2 ( p ,  q) , b, (p, q) are the affme parameters as functions of the surface normal given by Equations 
(76) and (77). In terms of x (2) , 6 = (p, q)  . The difference between ssd ( p ,  q )  and x (p. q )  is 
that the ssd has no ideal model; both terms in the ssd difference are measurements. Also, the differ- 
ences in the ssd are not divided by Q..; we will assume 0 . .  = Q. Despite these differences, there is 
still enough similarity to apply the recipe. 

2 2 

‘1 1J 

In order to predict the variance of the solution, we compute the Hessian of the error surface at the 
minimum of the error surface: 
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where (p*, q*) is the true solution. 

If the measurement errors are normally distributed, then the covariance matrix of the solution will 
be the inverse of the Hessian. For our 2D case, this covariance matrix defines an ellipse in (p, q) that 
is approximately the same shape as the constant-ssd contours of the ssd surface around the minimum 
point. The directions of the axes of the ellipse are given by the eigenvectors of the inverse Hessian, 
and the lengths of the axes are given by the eigenvalues. The variances along p and q are given by the 
projection of the ellipse onto the p and q axes. Since our errors are not normally distributed, we can 
only hope that the analysis still holds. The non-normality means we can only approximate the covari- 
ance matrix up to a scale factor. This is still useful for predicting the relative variance of solutions for 
different situations. 

3.5.5.3 Analytical Expression for the SSD Surface and Hessian 

Computing the Hessian at the minimum of the ssd surface is conceptually simple, but complicated 
in practice. We will do it for the simple case of a single sinusoid texture, but we could do the same 
analysis for any texture. The frontal texture is 

j 2 n  (uos + vor) 
e 

whose Fourier transform is 

S(u-u0 ,Y-Vo)  (89) 

Even though this texture is complex and our images are real, this is still an accurate model of our 
algorithm for a real sinusoid. In our implementation, we only work with the upper half of the fre- 
quency plane, since it is symmetric about the u axis. A real sinusoid has a pair of delta functions as a 
Fourier transform. Unless they are both on the u axis, one will be above the u axis and one will be. 
below. Therefore, the algorithm is really only using one delta function. 

The frontal texture is projected to image patches i = 1, 2 with image coordinates ( x i ,  yi) and scene 
coordinates Zi. The image pattern is 

where ( sx, sY, tr fy) comes from Equations (67) and (68). From Gaski11[32] (p. 90). the Fourier 
transform of this patch is 

F i ( U , V )  = G ( u - U i , v - v i )  
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where 

To make the analysis simpler, we will use a Gaussian window instead of the Blackman-Harris win- 
dow that use in our algorithms. The Gaussian window is 

The Fourier transform of this window is 

2 2  2 W ( u , v )  = exp[-xl ( u  + v  ) I  

(93) 

The Fourier power spectrum of a windowed patch is then 

S i ( U , V )  = IW(u ,v )*Fi (u ,v )12  

2 2 2 
= exp[-2xl ( ( u - u ~ )  + ( v - v i )  ) ]  (W 

In finding the surface normal, SI ( u ,  v )  will be affine-transformed and compared to S, ( u ,  v )  . In 
Appendix 4 we argue that there should be no scale factor applied to either power spectrum before 
forming the ssd. That analysis was based on the fact that the window we use in our algorithm has 
finite extent. The Gaussian window that we use here goes on forever, so we will include scale factors 
to make the two power spectra comparable. We will choose the scale factors to make the power spec- 
tra have unit volume. 

A useful integral for the following analysis is 

m m  

2 x 5 I e x p  [ - c ( ( a l u + b l v - u 0 ) 2 +  ( a 2 u + b 2 v - v O )  ) I d u  dv = - CD 
-c€ -m 

where D = a l b 2 - a 2 b l .  

The volume of the affine-transformed first patch is 
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m m  

1 S , ( a l u + b l v , a 2 u + b 2 v ) d u  dv = ~ 

212D 
-m -m 

The volume of the second patch is 

1 S 2 ( u , v ) d u  dv  = - 
-w J I  -w 2 l2 

(97) 

Our algorithm computes the ssd between the second power spectrum and an affine-transformed 
version of the first power spectrum. Normalizing both patches to unit volume gives the following for 
the ssd: 

- -  
2 = f212Dexp[-2.12((alu+blv-ul)2+ ( a 2 u + b z v - v l ) Z ) 1  -2pexp [ -2n12( (u -u2) ’+  ( v - - ~ ~ ) ~ ) l ~  du dv - -_ 

= f I  + fz + r3 
(99) 

where the dependence on (p, q )  comes through the dependence of ( a l ,  b,,  a2, b2) on ( p ,  q )  given 
in Equations (76) and (77), and where 

From Equation (96) we have 

I, = 12D 

t3 = 1‘ 
(1011 
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With some help from Macsyma, the expression for tz is 

-2rCZ2(k., -2(h,+h,j) 

1 +a: + b: +a: + bi  + 0’ eXP ( -41’0 

Y 11 +a: + b: + a i  + b: + D2 
t2 = 

where 

A1 = ul 2 ( I  +a:  + b: t d) + v: ( I + u: + b: + 2) + ui  ( 1  +a:  + a i  + d) + v i  ( 1  + bt + b: + d) 

X 2  = ulv l  (a la2  + b lb2)  - ~~v~ ( q b ,  +azb2)  

A3 = u l u z ( a l ( l  +b,)  -a2b ,b2)  + ~ ~ v ~ ( b ~ ( l + a ~ )  -a laZb2)  + u 2 v l i a 2 ( 1 + b I )  -ulblb2) + v l v Z ( b z ( l + b z )  - a , ~ Z b , ] 1 0 3 )  2 2 2 2 

The equation for the ssd surface is long and complicated, even for the single-sinusoid texture. Its 
first and second partial derivatives are even longer and more complicated - so much so that we will 
not even write them out. We calculated the partial derivatives with Macsyma, converted this to input 
for Mathematica, and used Mathematica to give C computer code. When we evaluated the first partial 
derivatives at what should have been the minimum, they were always zero. 

3.5.5.4 Results of Variance Prediction 

In order to reproduce the experimental variance results, the variables in the partial derivatives 
were set to match those used in the experiments. We set ( p ,  qj = (0.257,0.257) . We set 
( E , ,  yl )  = (0,O) ,because the first patch was always the center of the image. The depth at this point 

was Z1 = -9.958. The two windows were always 150 pixels apart, which translated to rx = 0.1570 
in world units. The Gaussian window that best fit a 64x64 Blackman-Harris window has 
I = 22.724 pixels or Z = 0.02379 in our simulated world units. The other parameters were allowed 
to vary depending on the experiment we were trying to simulate. 

The predicted variances are shown as the solid lines in the variance plots in Figure 54 and Figure 
58. We used a robust estimation scheme (least-median-of-squares[72]) to compute the best scale fac- 
tor between the experimental and analytical variances. This method eliminates the effect of a few out- 
liers. The predicted variances are fairly close to the actual variances. Even more important, the 
predicted variances reproduce the peaks and valleys of the actual variances. 

In order to use the variance prediction in a real application, we need to know the power spectrum 
of the frontal texture. We could either compute this by “frontalizing” the texture based on the com- 
puted surface normal (Section 4.2.3). or we could just take a power spectrum patch as an approxima- 
tion. 
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Being able to analytically predict the variance of our algorithm has practical benefits. The accu- 
racy of our algorithm could probably be improved by altering the location of the power spectrum win- 
dows such that the solution will have minimum variance. The variance prediction could be used to 
find these locations. In fact, we could pick separate pairs of patches for computing the two compo- 
nents of the surface normal. Being able to predict variances, even to within a scale factor, might be 
useful for formulating the segmentation algorithm in Chapter 4 in terms of maximum likelihood. 

3.6 Algorithm 2: Differential Patch Matching 

This section describes an algorithm for computing shape-from-texture using pairs of power spec- 
trum patches that are close together in the image. By using the differential methcd of Lucas and 
Kanade[65], we can quickly compute the affine transformation between two nearby patches. This has 
several advantages. If the scene has several textures, using nearby patches means the two patches will 
more likely be on the same textured surface than if they were farther apart. If the textured surface is 
curved, the “same plane” assumption will be close to true for nearby patches, and we can compute an 
approximate local surface normal. For large planar regions of texture, we can cover the whole region 
with patches and find a single surface normal using all the data. This would be prohibitively time con- 
suming using Algorithm 1, but the Lucas and Kanade method lets us quickly compute the affine trans- 
formations between all adjacent patches. These are used in turn to find the surface normal. Since we 
developed this algorithm, a similar algorithm was reported by Malik and Rosenholtz[68]. 

3.6.1 Computing Affine Parameters Between Neighboring Patches 

We showed in Section 3.4 that there is an affine transformation that relates two local power spec- 
tra taken from different parts of the image of the same textured surface, i.e. 

S (I,, y , ,  a l u  + blv, a2u + b2v) = S (nz, y,, u, v) . If we can find the affine parameters, we can find 
the surface normal using Equations (76) and (77), which relate ( a l ,  b,, a2, b2) to ( p ,  4) . 

Lucas and Kanade[65] sketched a method for finding the affine transformation between two 
almost-equal image patches. Our goal is to find a closed form that lets us solve for the affine parame- 
ters based on the two power spectrum patches. We begin by writing the affine-transformed version of 
S(xl ,  y l ,  u, v) in terms of (Au, Av) , letting S, (u, v) = S (xl, y,, u, v) and 

s2 (u .  v) = S (x2, Y,,  u, v) : 

S,  ( a l u  + b l v ,  u p  + b,v) = SI ( u  + Au, v + Av) ( 1 W  

with Au = (a - 1 )  u + b , v and Av = a2u + (b,  - 1) v . We can approximate S,  ( u + AM, v + Av) 
with a truncated Taylor series. 
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as1 as, 
aU av S1 ( u  + Au, v + Av)  = S1 ( u ,  v) + Au- + Av- = S2 (u,  v) 

This approximation only holds for small Au  and Av.  If we substitute for Au and A v ,  we have 

Our goal is to find the affine parameters that minimize the difference between these two functions. 
The L2 norm (sum of squared differences) is 

e = ~ ~ [ S l ( a l u + b l v , 0 2 u + b 2 v )  - S , ( u , v ) ]  2 du dv 

Using the Taylor series approximation for S, gives 

We minimize the norm by setting to zero its partial derivatives with respect to the affine parameters. 
That is, we have 

This leads to a matrix equation consisting of four equations with four unknowns: 

2 

A& = b 

with 
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i = -  

1 as, as, kj$' (S,(U,  V )  - S2(u. v)  - u- aU - Y- av ) du dv 

as, as, 
aU av 
as, as, 
aU av 

(S,(u,  v )  - SJu, v )  - u- - v- ) du dv 

(SI(% v )  - S2(u, v )  - u- - Y- ) du dv 

J as, as, 
au av [I]$' (S,(U. V )  - S2(u, v )  - u- - Y- ) du dv 

Solving Equation (110) for ii gives the affine parameters. Note that A is symmetric. 

For our problem, we approximate the integrals with simple sums and the partial derivatives with 
two-point differences. Once we compute the affine parameters between two patches, we find (p, q )  
using Equations (76) and (77). which give the affine parameters in terms of the surface normal. Since 
these equations cannot be inverted to give a closed form solution for the surface normal in terms of 
the affine parameters, we resort again to an exhaustive search in ( p ,  q) with the same range and res- 
olution as for Algorithm 1. For each candidate surface normal, we compute the corresponding affine 
parameters. We take the surface normal whose affine parameters are closest, in the least squares 
sense, to the affine parameters computed from the two patches. As in Algorithm 1, we used a window 
size of 64 pixels. We spaced the windows 15 pixels apart from center to center, so there was signifi- 
cant overlap. We show the magic numbers for this algorithm in Table 7. 

3.6.2 Results 

Our first test is for computing local surface normals. We show two test images and the resulting 
surface normals in Figure 60. Each of these images was produced with a computer graphics program 
that mapped Brodatz textures onto shapes. We computed the affine parameters between every patch 
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search grid resolution 
search grid limits 
( p ,  q )  smoothing (local only) 

I descrldion I value(s) I 

60x60 

(IPl, 141) 5 (292)  
0.5 (pleF, + P ~ ~ , , ~ ,  qah, + 4MOW ) 

window center spacing I 15 pixels horizontally and vertically 

window size I 64x64 Dixels I 

We can get moderate accuracy from this method. Figure 61 shows the ideal needle diagrams for 
both test images. This data was used to assess the accuracy of the algorithm by computing the angle 
between the actual and computed surface normals. These errors are also shown in Figure 61. The 
average error for the cylinder is 22.1". Much of this e m r  comes from the center of the image where 
the fundamental frequency of the texture is low. Because the texture is nearly frontal here, the affine 
transformations are close to the identity transform. This, combined with the low frequencies, means 
the frequencies are shifted by only a small amount, so random fluctuations prevail. There is very little 
work in curved shape-from-texture, and we know of no other results with ground truth. For the image 
with three textured plates, the average error is 30.3". due mostly to patches that overlap two textures 
or one texture and the background. Taking a representative sample of the interior, non-overlapping 
windows gives an average error of 11.2". 

For our second test, we used the ten test images from Figure 33 - Figure 43. We get one set of 
affine parameters for each adjacent pair of patches. We searched to find the single surface normal that 
was most consistent in the least squares sense with all these affine parameters. Table 8 summarizes 
the results. The average error is %lo, which is comparable with the average error of 3.5" for the SSD 
patch-matching algorithm. 
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Figure 60: Tests images and needle diagrams of surface normals from 
differential patch matching. Cylinder has Brodatz woven aluminum 
wire (D6), and plates have woven aluminum wire (M), netting (D34), 
and cotton canvas (077). 
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shown in Figure 60. 
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texture 
woven aluminum wire (D6) 

oriental straw cloth (D53) 
French canvas (D21) 

cotton canvas (D77) 
screen guard 

computed computed 
true ( ~ ~ 4 )  true (0 ,~ )  (P. 4 )  (G> z) error 
(0.614,0;364) (35.5", 30.7') (0.576,0.237) (31.9", 22.4') 5.8" 

(0.614,0.364) (35.5', 30.7") (0.576,0.305) (33.1", 27.9') 2.9' 

(0.614,0:364) (35.5",30.7") (0.712,0.441) (39.9", 31.8") 4.S0 

(0.614,0.364) (35.5", 30.7") (0.847.0.441) (43.7",27.5") 8.4" 

(0.714.0.0) (35.5",0.0°1 (0.712.0.102) 135.7". 8.19 4.7O - . .  

grid paper (-1.878,0.0) 

checkered paper (-1.878,0.0) 

egg crate (-1.373,0.0) 
bumpy plastic (-1.373,O.O) 

doormat (-1.373,0.0) 

Table 8 Results of differential patch matching on textured plates in Figure 
34 - Figure 43 

, .  1 

(62.0", 180.0") (-1.932.0.034: (62.6", 179.0°) 1.1" 

(62.0", 180.0") (-2.000,0.169: (63.5", 175.2') 4.6" 

(53.9'. I8O.O0) (-0.983, -0.03. (44.5", 182.0") 9.5" 

(53.9', 180.0°) (-1.729,0.034: (M).O", 178.9") 6.1" 
(53.9", 180.0") (-1.525,0.034: (56.8". 178.7') 3.0" 
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3.7 Algorithm 3: Peak Matching - 

This section presents a third shape-from-texture algorithm based on the explicit assumption that 
the texture is periodic. We show in Appendix 3 that the spectrogram of a periodic function is a set of 
sharp peaks. This is demonstrated in Figure 62. The top texture, Brodatz D29 beach sand, is random, 
and its power spectrum is a blob centered at the origin. The bottom texture, Brodatz D77 cotton can- 
vas, is periodic, and its power spectrum is a group of sharp peaks. In this section we show how these 
peaks move due to 3D perspective effects. We use this theory in an algorithm that tracks the location 
of the peaks from point to point in the image. This algorithm is more efficient and about as accurate as 
the two algorithms in the previous sections that consider the whole power spectrum. 

3.7.1 Affine Connection 

We assume like before that the periodic texture is mapped to a planar patch in the scene. If we 
show how the projection affects a single, sinusoidal texture pattern, we can easily see what happens to 
periodic textures, because they are just summed sinusoids (according to the Fourier series). Suppose 
the brightness pattern on the textured surface is given by cos (2n (u0s + vat) ) , then the correspond- 
ing projected textures from two different points on this surface would be given by 

cos(Zx((s  x '+s  y ' ) ~  + ( t  x ' + t  y ' ) ~  ) )  

c o s ( 2 x ( ( s  x ' + s  y ' ) ~  + ( t  x ' + t  y ' ) ~ ) )  

X I  ?I 0 X I  ?I 0 

*2 Y2 0 xz Y2 0 

The frequencies of the sinusoids are 

Some linear algebra shows that the frequencies of the two projected sinusoids are themselves related 
by an affine transform (without translation): 

126 



Algorithm 2: Differential Patch Matching 

P o w e r  Spectrum 

P o w e r  Spectrum 

Figure 62: The power spectrum of a random texture (Brodatz D29 beach sand) 
is a blob, while the power spectrum of a periodic texture (Brodatz 
D77 cotton canvas) is a group of sharp peaks. 
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To get the full relation in terms of quantities we know, we plug in for the S’S and t ’ s  from Equa- 
tion (67). We assume the two points on the textured surface are both on the same plane, thus 

( P p q 1 )  = ( P 2 > 4 2 )  = ( P . 4 )  and 

Then 

where 

and (xl, y 1 )  and (+ y 2 )  are the two points on the image plane being compared. 

We conclude that the frequencies of a single sinusoid projected from the same plane to two differ- 
ent points in the image are approximately related by an affine transformation. The affine parameters 
are functions of the position of the two points on the image, the camera’s effective focal length, and 
the plane’s surface normal. 

3.7.2 Finding and Matching Peaks 

This method requires that we find and match peaks between power spectrum patches. We created 
a spectrogram preprocessor that performs this task. Given a spectrogram, it first finds the peaks in 
each patch in order of height. Peaks are found by searching for the maximum value in the power spec- 
trum. Whenever a peak is found, the program computes the location in frequency to subpixel accu- 
racy using the center-of-masses. The peak is then zeroed, and the next largest peak is found. 

We know that each peak should have the shape of the power spectrum of the window function, 
I W (u ,  v) 1 . For zeroing the peaks and computing their centers-of-mass, we can approximate the 
peaks’ support size by examining 1 W ( u ,  v) 1’. The peak-finder keeps looking until the current peak is 

2 
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less than 20% of the magnitude of the largest peak, or until it finds six peaks, whichever comes first. It 
also ignores peaks below a frequency of 0.03 cycles/pixel. This helps e l i n a t e  low frequencies due 
to shading. 

In order to track frequency shifts for computing surface normals, we need to know which peaks in 
one patch correspond to those in neighboring patches. Our preprocessor matches peaks between each 
patch and its two neighboring patches to the right and below. We do this pairwise matching by consid- 
ering every possible match combination between the two sets of peaks, including leaving some peaks 
unmatched. Appendix 5 shows that with six peaks in each patch, there are 13,327 possible sets of 
matches to consider, and there are fewer to consider if there are fewer peaks. We pick the combination 
that has simultaneously the most matches and no matches whose corresponding surface normal 
exceeds the largest surface normal we expect in the scene. 

After this preprocessing step we do not need the original spectrogram for any of the subsequent 
operations. It is adequately represented by the peaks and peak matches. 

3.7.3 Algorithm and Results 

We compute surface normals by finding the (p, q) that best accounts for the observed frequency 
shifts between neighboring patches. This computation usually involves several different peaks in sev- 
eral different patches. We gather all the peaks, peak matches, and their patch coordinates into parallel 
arrays. For each patch in the region of interest, we check to see if either the patch to the right andor 
the patch below is also in the region. If so, we check each peak in the original patch to see if it has a 
match in either of these two neighboring patches. We only consider adjacent pairs of patches, that is, 
the patches that have had their frequency peaks matched by the preprocessor. We put all the pairs of 
peak matches and the corresponding patch coordinates into parallel arrays: ( u l i ,  v l i )  is matched 
with ( u ~ ~ ,  vZi )  from patches centered at ( x l i ,  y l i )  and (x2', yZi) , respectively, for i = 1 to m 
pairs of peaks. If we write the affine parameters from Equation (116) as functions of the surface nor- 
mal and patch coordinates, we have 

This will be small if we have the correct surface normal and the correct matches among the peaks. 
We perform an exhaustive search over a grid in (p, q) and take the surface normal that minimizes 
ssd ( p ,  q )  as the solution. We use the same 60x60 search in gradient space that we used for the other 
two algorithms. This algorithm is similar to one developed by Super and Bovik[97]. One difference is 
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description 
window center spacing 
window size 
peak width for zeroing found peaks 
minimum frequency 
minimum (peak height)/(maximum peak height) 
maximum number of peaks per patch 
maximum distance betwsen matched peaks 
search grid resolution 
search grid limits 

value(%) 
15 pixels horizontally and vertically 

64x64 pixels 
1/16 cycledpixel 
1/32 cycledpixel 

115 
6 

1/20 cycledpixel 
60x60 

(IPI, 141) (2, 2) 

l b o  important parameters that affect the accuracy of our solution are the number of patches used 
to compute the surface normal and the center-to-center spacing of the power spectrum patches. For a 
given center-to-center spacing, we would like to use as many patches as possible, as long as they all 

Table 1 0  Results of peak matching on textured plates in Figure 34 - Figure 43 
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Average Surface Normal Error Average Minimum Surface Normal Error 

b center center 
a 

Figure 63: Average errors In surface normal from the four test Images for 
different patch center-to-center distances and different numbers of 
patches. 

fall on the same textured plane, in order to have more data contributing to the solution. We would also 
like to avoid small center-to-center distances, because the shape-induced frequency shifts would be 
dominated by noise and approximation errors. We tested our algorithm on the four Brodatz textures in 
Figure 34 using different numbers of patches and different center-to-center spacing. In each trial, the 
center-to-center spacing was equal in x and y. We let this parameter vary from 5 to 50 pixels in incre- 
ments of 5. For each center-to-center distance, we computed the surface normal using as many unique 
n x n squares of adjacent patches as would fit on the textured part of the image, starting with n = 2. 

Figure 63a shows the average errors in degrees of our surface normal estimates for different num- 
bers of patches and different center-to-center spacings. The average was taken over all four images 
and over all the n x n squares of patches that would fit on the texture. As expected, the error 
decreases for larger numbers of widely spaced patches, with the best estimates being in error by about 
six degrees. Our shape-from-texture algorithm succeeds in giving good results on periodic textures 
without the need for image feature detection. 

Since we use the spacdfrequency representation, it is possible to integrate our surface normal 
algorithm into a segmentation algorithm that works on 3D textured, planar surfaces. Unfortunately 
the need for accuracy conflicts with the requirements of our segmentation algorithm in terms of the 
number of patches and center-to-center spacing. Our segmentation algorithm begins by estimating 
surface normals using small parts of the image. Using small support for these estimates is important, 
because we do not want the support to overlap texture boundaries. This means we have to keep n and 
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the center-to-center spacing small, which tends to compromise accuracy according to Figure 63a. For- 
tunately, though, some of the estimates from the n x n squares are still good, even with small support 
and small n. Figure 63b shows the average minimum error in surface normal, where the minimum is 
taken over all the n x n squares and the average over the four images. In almost every case, at least 
one of the n x n squares gave a fairly accurate surface normal. Since we start our segmentation with 
many seed regions, we are likely to have some that are “good”, even with small support. This affects 
our choice of n and the center-to-center spacing in the segmentation algorithm that we present in the 
next chapter. 

3.8 Summary: Us vs. Them - 

This chapter presents three different shape-from-texture algorithms, all based on the spectrogram. 
The key observation was that perspective induces an affine transformation on projected texture 
patches, and thus the Fourier transform also undergoes an affine transformation. For two patches from 
the same textured plane, the only unknown in the &ne transformation is the plane’s surface normal. 
The errors from all three algorithms are about the same. SSD patch-matching had an average error of 
3.5”, differential patch-matching 5.1 ’, and peak-matching 3.9”. For irregular textures, the SSD 
patch-matching had an average error of 7.5 O .  Formulating and solving the shape-from-texture prob- 
lem with local spatial frequency is an advantage, since the same representation can be used to under- 
stand aliasing and focus. As we show in the next chapter, it is also good for segmentation. 

The first two algorithms, SSD patch-matching and differential patch-matching, operate directly on 
the raw spectrogram values. Their strength is their simplicity, as they require no feature-finding and 
few magic numbers. 

The peak-matching algorithm requires some potentially unreliable peak-finding and peak-match- 
ing. Our preprocessor is robust enough, however, that the accuracy is as g d  as the other two algo- 
rithms. We gain in speed, simplicity, and memory usage by considering only peaks as opposed to the 
whole frequency plane. The peak-matching algorithm has a subtle advantage in that the affine trans- 
formation affects only the position of the peaks. If we assume that the underlying texture is periodic, 
then we know that the positions of the frequency peaks in two patches will be related by an affine 
transformation. Ideally these peaks are delta functions. In reality, when we compute a discrete-space 

2 power spectrum of these patches, a peak at ( uo, yo) will be broadened into 1 W (u  - uo, Y - yo) I . 
The corresponding peak in another patch will be at a different frequency, but it will be the same 
shape. This violates our premise for the first two algorithms in that they work on the assumption that 
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the whole broadened peak undergoes an affine transformation, not just its position. The peak-match- 
ing algorithm avoids this error by just tracking the position of the peaks. 

Judged in terms of accuracy, our algorithms are about the same as most other shape-from-texture 
algorithms. Table 11 presents the average angular error of 11 other shape-from-texture algorithms for 
planar textures. Our algorithms are at the bottom of the table. Many shape-from-texture algorithms 
are not presented along with ground truth, so it's not possible to compare with these. Nor is there a 
standard set of test textures, so comparisons like this must be judged both on the raw results and the 
difficulty and number of test textures. 

As we expect, the best results are on synthetic, purely computer-generated textures, as seen in the 
algorithms by Aloimonos and Kanatani. The errors here are 0.3' and 1.3' respectively. The algorithm 
by Aloimonos and Swain, which works on discrete texture elements, has an error of only 1.7". These 
textures were created by sticking paper texture elements onto otherwise uniform objects. For real 
periodic textures, our SSD patch-matching and peak-matching algorithms have a slight edge over the 
others in accuracy. The two most impressive algorithms, in terms of accuracy and difficulty of test 
images, are those by Aloimonos and by Jau and Chin. 

Aloimonos' algorithm achieves an average error of 4.0" on seven real images of periodic and 
irregular textures. His algorithm starts by finding edges in the image. It computes surface normals 
based on deviations from uniform edge density. As we mentioned in Section 1.2.9 on low-level fea- 
ture models of image texture, edges can be considered a high-passed, thresholded version of a local 
frequency representation. It is not clear from Aloimonos' paper what all the magic numbers were or 
that the same magic numbers were used for all the test images. 

The other impressive algorithm in terms of accuracy is the one by Jau and Chin. They achieved an 
average error of 2.3" on three different irregular Brodatz textures. Their images were only 96x64 pix- 
els, making the problem even harder. They used the Wigner distribution, which is one version of the 
spacdfrequency representation, discussed in Section 2.3.5. They picked a frequency threshold and 
computed the amount of high frequency energy at every pixel. The spatial variation in high frequency 
energy is related to the surface normal. 

Both of these algorithms are similar in that they examine the spatial variation in high frequency 
content. We like our algorithm better for two reasons. The first reason is that setting a hard threshold 
to designate high frequency could cause a problem. These algorithms depend on a smooth change in 
high frequency content. But, if an isolated peak were to shift across the threshold, there would be a 
jump in high frequency content that would be incorrectly attributed to the surface normal. Jau and 
Chin report a substantial jump in error when the threshold is too high or too low, and Aloimonos does 
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not report on how his edge detector affects his results. The second reason is that we avoid integrating 
out the high frequency structure of the local frequency distribution. By reducing the frequency con- 
tent to one number, the arrangement of the frequency distribution is lost. Retaining this structure 
allows us to do detailed reasoning about the frequencies for segmentation {Chapter 4) and to account 
for aliasing and potentially camera blur. 
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uniform density 
of dots or lines 

Aloimonos[2] 

Aloimonos & 
Swain[3] 

synthetic 6 1.3" 
periodic 
synthetic 6 8.5" 

I Shvavtserll 1 1 
I I I .  

Chen etab[15] 
Gardingpl ] 

Jau & Chin[45] 

Kanatani & 
Chou[51] 

Malik & 
Rosenholtz[68] 
Patel 8 
Cohen[82] 
Super & 
Bovik[97] 
Super[99] 

Krumm 

Krumm 

Krumm 

Krumm 

.. 
Comments I Images I Textures I Err& 

uniform texel I svnthetic I 2 I 0.3" 
densitv 
uniform edge 
density 
randomly 
placed, discrete 
texels 
isotropic frontal 
autocorrelation 

real periodic 8 
random 
objects with 
texels stuck on 

4.0" 

1.7" 

8.9" 

fractaltextures I Bmdatz random I 2 I 13.9" 

weakly isotropic I random I 2 I 9.6" 
edges I wallpaper I I 
Wianer I Brodatz random I 3 I 2.3" 
disiribution I I I 

I random I I 
spectrogram Brodatz periodic 3 I 3.7" 

I I I 
Gauss Markov real periodic 1 5.5" 
random fields 
Gabor filters real periodic 

real periodic 
filters 
ssd patch- real & Brodatz 

averaged ssd Brodatz random 
- periodic 

3.5" 

7 . 5 O  
patch-matching I I I 
diff erentiai I real & Brodatz I 10 15.1" 
patch-matching I periodic I I 
peak-matching I real 8 Brodatz I 10 I 3.9" I periodic I I 

Table 11 : Average angular errors of several different shape-from-texture 
algorithms 
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Chapter 4 Segmenting Textured 3D 
Surfaces 

4.1 Combining Texture Segmentation and Shape-from-Texture 

As we showed in the first chapter, there has been much work in both texture segmentation and 
shape-from-texture. Unfortunately, almost none of this work can be directly applied to textured sur- 
faces viewed under general conditions. All shape-from-texture work is based on the assumption that 
the image contains only one texture, or at least that the texture has been segmented from the rest of 
the image, as in the upper left of Figure 64. This is because the shape algorithms attribute changes in 
the texture’s appearance in the image to shape effects, not to changes in the actual, frontally-viewed 
texture such as might be caused by two or more textures in the image. A more realistic image appears 
at the bottom of Figure 64. It contains multiple textures that are not viewed frontally. It is clear that if 
a conventional, whole-image, shape-from-texture algorithm were applied to this image, it would give 
an incorrect result. On the other hand, almost all texture segmentation algorithms are based on the 
assumption that shape effects are negligeable, as in the upper right of Figure 64. Without this assump- 
tion, changes in depth and surface normal could alter the appearance of an otherwise uniform texture 
enough to warrant splitting it into different regions. We show an example of this problem in Figure 
65. Both images have three textured surfaces in them. In the left image the surfaces are all frontal, and 
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Traditional shape-from-texture can only 
work with one texture in the image. 

Traditional texture segmentation requires 
that all the textures be flat and viewed from 

the front. 

A more realistic scene contains multiple tex- 
tures that are not viewed from the front. Our 

aim is to segment images like this. 

Figure 64: Combining old texture problems into a new one with relaxed 
assumptions 
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Figure 65: A traditional-style texture Segmentation program works well on the 
three frontal textures in the left image. When the same textures are 
not viewed frontally, however, the program fails. 

the edges found by a segmentation program are about right. (These edges were found by a simplified 
version of the algorithm we develop in this chapter.) When we apply the same segmentation program 
to the image with nonfrontal textures, the edges are no good. 

Our goal was to create an algorithm that can segment images of textured 3D surfaces. The next 
section tells how we did it by explicitly accounting for 3D shape effects. To our knowledge, there 
have not been any other successful algorithms for this problem. Our algorithm is based on the spec- 
trogram of the image -- the same representation we used to compute surface normals in Chapter 3. 
This shows how the spacdfrequency representation is a versatile way of solving disparate problems 
in computer vision. The algorithm we describe is based on assumptions that the textures are periodic 
and the surfaces are flat. The results in Section 4.3 show that the algorithm works on computer-gener- 
ated Brodatz images and real images taken in the lab. In particular, the algorithm works well for the 
image on the right of Figure 65, on which a traditional segmentation fails. 

4.2 Algorithm for Segmenting Textured 3D Surfaces 

Our algorithm for segmenting 3D textured surfaces consists of building a dendrogram (hierarchi- 
cal region-growing) using a description length merging criterion. We start with an image spectrogram 
computed with centers 15 pixels apart. The segmentation begins with each power spectrum patch as 
its own, separate region. The power spectra are represented by just their peaks, using the peak-finding 
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program described in Section 3.7.2. We build a dendrogram by merging adjacent regions. The quality 
of a potential merge between two regions is judged by the compactness of a 2D clustering of the 
peaks from the regions’ patches. We measure compactness using a minimum description length crite- 
ria. Before we assess the compactness, however, we determine the surface normal of the proposed 
region (using the peak-matching algorithm from Section 3.7.2) and use this to compute where the fre- 
quency peaks would be if the texture were viewed from the front. This “frontalization” step undoes 
the 3D effects and makes adjacent regions of similar texture appear similar in spite of depth changes. 

This section first explains the four most important subparts of this algorithm in detail -- the den- 
drogram with its description length criteria, the frontalization step, a fast way to compute surface ori- 
entation, and a method for refining region boundaries -- and then summarizes the entire algorithm. 

4.2.1 Clustering With a Dendrogram and a Description Length Criterion 

We use a dendrogram twice in our segmentation algorithm: once for clustering frequency peaks 
from frontalized power spectrum patches and once for merging the patches themselves. This section 
describes a simple clustering algorithm based on the dendrogram that we use for clustering frequency 
peaks. As described by Duda and Hart[%], a dendrogram is a tree data structure used for unsuper- 
vised, hierarchical clustering. We show an example dendrogram in Figure 66. This hierarchical clus- 
tering of sample points is one in which each point is first considered to be its own cluster. Two of 
these clusters are merged to form a new clustering with one less cluster. At each subsequent level, two 
more clusters are merged, reducing the number of clusters by one. There is only one cluster at the end. 
In “agglomerative” clustering, the tree is built starting at its leaves, with each sample point first serv- 
ing as its own cluster. In “divisive” clustering, the tree is built from its root, with the first cluster being 
all the sample points together. We use agglomerative clustering in our algorithm. The desired cluster- 
ing is taken as a horizontal cut across the tree at some level giving some number of clusters. 

One way of building an agglomerative dendrogram is to simply merge the two clusters that are 
most similar at any given level. This does not ensure the best dendrogram, in that it will not necessar- 
ily pass through the “best” clustering, but it works well for us. Actually, our inspiration for this tech- 
nique came from the more sophisticated agglomerative algorithm of R. Wallace[ 1101. His algorithm 
can start with a dendrogram and improve it. In the example in Figure 66, the merge criterion was sim- 
ply the distance between the cluster means. At every level we merged the two clusters whose means 
were closest. 

The dendrogram gives a series of good candidate clusterings, each with a different number of 
clusters. The remaining problem is to choose the number of clusters from these candidates. A clever 
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Figur- 66: This dendrogram was built starting with 20 samples each of 
Gaussian distributed scalars with means of two, five, and nine, and 
a standard deviation of one. The merge criterion was simple 
distance. The horizontal grld llnes represent various possible 
clusterings, with three being the “correct” number. 

method for solving this problem comes also from R. Wallace. He proposed using a description length 
criterion for making this choice. The description length is a numerical measure of the length of a 
description of a set of data. This idea was begun, and continues to be refined, by Jorma Rissanen[89]. 
For most problems the description length consists of two parts: the “model” description length and 
the “error” description length. In our case the “model” is the number of clusters along with which 
points belong in which cluster. Each point is modeled by its cluster center. The “error” is simply the 
deviation between the actual data points and the model. The description length expresses the trade-off 
between the complexity of the model and the amount of error. More clusters means the model is 
larger, but the error is smaller. Fewer clusters reduce the size of the model but increase the size of the 
error. 

We can express the description length in terms of bits. The length of the “error” term comes from 
a well-known result in coding theory. The ideal code length, in bits, for a set of points drawn from a 
stochastic process is the negative of the log-base-two of the probability of that set of points. For scalar 
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data, we say that the probability distribution of a point in cluster i is p (x;8,), where Bi give the 
parameters of the distribution (e.& the mean and variance for a normal distribution). The probability 
of seeing any given x is zero, but the probability of seeing any given x to within a certain range A 
(which is the best we can do with a computer’s finite precision) is just 

where the approximation holds for small A. We need the probability of a given clustering if there are 
nc clusters. If cluster i has ni independent points xi j ,  then the probability is 

The ideal code length is then 

where n is the total number of points. 

The length of the “model” term in the description length is not as well-defined. Part of the model 
consists of the parameters used to describe the probability distributions of the clusters. Rissanen rec- 
ommends the formula - logz (m), where k is the number of free parameters in the model and m is the 
number of data points. This formula holds for real-valued parameters in the limit as m + =. Although 
our m is finite, the formula works for us. We also include the number of bits it would take to label 
each point with its integer cluster number. This amounts to d o g 2  (n,) . We have not seen this term 
included in any other description length formulae, but it is effective in our application. 

k 
2 

If we apply Rissanen’s formula for the model parameters on a cluster-by-cluster basis, the total 
description length becomes 

“c “c “ i  
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For lack of anything better, we take the probability distribution as Gaussian. This makes ki = 2 and 

Taking the Gaussian density gives a description length formula of 

Since our goal is to minimize the description length, we can drop the constant terms. For our algo- 
rithm, we will also assume that we know the standard deviations of the clusters beforehand, and that 
they are equal to o for all the clusters. (we estimate the g,. from the clusters themselves.) This gives 
a final description length formula of 

The first two addends of this formula give the “model” description length, and the last one gives the 
“error” description length. In this case, the “error” description length is proportional to the sum of the 
squared Mahalanobis distances. 

A plot of the description length for the dendrogram in Figure 66 appears in Figure 67. The 
“model” description length grows quickly with an increasing number of clusters, while the “error” 
term drops quickly. The sum is minimized at three, which is the actual number of clusters used to gen- 
erate the original data. 

Combining the dendrogram and a minimum description length criteria gives a good method of 
clustering data with a minimum of “magic numbers”. The dendrogram serves to merge data points 
with, effectively, a progressively larger andlarger similarity threshold. The user must supply a merge 
criterion, but for low-dimensional data, it is usually easy to find one that is satisfactory. We used sim- 
ple Euclidean distance for our dendrogram. No other input parameters are necessary for building the 
dendrogram. The description length suffers from one magic number and perhaps a few “magic formu- 
lae”. The magic number is the standard deviation. Although this can sometimes be estimated from the 
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Figure 6 7  The “model” description length and “error” description length sum 
to form a total description length with its mlnimum at the correct 
number of clusters. 

clusters themselves, it cannot be estimated from single-point clusters, and the estimate would not be 
stable for small clusters. We must assume a form of the probability distribution for the “error” 
description length. It is usually possible to argue for a Gaussian distribution, appealing either to the 
central limit theorem or the fact that everyone else does it and it seems to work. The “model” part of 
the formula is more difficult. Rissanen continues to update his formula, and we have found a new 
variation that works well. 

4.2.2 Dendrograms Within a Dendrogram 

We segment the image by building a dendrogram of the power spectrum patches. Each image 
region is represented by its frequency peaks. At the beginning, each patch is its own region, which 
gives roughly loo0 initial regions for a spectrogram computed on windows that are 15 pixels from 
center to center. We only allow merges between adjacent, four-connected regions. The key element in 
building this dendrogram is the similarity criterion between image regions. The question is how well 
two sets of frequency peaks go together. (As we describe below in Section 4.2.3, we first undo the 3D 
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effects that move the peaks around, so we don’t have to worry at this point about variations due to 
perspective distortion.) A simple method of making this assessment would be to compute the sum of 
the distances between matching peaks. This has at least three problems: 

1. Because of noise, even similar textures will not always have the same 
number of peaks. Would we attribute unmatched peaks to actual differ- 
ences in texture or to noise? 

It would be hard to arbitrate between similarity measures based on differ- 
ent numbers of peaks. Would it better to merge a region with two out of 
two peaks matched or a region with five out of five peaks matched? Com- 
bined with the problem above, we might have to decide between two out 
of two versus four out of five. In addition, we would have to account for 
the quality of the matches. So, would it be better to merge regions with 
two out two peaks matched precisely or four out of five peaks matched 
not-so-precisely ? 

In order to avoid mistakes in matching, our spectrogram preprocessor 
only matches peaks of adjacent, four-connected patches. This is sufficient 
for computing surface normals. But for assessing the similarity of a 
group of patches, we need a more global measure. of similarity. We could 
chain through the local matches, but the chain could be broken or misdi- 
rected by even one missing or bad match. Also, image patches that strad- 
dle two different texture regions could have peaks from both regions, 
creating a bridge between the regions that would mask their differences. 

We found that we could neatly avoid giving explicit answers to these questions by measuring sim- 
ilarity as the minimum description length (rndl) of a clustering of the 2D peaks in pairs of regions that 
are candidates for merging. We expect that regions that belong together will have frequency peaks 
that give compact clusters. For each candidate pair of regions, we gather all their frequency peaks into 
an array and pass them off to our 2D clustering program. This program builds a dendrogram of the 
points using Euclidean distance as a merge criterion. It returns the minimum description length over 
all levels of the dendrogram as the measure of similarity between the two regions. For the 2D cluster- 
ing we use a formula similar to the 1D clustering in Equation (125), except we use the 2D Mahalano- 
bis distance and k = 4. The formula is 

2. 

3. 

where (ij, Vi) are the estimates of the cluster centers (computed from the clusters) and 0 is the stan- 
dard deviation of the frequency peaks (which must be supplied by the user). After a few experiments, 
we found that 0 = 0.01 cycledpixel is a good value to use. 
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Figure 68: The frequency peaks from the enclosed Image regions of equal area 
are plotted. After frontalization (described in Section 4.2.3), the 
peaks from the window covering only one texture cluster more 
compactly than those from the window covering two textures. The 
minimum description length (mdl) is a good way to measure the 
compactness of the clustering. The mdl's for the peaks in the left 
and rlght outlined reglons are 1237.9 bits and 2726.9 bits, 
respectively. 

Figure 68 shows frequency peaks from two regions of an image with textured surfaces. The 
region in the left image covers only one texture, and its peaks form compact clusters. The peaks from 
the region in the right image, which covers two different textures, are scattered. The minimum 
description length of the clustering reflects the compactness of the points. The single-texture peaks 
have an mdl of 1237.9 bits, while the two-texture peaks have an mdl of 2726.9 bits. (Both sets of 
peaks have been frontalized according to the derivation in the next section. 
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We add one other term to the description length above in order to evaluate a potential merge. In 
his paper on gray-level image segmentation, Leclerc[62] argues for a term that measures the descrip- 
tion length of the boundary of image regions. He describes boundaries by a chain code of unit-length 
line segments. For four-connected regions, each segment of the chain code can go one of three ways 
from the previous segment. Thus, the description length should be a scalar b times the length of the 
region’s boundary. For infinitely long chain codes, b = log (3) = 1.585. For shorter chains, b 
should be slightly larger, and Leclerc recommends using nothing larger than two. For our algorithm, 
b = 2 is satisfactory. The total description length for a potential merge between two patches is then 
the cluster description length of Equation (126) plus b times the length of the boundary formed by the 
new region. The description length of a candidate merge pair must be considered against the descrip- 
tion lengths of the two regions separately. Our segmentation program actually computes the decrease 
in description length for each candidate pair of regions and picks the pair with the greatest decrease 
for the next merge. Examples of dendrograms built this way appear in the results in Section 4.3, We 
show selected cuts from the image dendrograms, where each region is shaded differently. In all cases, 
the dendrogram passes through a good segmentation, so the description length is a valid merge crite- 
rion. 

Just as the description length criterion can be used to pick the right number of clusters for the fre- 
quency peaks, we would like to use the same concept to pick the right number of regions from the 
image dendrogram. If our description length criterion were perfect, we would pick the image dendro- 
gram cut with the minimum description length as the best segmentation. With our current formula- 
tion, however, the minimum occurs well before the best segmentation, so this choice must be made 
manually. This is an area for fwther research. 

4.2.3 Frontalizing 

This section describes our frequency peak frontalization algorithm. Our goal is to determine what 
a group of frequency peaks on different patches would be if we viewed the texture from the front. We 
know from Equation (1 14) in Chapter 3 that a frequency ( uo, yo) on a non-frontal textured surface in 
the scene is related by an affine transformation to a frequency (u i ,  vi)  on the image plane. In matrix 
form, this is 
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We cannot simply invert this relationship for the frontalization, because we don't know the Zi coordi- 
nate of the surface, and this is required to compute the matrix Si. In fact, we can never compute 
[uo. vo] ', because we never know the depth of the patch. 

For frontalizing a given image patch, imagine we have a frontalized reference image patch, 
(p, q)  = (0,O) , with a corresponding depth of Zref in the scene. It is from the same plane and with 

the same texture as the given patch. There is a 3D surface patch corresponding to the reference patch 
whose 4x4 homogeneous transformation matrix would be 

Using these transformation parameters and solving Equation (64) in Chapter 3 for s and t gives 

Then the projected frequency from this frontal patch will be approximated as before as an affine trans- 
formation of the scene frequency. The affine transformation parameters come from the first partial 
derivative terms of the Taylor series of sref (x ' ,  y') and t re f (x ' ,  y ' )  . The frontalized frequency is then 

Solving Equation (127) for [uo, vO] and inserting this into Equation (130) gives 

When Fi is multiplied out, it elements become 
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where 

ref 

d r  (p2 + q2)  Zi 
C =  

This still contains the unknown depth value Z i .  But, since the reference patch is on the same plane, 
then we have from Equation (75) in Chapter 3: 

Z,,f d-Pxi-qYi  
z; d-Px, , f -  4Y,,f 

(1 34) 

Putting this ratio into Equation (132) gives the &ne frontalization parameters for an arbitrary patch i 

- - -  

in terms of known quantities: 

f11 = D [ d ( P 2  

f 1 2 =  D P [ &  

where 

The frontalization step works this way: For a group of patches hypothesized to be on the same 
plane, we arbitrarily pick one patch as the reference patch. In our case we pick the first in the list. We 
compute the ( p ,  q )  of these patches using our peak-matching shape-from-texture algorithm in Sec- 
tion 3.7. The affine frontalization transformation is then computed for each patch according to Q u a -  
tion (135). and each peak frequency is transformed accordingly. This does not tell us what the true 
frontalized frequencies are, but it tells us what the frequencies would be if all the patches had the 
same depth as the reference patch, which is good enough for comparing them. 

149 



Segmenting Textured 3D Surfaces 

0.5 

0.3 
'r 

\ 0.1 .s- 

-0,5 - 0 . 7  -0.1 
-0-1 

I 

-0.3 

- 0 . 5  

V 
0 . 5  

0.3 

0.1 
. #  - 

-0.5 - 0 . 3  ,-0.1 
o - l  \ 0.3 G5 . -0.1 

'e. 

- 0 . 3  

-0.5 

Y 

I 

* 
1 

0.: 013 0 . 5  
U 

Figure 69: The plot on the left shows the raw peaks from the outlined region of 
the image. The rlght plot shows how the clusters are compacted 
after frontalization. The compaction Is reflected in the minimum 
description length of a clustering of the peaks. The mdl of the peaks 
on the left is 836.5 bits, while the mdl of the peaks on the right is 
537.1 bits. 

An example of the effects of frontalization is show in Figure 69. The frequency peaks are signifi- 
cantly more compact after frontalization. 

4.2.4 A Fast Way of Computing Shape 

Each time we merge two regions in the image, we must recompute several different surface nor- 
mals. Without a fast way of doing this computation, the segmentation program would take much too 

long, even for research purposes. 
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Every region keeps a list of its four-connected neighbors as potential merges, Each of these poten- 
tial merges is evaluated based on the description length formula presented in Section 4.2.2. Before we 
can do the peak clustering, we must frontalize the peaks of the two regions. And before we can fron- 
talize the peaks, we must compute the surface normal associated with them. Thus, not only do we 
have to maintain a surface normal for each region, we must also maintain a surface normal for each 
unique pair of adjacent, four-connected regions. When two regions are merged, we must update the 
surface normals between the new region and all its neighbors, Our image dendrograms start with 
about 1000 separate regions, and to build a dendrogram down to one region, we must perform a num- 
ber of merges that is just one less than the original number of regions. This means we perform several 
thousand surface normal computations for each image. 

The most obvious way to compute ( p ,  4) for a group of patches is to use the method we 
described in Section 3.7. Here, we gathered all the peaks, peak matches, and their patch coordinates 
into parallel arrays. For each patch in the region of interest, we checked to see if either the patch to the 
right and/or the patch below was also in the region. If so, we checked each peak in the original patch 
to see if it had a match in either of these two neighboring patches. We put all the p a h  of peak 
matches and the corresponding patch coordinates into parallel arrays: ( u l k ,  v l k )  is matched with 
( w Z k ,  v2,J from patches centered at (xlk, ylk) and 

peaks. The ssd surface is then given by 
y Z k ) ,  respectively, for k = 1 to m pairs of 

In our segmentation algorithm, using this method for every surface normal computation would 
actually result in much redundant computation. We can think of ssd ( p ,  4) as simply a sum of error 
surfaces from all the unique pairs of patches in the region. This breakdown is possible because we 
only consider matches between peaks in adjacent patches, not matches over longer distances. We give 
each patch an integer index, and we say that ssd ij (p, 4) is the error surface generated by considering 
only the matched peaks between patch i and j. At the beginning of our image dendrogram, we must 
compute all these pairwise ssd surfaces, because all pairs of adjacent patches are candidates for merg- 
ing. If we store all the possible pairwise ssd surfaces in memory, we can easily compute the ssd sur- 
face for an arbitrary region by simply adding the pairwise ssd surfaces that have both their patches in 
the region. That is 
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where R is the region of interest. This saves having to recompute the complicated equations for 
(al, b,,  a*, b 2 )  , resulting in a significant speedup. 

We can do even better once the image dendrogram is under way. Since the region-growing is hier- 
archical, once two regions are merged, they remain merged. This means we can get another speedup 
by maintaining an ssd surface for each region. The situation is not as simple as it appears, however, 
because the ssd surfaces we maintain for each region pertain only to the internal peak matches of the 
region. When two regions are merged, there are also new matches to consider along their common 
border. In addition, each time we merge two regions, we must update the surface normals of the 
potential merges between the newly formed region and all its adjacent neighbors. 

In order to properly update the ssd surfaces, we must store three kinds of ssd surfaces for the 
regions. Each region i has an ssd surface pertaining only to its internal peak matches, which we will 
call P i .  The peak matches along a common border between two regions i and j also generate an ssd 
surface, which we will call P... In order to assess potential merges, we must compute what the ssd 
surface would be if two adjacent regions were merged. We designate the ssd surface of a potential 
merge between regions i and j as M i j ,  and it is given by M i j  = Pi  + Pi + P. .. This accounts for the 
internal matches of both regions as well as the matches across their common border. Each ssd surface 
is a function of all the peaks in a particular region, so no weighting is necessary when combining 
them. We note that these ssd surfaces are transitive, i.e. P.. = P.. and M.. = M . . .  This save on stor- 
age, since we have neighboring regions both pointing to the same memory when appropriate. 

?I 

lJ 

IJ 11 11 11 

We can derive the updating rules for the ssd surfaces by considering a merge between regions “a” 
and “b” in Figure 70. (For clarity, we will instantiate i and j with the letters a, b, c, d, e, and f rather 
than numbers.) Before the merge occurs, we have Pi for each region and Po and Mu for each pair of 
adjacent regions. After the merge, we will have new ssd surfaces given by Pi” ,  Pi;,  and Mi:. The 
new region formed by “a” and “b” will be called “a”, and “b” will no longer exist. 

Clearly the only internal ssd surface that will change is the one for the new region. Thus 
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n 

Figure 70: Merging regions “a” and “b” will require updating the ssd surfaces 
associated with the new region and all its neighbors. 

Pa* = 

P ,  = P ,  

Pd = Pd 

P ,  = P ,  

Pf = Pf 

* 
* 
* 
* 

Updating the P . ,  and M . .  is more interesting. There are four types of regions to consider: 

The region was a neighbor of “a” but not a neighbor of “b”, e.g. “c”. 
Then 

1J 1J 

1. 

Par* = Puc 

Ma, = P ,  i P ,  i P,, i Pb i Pab * 

= Ma, + Pb + POb = Mob + P ,  + P,, 

2, The region was a neighbor of “ b  but not a neighbor of “a”, e.g. “d”. 
Then “a” gets a new neighbor, and 

= ‘bd 

Ma: = Pd+Pb+Pbd+P,+Pab  

= Mbd + Pa i Pab = Mab i Pd i Pbd 

3. The region was a neighbor of both “a” and “b”, e.g. “e”. Then 
(141) 
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* 
Mae = Pa i P ,  i Pa, i Pb i Pbe i Pa, 

= Mab i- Pa,  i Pbe + P ,  
(142) 

4. The region was neither a neighbor of “a” nor “b”, e.g. “f’. Then there are 
no changes associated with this region. 

The ssd surfaces associated with region “b” are no longer needed after the merge. We note that the 
memory requirements of the segmentation program decrease as the program progresses. 

These updating rules mean that we evaluate the complicated affine parameters in Equation (137) 
only the minimum number of times required. We found that storing and updating the ssd surfaces 
made our segmentation program run much faster, to the point that we could experiment with the algo- 
rithm much more comfortably. 

4.2.5 Nontextured Regions 

Nontextured regions need special attention in our algorithm. Our peak-finding algorithm charac- 
terizes power spectrum patches in these types of regions by a single, d.c. peak at ( u ,  v )  = (0,O) . 
Such patches contribute nothing to the surface normal computation, because d.c. peaks are not shifted 
by 3D effects. The ssd surface for a pair of matched, d.c. peaks is a constant zero. In addition, these 
patches can be included in any textured region at almost no cost in description length, because their 
d.c. peaks are compatible with any surface normal. To keep nontextured patches from being help- 
lessly usurped into neighboring textured regions, we artificially create a minimum in their ssd sur- 
faces at ( p ,  q )  = (0 ,O) , 

The magnitude of the artificial minimum is computed based on the ssd surfaces from pairs of tex- 
tured patches. At the beginning our the image dendrogram, each patch has its own ssd surface. Since 
there is no way to compute a surface normal from a single patch, all these ssd surfaces are zero. There 
are also ssd surfaces computed between all pairs of adjacent patches. We find all the ssd surfaces that 
came from pairs of textured (non-d.c.) patches, and we compute the average difference between the 
minimum and maximum of these surfaces. The magnitude of the artificial minimum is five times this 
average. 

4.2.6 Region Refinement 

The final step in our segmentation algorithm is to refine the regions. After we pick the best level in 
the dendrogram, we give the regions to aprogram that perturbs the edges slightly to search for a better 
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segmentation. The algorithm checks through the image in scanline order. When it encounters a patch 
on a region boundary, it reassigns that patch to the neighboring region(s). We recompute the surface 
normals, frontalized peaks, and description lengths of the affected regions. If the total description 
length for the entire image is lower with the reassignment, the change is preserved. Otherwise the 
patch is assigned back to its original region. We continue to scan through the image until we have 
made a scan through the whole image in which no patches are reassigned. 

We have to take special precautions for regions of the image with no texture. Patches in these 
regions have their peak(s) at or near (u, v) = (0,O) . Near-uniform patches can be convinced to 
take on almost any surface normal, since an affine transformation of a peak near zero is still a peak 
near zero. We count the number of patches in each region with singular peaks at (u, v)  = (0,O) . If 
these patches constitute more than a third of all the patches in the region, our refinement program will 
not reassign any patches in the region. 

4.2.7 Summary of Algorithm 

This section summarizes our segmentation algorithm. We start by computing the spectrogram of 
the image using 64x64 windows on 15-pixel centers. Our spectrogram preprocessor then finds up to 
six peaks in each power spectrum window. These are exactly the same as the steps we used in our 
peak-matching shape-from-texture algorithm in Section 3.7. We then compute and store the 
ssdij ( p ,  q )  search spaces of all adjacent patches. We start building the dendrogram by considering 
each patch as its own region. Each region maintains a list of its neighboring regions. For each neigh- 
boring region, this list contains the decrease in description length that would result if these regions 
were merged. We compute the description length using (T = 0.01 cycles/pixel for the frequency 
peaks and Leclerc’s b = 2.0. At each level of the dendrogram, we merge the two regions that give 
the greatest decrease in description length. Each merge requires updating of the new region and its 
neighbors. This updating goes fairly quickly, because we maintain ssd ( p ,  q )  search spaces for all the 
regions and all the common borders between pairs of regions. We used a lower resolution search grid 
for the images in this section. Once the dendrogram is complete, we manually pick the best level and 
then refine the regions as described in the previous section. The magic numbers for this algorithm are 
shown in Table 12. The first 9 magic numbers are for the shape-from-texture part, and they are the 
same as the numbers for the peak-matching algorithm in Section 3.7, except for the lower-resolution 
search grid. 

155 



Segmenting Textured 3D Surfaces 

descrlptlon 
window center spacing 
window size 

value@) 
15 pixels horizontally and vertically 

64x64 nixels 
peak width for zeroing found peaks 
minimum frequency 

minimum (peak height)/(maximum peak height) 

I 6 maximum number of peaks per patch 

maximum distance between matched peaks 1/20 cvcledcdxel I 

1/16 cycledpixel 
1/32 cycledpixel 

1 15 

search grid resolution 
search grid limits 

( o ~ ,  0") of frequency peaks 
Leclerc's b for chain-code description length - I I 

I 5 nontextured region ssd minimum multiplier 
number of regions in imaoe selected manuallv 

40x40 or 60x60 

(Ipl, Iql) 5 (2,2) or (Ipl, 191) S (3 ,3 )  
(0.01,O.Ol) cycledpixel 

2.0 bitslseoment 

I fraction of uniform patches to be a uniform region I l l 3  I 
Table 12: All magic numbers for segmentation algorithm. 

4.3 Results 

We show results of our segmentation algorithm on 11 different images. Two of them were syn- 
thetically generated, four were taken in the Calibrated Imaging Laboratory at CMU, and five were 
taken outdoors in downtown Pittsburgh, PA. All the results use the same set of magic numbers, except 
we increased the range of the (p,  q) search grid from (IpI, 1st) S (2,2) for the synthetic and CIL 
images to (lpl, 141 ) 2 (3 ,3 )  for the outdoor images. We used a 40x40 search grid for the lower-range 
search and a mx60 grid for the higher-range search. The CIL images were taken with the Photomet- 
rics camera described in Section 3.5.2. The outdoor images were taken with a Canon Xap Shot cam- 
era. This is a fairly low resolution, portable, still video camera. We describe its use and calibration in 
Appendix 6. 

The results for each test image are shown on one page. The upper left shows selected levels of the 
image dendrogram, with different regions shaded differently. The dendrogram proceeds from the 
upper left, where each patch is a separate region, to the lower right, where the whole image is one 
region. The selected levels of the dendrograms is shown in Figure 71. The upper right of each page 
shows the edges associated with the dendrogram level that we manually chose as the best one. The 
middle left shows a needle diagram of the surface normals of the selected dendrogram level. The mid- 
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Figure 71: These are the “level numbers” of the dendrogram that we show in 
the segmentation results. The “level number” is the same as the 
number of regions. The segmentation starts with (n)x(m) regions. 

dle right shows the edges ofthe regions after region refinement. The lower left shows another dendro- 
gram, computed with the shape-from-texture module altered to return ( p .  q )  = (0,O) . This shows 
the effect of ignoring shape. The lower right shows the edges of what we consider to be the best level 
of the dendrogram computed by ignoring shape. 

The captions give specific commentary on the results. In general, we see can get a good segmenta- 
tion for all these images and the surface normals are fairly accurate. The edge refinement algorithm 
usually gives a slight improvement, with the most noticeable improvement for Figure 73. Except for 
two of the images, ignoring shape gives a dendrogram with no good levels. For the two exceptions 
(Figure 75 and Figure 76), at least one of the textures is close to frontal, so shape effects are mini- 
mized. The last CIL image, Figure 77, shows how the algorithm can discriminate the textured and 
untextured parts of a scene. This is also demonstrated in the outdoor images in Figure 72, Figure 72, 
and Figure 72. Figure 72 and Figure 72 show how our algorithm can segment identical textures with 
different surface normals. 
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ages from four-region level of dendrogram 

Refined edges 

Edges if surface normals were ignored 

Figure 72: Synthetic image with Brodatz textures “oriental straw cloth” (D53) 
and “cotton canvas” (Dn). Ignoring the surface normals gives a 
dendrogram with no good segmentations. 
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Edges if surface normals were ignored 

Figure 73: Synthetic image wlth Brodatz textures "woven aluminum wire" (D6), 
"netting" (D34), and "cotton canvas" (D77). Edge refinement gives a 
noticeable improvement. Ignoring the surface normals gives a 
dendrogram with no good segmentations. 
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Segmenting T e x t d  3D Surfaces 

Dendrogram Edges from two-region level of dendrogram 

Computed surface normals Refined edges 

Dendrogram if surface normals were ignored Edges if surface normals were ignored 

Figure 7 4  CIL image with egg crate pattern light cover and doormat. We did 
not measure ground truth for the surface normals. Ignoring the 
surface normals gives a dendrogram with no good segmentations. 
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Dendrogram Edges from two-region level of dendrogram 

Computed surface normals Refined edges 

Dendrogram if surface normals were ignored Edges if surface normals were ignored 

Figure 75: CIL image with screen guard and doormat. We did not measure 
ground truth for the surface normals. We can get a good 
segmentation even if we ignore the surface normals, partly because 
the screen guard is almost frontal. 
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Dendrogram Edges from three-region level of dendrogram 

Computed surface normals Refined edges 

Dendrogram if surface normals were ignored Edges if surface normals were ignored 

Figure 76: CIL image with bumpy light cover, doormat and screen guard. We 
did not measure ground truth for the surface normals. We can get a 
good segmentation even if we ignore the surface normals, because 
the textures are almost frontal. 
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Dendrogram Edges from three-region level of dendrogram 

................................... ................................. ......._-__-_--------I----1...... ................................ 
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Computed surface normals, average ermr is 
6.21 degrees 

Refined edges 

Dendrogram if surface normals were ignored Edges if surface normals were ignored 

Figure 77: CIL image of screen guard and other objects. Our program can 
distinguish the textured and untextured regions of an image. 
Ignoring the surface normals gives a dendrogram with no good 
segmentations. 
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Segmenting Textured 3D Surfaces 

Dendrogram 

............................. ............................. ............................. ............................. ............................. ............................. ............................. 
I..,,,,,,..,,,.CC~~Crrrrrr~CC ............................. ............................. ............................. 

Computed surface normals Refined edges 

Dendrogram if surface normals were ignored 

Figure 78: This Is a corner of the U.S. Steelworkers Buildlng in downtown 
Pittsburgh, PA. Our program finds the corner. Ignoring the surface 
normals gives a dendrogram with no good segmentations. 
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Dendrognun 
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Computed surface normals Refined edges 

Dendrogram if surface normals were ignored Edges if surface normals were ignored 

Figure 79: Air vents on a buildlng In downtown Pittsburgh, PA. Refining the 
edges makes them worse in this case. Ignoring the sulface normals 
gives a dendrogram with no good segmentations. 
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Dendrogram 

............................. ............................. ............................. ............................. ............................. ............................. ............................. ............................. ............................. 

Computed surface normals 

Dendrogram if surface normals were. i g n o d  

Edges from four-region level of dendrogram 

Refined edges 

Figure 80: This is a large apartment building In Pittsburgh, PA. Our program 
separates the texture from the non-texture. Ignoring the surface 
normals gives a dendrogram with no good segmentations. 
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Dendrogram Edges from four-region level of dendrogram 

............................. ............................. ............................. ............................. ............................. ............................. ............................. ............................. ............................. 
Computed surface normals Refined edges 

Dendrogram if surface nonnals were ignored 

Figure 81: The region to the left of thls shingled roof is consldered non- 
textured by our program. lgnorlng the surface normals gives a 
dendrogram wlth no good segmsntatlons. 
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Dendrogram 
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Computed surface normals Refined edges 

Dendrogram if surface normals were ignored 

Figure 82: This is the same scene as in Figure 72, but with the camera pointing 
more to the right showing two shingle-covered surfaces. Edge 
refinement improves the result slightly. Ignoring the surface 
normals gives a dendrogram with no good segmentations. 
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4.4 Discussion 

There are several things we like about our segmentation algorithm. Most important, to our knowl- 
edge, it is the only texture segmentation algorithm that explicitly accounts for 3D shape. And while 
we cannot claim this is a necessary prerequisite for segmenting images of textured, 3D objects, it is at 
least important for our algorithm, because it usually fails when we turn off the shape-from-texture 
module. It is reasonable to believe that accounting for shape is the right thing to do for all general 
image segmentation algorithms that depend on measures that are affected by 3D shape. 

The the dendrogram and minimum description length criterion combine to make a segmentation 
algorithm that is fairly simple and does not require many magic numbers. It is much simpler than 
some of our earlier attempts at solving the same problem[59]. The dendrogram, by its nature, begins 
with a tight threshold on what can be merged and then loosens the threshold just enough to keep 
merging. The minimum description length principle lets us neatly avoid complex questions of how to 
evaluate combinations of disparate numbers of peaks. We use it not only to find the best clustering of 
peaks, but also to evaluate the compactness of the clustering. The description length taken over the 
whole image is an effective merge criterion for the dendrogram. It is also useful for our refinement 
step. 

There are at least three ways this algorithm could be improved with a reasonable amount of effort. 
First, it would be good if the description length criterion could signal the correct level in the image 
dendrogram. Ideally, we would like to stop merging after we find no merges that would decrease the 
total description length, or at least take the segmentation with the minimum description length. 
Unfortunately, both these points come much before the right level. Figure 83 show description length 
as a function of the number of regions for the dendrogram in Figure 73. The right number of regions 
is four, but the minimum description length occurs at 381 regions. The description length of the 
chaincoded borders behaves as we expect: decreasing as the number of regions gets smaller. This is 
because larger and larger regions are being merged, meaning more and more bits are saved by not 
having to account for their common borders. The problem is with the description length of the clus- 
tered peaks. It starts rising too soon. This could be caused by merging patches that overlap into two or 
more textures. It may also be that our estimate of the standard deviation of the peaks (0.01 cycled 
pixel) is too low, giving too much weight to the deviations between the cluster centers and the peaks. 
Although the description length criteria provides an effective way of ranking potential merges, it is 
not yet up to the task of evaluating them on an absolute scale. Even Rissanen, the father of description 
length, continues to refine his formulation. Ours also needs refining. 
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Figure 83: This shows the description length as a function of the number of 
regions for the image of three textured plates in Figure 73. The 
minimum in the total description length occurs at 381 regions, 
whereas we would like it to occur at four. 

The other two improvements we have already discussed in Chapter 3. It would be good if the 
algorithm could work on curved surfaces and on random textures. Conceptually, all we need for 
curved surfaces is a 3D shape representation that would allow us to frontalize all the patches in a 
region to a common depth. A list of local surface normals would be the most general representation, 
but it would not be as robust as a parameterized surface where all the patches contribute to the coeffi- 
cients of a surface equation. Dealing with random textures could also give noisy surface normal esti- 
mates, but this too could probably be solved with parameterized surfaces. Although random textures 
cannot be represented by peaks in their power spectra, the dendrogram, frontalization, and description 
length concepts could be adapted to account for more general textures. One potential problem is that 
small regions of random texture m a y  give only very uncertain surface normals. 

170 



Chapter 5 where We’ve Been and 
where We Could Go 

. -. 
5.1 What We Have Shown 

The goal of this thesis was to show how the space/frequency representation, specifically the spec- 
trogram, is useful for analyzing image texture. We began in Chapter 1 by reviewing all the major 
models for image texture that have been used in computer vision. These were first-order statistics, 
cooccurrence matrices, gray level run length matrices, autocorrelation, Markov random fields, fractal 
Brownian surfaces, random mosaics, low-level features, high-level features, and local frequency fil- 
ters. Of all these models, only local frequency filters (the spacdfrequency representation) and 
Markov random fields have been use for all three tasks of texture classification, texture segmentation, 
and shape-from-texture, We went on to show in pictures how the space/frequency representation elu- 
cidates several different image phenomena. These phenomena include texture boundaries, texture in 
perspective, aliasing, zoom, and blur. The common characteristic of these phenomena is that they all 
show some kind of spatial frequency phenomena that changes from point to point in the image. Thus 
they are perfectly suited for analysis with the spacdfrequency representation. 

Having shown the general usefulness of the spacdfrequency representation for image texture 
analysis, we discussed in Chapter 2 the important issues in computing the space/frequency represen- 
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tation for our application. Although any algorithm for computing the representation will suffer from 
inherent resolution limits and problems with nonstationary signals, we can still do well enough for 
our purposes. We considered all the top contenders in the pool of algorithms for computing the space/ 
frequency representation. These were instantaneous frequency, the short-time Fourier transform and 
spectrogram, general frequency filters, wavelets, the Wigner distribution, adaptive filters, and spe- 
c.ially tuned filters. For our application of general image texture understanding, the spectrogram was 
the best, and we used it for the remainder of the thesis. 

Our first all-out effort at using the spectrogram was an algorithm for shape-from-texture. Based 
on our mathematical analysis of frequency shifting due to 3D effects, we developed three related 
shape-from-texture algorithms in Chapter 3. The first two algorithms, ssd patch-matching and differ- 
ential patch-matching, work directly on the spectrogram data and require only a few magic numbers. 
While the spectrogram is a low-level representation of the image data, these algorithms showed that it 
can be used to directly estimate high-level scene parameters, without going through potentially unre- 
liable feature-detection in between. Our third algorithm, peak-matching, was based on finding and 
matching peaks in the spectrograms of periodic textures. This gave use a fast algorithm for estimating 
local surface normals, which is what we needed for our segmentation algorithm in the next chapter. 

We showed how to unify the solutions to two major texture problems in Chapter 4. Until now, tex- 
ture segmentation and shape-from-texture were two independent problems, with mutually exclusive 
assumptions that prevented their being reliably applied to images of 3D textured surfaces. Using our 
peak-matching shape-from-texture algorithm, we showed how to segment such images by making 
tentative hypotheses about the surface normal and frontal texture in small regions of the image. We 
grow the hypotheses using a minimum description length merge criteria, and demonstrated the algo- 
rithm on images of real texture. This algorithm shows how the space/frequency representation can 
indeed be used to unify formerly disparate tasks in computer vision, and it solves a problem that had 
not yet been solved. 

5.2 What We Know Now That We Didn’t Know Before 

This is a list of new research results that we developed in this thesis. 

Shape-from-Texture Theory 

We developed the mathematical relationship between the 3D orientation of a tex- 
tured surface in a scene and the local Fourier power spectrum of its perspective 
projection, 

We used the relationship above to show that the connection between the Fourier 

172 



What We Know Now That We Didn’t Know Before 

power spectra of any two image regions from the same texture in the scene are 
approximately related by an affine transformation. The four affine parameters are 
functions of the 3D location and orientation of the corresponding surfaces in the 
scene and the camera parameters. If we assume the two scene points are on the 
same plane, then the only unknown is the plane’s surface normal. 

We developed a method of analytically predicting the relative variance of the com- 
puted surface normals using the Hessian of the ssd surface at the minimum point. 
Our predictions were verified with experiments. 

Shape-from-Texture Algorithms 

SSD Patch-Matching: This is a simple algorithm based the power spectra of two 
pre-specified points in the image. If we assume that the two points are from the 
same textured plane, then we can search the space of surface orientations for the 
one that gives the best affine transform of one power spectrum into the other. The 
algorithm requires no feature- detection and few magic numbers. It works on peri- 
odic and random textures. In simple cases it works in spite of aliasing. 

Differential Patch-Matching: This is a simple algorithm based on nearby power 
spectrum patches. By directly computing the affine transformation between neigh- 
boring patches, we can avoid having to affine transform one power spectrum onto 
another. We search through the space of surface normals for the one that gives the 
computed affine parameters. This gives us local surface normal estimates, so it 
works for curved as well as flat textured surfaces. 

Peak-Matching: For periodic textures, peaks preserve everything we need to know 
about the power spectrum. We search through the space of surface normals to find 
the one that best accounts for the peak shifts between two patches. This algorithm 
is good for quickly estimating local surface normals of periodic textures. We use it 
as the basis of our segmentation algorithm. 

Algorithm for Segmenting 3D Textured Surfaces 

We use our peak-matching algorithm for estimating local surface normals. Based 
on these estimates, we show how to compute where the frequency peaks would be 
if the texture were viewed from the front. 

We developed a merge criterion based on the minimum description length princi- 
ple. We use the description length to measure how well the frontalized peaks in a 
region cluster together. Our description length formula is a conventional one with 
an extra term added for labeling the points with their cluster numbers. This term 
appears to give a sharper minimum when evaluating the description length for dif- 
ferent numbers of clusters. 

We developed a fast algorithm for computing the surface normal of combined 
regions. We maintain in memory the ( p , q )  search spaces for all the current 
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regions in the image. When we combine regions, we simply sum their search 
spaces and take the location of the new minimum as the surface normal. This min- 
imizes redundant computation. 

5.3 Good Things to Do Next 

We left off with solving the problem of segmenting textured 3D surfaces using the spectrogram. 
We assumed that the textures were periodic and the surfaces were flat. Starting at this point, there are 
several new things to try, 

More General Scenes: We would like our shape-from-texture and segmentation algorithms 
to work better on curved surfaces and irregular textures. Although we can compute local 
surface normals of curved surfaces, we cannot segment curved surfaces. For this task, it 
would probably be best to use a parameterization of the surface to help smooth errors in the 
surface normals and to evaluate potential merges. 

Our ssd patch-matching algorithm works on irregular textures, but it is slow and requires a 
large region of texture. If we are to segment irregularly textured 3D surfaces, we need to 
find local surface normals based on small regions of irregular texture. 

Better Adaptation to Input Data: Jones and Parh[47] showed how to adaptively change 
the spectrogram window size to achieve a higher resolution space/frequency representation. 
For stereo, Okutomi and Kanade[77] showed how to optimize the matching window size to 
get the best disparity estimates. For our application, the window size and shape could be 
optimized to give the best surface normal estimate. 

Super[99] has a good idea in using spatial filters tuned to different surface orientations. This 
deserves more attention. It would be interesting to try this idea on irregular textures. 

There is some limit to how accurate any shape-from-texture algorithm can be. A compre- 
hensive sensitivity analysis could take into account all factors, including the randomness of 
the texture, and then predict the accuracy and give the best parameters (e.g. window size) to 
use to get the surface normal. 

More Phenomena Integrated: The space/frequency representation is a good way to reason 
about aliasing and blur, as we showed. It should be possible to integrate such reasoning into 
our segmentation algorithm to let it handle these phenomena. And while aliasing and blur 
are usually considered an annoyance, there is a thriving literature in how to exploit them to 
compute surface orientation and depth, respectively. These could be used to aid the segmen- 
tation. 

Better Segmentation: We compute our spectrogram on 15-pixel centers, so the edges of our 
segmentation are blocky. It would be good to refine these edges using special reasoning 
about texture boundaries. This could involve computing new power spectra at a smaller 
pixel spacing near the edges, computing power spectra with smaller windows, or detecting 
and eliminating spectra that overlap into two or more distinct textures. 
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The Future of SpaceFrequency in Computer Vision 

Our description length formula proved effective for finding the right regions to merge for 
segmentation. Ideally, it would also tell us when to stop merging by indicating there are no 
more merges that would reduce the description length of the image. 

5.4 The Future of Space/Frequency in Computer Vision 

This thesis has shown how the spdfrequency representation is useful for analyzing many image 
phenomena. The representation’s versatility is evidenced by the wide variety of computer vision 
problems it has been used to solve, as shown along the left side of Figure 84. All this research has 

used either the spacdfrequency representation or the Fourier transform of the whole image. (Presum- 
ably, if the problem can be solved with the Fourier transform of the whole image, it can be solved 
locally with the space/frequency representation.) Given that the representation is useful for all these 
problems by themselves, it should be useful for solving the problems in combination. For instance, 
our earlier work in moire patterns[57] was based in the frequency domain, and this meant we were 
prepared to account for aliasing in the ssd patch-matching algorithm for shape-from-texture that we 
presented in Section 3.5.3. Likewise, we showed how to solve the combined problem if segmentation 
and shape from texture in Chapter 4. The common representation makes it much easier to formulate 
the equations and implement the algorithm. Since so many other algorithms are based on the same 
representation, we predict a gradual unification of all these algorithms in terms of the space/frequency 
representation. We give this final theory the grand title of “The Unified Theory of Spatial Vision”. 
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Appendix 1The Spe~trogram of a 1D 
Fourier Series 

The Fourier series is 

m 

If the ind 

n = -m 

v function is w (n) , then the spectrogram is 

m I u - nuo) 
m - 
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The last equation, a product of two sums, can be thought of as a sum of pairwise products in a matrix 
indexed by m and n, as shown below. 

The terms on the diagonal are the auto-terms, Corresponding to m = n ,  while the off-diagonal ele- 
ments are the undesirable cross-terms. If we separate the auto-terns and cross-terms, the spectrogram 
becomes 

m 

m m 

m f n  
(A1 3) 

Every term in the lower triangle can be summed with a corresponding complex conjugate term in the 
upper triangle. This gives the final expression: 
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Appendix 2The Wiper Distribution of a 
1D Fourier Series 

The Fourier series is 

n z - m  

Boashash[S] recommends using the analytic version of the function for the Wigner distribution. This 
can be obtained by zeroing the amplitudes of all the negative frequency components, doubling the 
amplitudes of the positive frequency components, and doing nothing to the d.c. component. The ana- 
lytic version o f f  ( x )  is then 

n = O  

where 

a. = co 

a, = ZC, for n # 0 

The Wigner distribution is then 



Grouping the product pairs into auto- and cross-terms, like we did in Appendix 1 ,  we get 

‘ r = O  n = O  n = O  
m f n  

Summing the complex conjugate terms in the double sum gives 

, m  

n = O  m = n + l  1 

Taking the Fourier transform gives the final expression: 
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Appendix 3The spectrogram of a 2D 
Skew-Periodic Function 

Our peak-matching algorithm for shape-from-texture (Section 3.7) is based on the assumption 
that the texture is periodic. This lets us assume the spectrogram is composed of peaks. A 2D periodic 
function, strictly speaking, is arranged on a uniform rectangular lattice. A “skew-periodic” func- 
tion[32] is more general in that it is arranged on a uniformly skewed rectangular lattice. Periodic 
functions are a special case of skew-periodic functions. This appendix derives the spectrogram of a 
2D skew-periodic function, showing that it consists of peaks. Therefore, the peak-matching algorithm 
applies to not only strictly periodic textures, but to the broader class of skew-periodic textures. 

We can write a 2D skew-periodic function as a sum of regularly spaced elementary func- 
tions[ll7]. That is 

on m 

b2 bl a2 a1 (n - --n - --m, y- --n - - m )  
f ( X , Y )  = - I DI ‘ c  c D D  D D  

where D = a l b 2  - a 2 b l .  We have written the skew coefficients in this strange way to make the 
resulting spectrogram simpler. The double-sum of delta functions represents the nodes of a skewed 
lattice. A strictly periodic function would have b ,  = a2 = 0 or b,  = a ,  = 0. 

The major part of this derivation involves the Fourier transform of a skew-periodic function. We 
took this from Gaski11[32], p. 310. .If w (x, y) is the window function, then the spectrogram is 
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where cmn = C ( n l n  + a2m, b , n  + b2m) . We continue by doing the convolution. 

Y - S , ~  - o , m ) x +  lv-b,n - b,m)yl W ( u - a p - u p ,  v -  b l n -  b2m)l 

I * -j2n [ ( u  - 0," -a2m)x + (v  - b ,n  - b p ) y I  9 (u - a , n -  a2m, v -  b l n  - b,m) , I c c c,n e 

W ( u - a , n  - a2m. v -  b,n  -b2m)  @ ( u  -a,"' - a 2 m ' ,  v -  b,n'  - b2m' )  

w 4) 

The next step is to split out the complex conjugate auto-terms as we did in Appendix I and Appendix 

] 

L. 
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m # r n ' o r n # n '  W ( u  - a,n  -a,m, v -  b ,n  - b p )  ( u  -aln' -u2m',  v -  b ln '  -b2m' )  ] 

(A3 5) 

We can pair complex conjugate terms in the second term to get the final, real expression. 

* / 2 n  [ (u-a,n --~lp)i + (r- b,n - b 2 m )  y1 -jZr I ( u  - n , n '  - a 2 m ' ) x *  (1, - b , o '  - b p ' ) g  
2 C x [crnmcm,n' e 
"=-- m = - -  " ' = -  . ' = " ' + I  

W ( u  -al" - a2m. v -  b,n -b2m)  uf (u - a,n' - a,m', v - b,n' - b2m')  ] 
(- 6 )  

The double-sum contains the auto-terms that we want to see. The quadruple sum contains the undesir- 
able cross terms. Since the two W (u ,  v) functions in each cross term do not fall exactly on top of 
each other, they will tend to zero each cross term if they are narrow enough. 

185 



186 



Appendix 4The Windowed Fourier 
Transform of an Affined 
Transformed Function 

In Section 3.3 (“Local Fourier Transform of an Image Texture” on page 75), we used a property of 
the Fourier transform that says if a function in space undergoes an affine transform, its Fourier trans- 
form will also undergo an affine transform. In equation form, if Ax, y) is the image in one patch and 
Aalx  + bly ,  a2x + b2y) is the image in the other patch, the relationship between their Fourier trans- 
forms is[32] 

3 ctlx, Y ) }  = F(U, 4 

withD = a l b 2 - n 2 b l .  

If we use this relationship directly, however, we would be ignoring windowing effects. The Fou- 
rier transforms of the two functions are taken over only a limited region in the image. This region 
does not undergo an affine transformation. In  what follows, we will show how this situation can be 
desribed more accurately by dropping the 1/1D scale factor in front of the affine transformed Fourier 
transform. 

We will begin with a 1D formulation to make the reasoning clearer. If we use a rectangular win- 
dow of width I ,  then the windowed Fourier transform of the undilated patch Ax)  is 
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= lsinc ( lu )  * F ( u )  
(A4 2) 

The dilated (or compressed) version of f i x )  is flux). If we disregard the windowing, its Fourier 
1 transform is - F  ( u / u )  which has a scale factor l /a.  If we account for the window, we get 
U 

a1/2 U -j2n- a 
a da 1 

= - Aa)e 
U 

-a1/2 

This comes from substituting o! = ax. 

We proceed by making an assumption about the second integral in Equation (A4 3). We note that 
the limits of integration are just a scaled version of the limits of integration of the first integral in 
Equation (A4 2). The integrand is a stationary texture multiplied by a complex exponential. Since this 
integrand fills the space between the limits of integration ( i e .  it is not a short pulse), it is reasonable to 

assume that scaling the limits of integration by a factor of n simply scales the integral by the same 
factor. This approximation gives 

U - j2n-x  
1 /2  

= J a dx 

= lsinc ( l u )  * F ( u / u )  

-1/2 

(A4 4) 
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Comparing F1 ( u )  and F2 ( u )  , we see that, except for the convolution with fsinc (Iu) , they are 
simply dilated versions of each other. If 1 is sufficiently large, then Isinc (Zu) will be narrow and the 
convolution will have a negligiable effect. To summarize, if we ignore the window effect, then 

5 I f ( x ) >  = F ( u )  

1 
s c f ( b X ) }  = - F ( u / a )  U 

If we account for a wide rectangular window, then we have the approximations 

Fl(U) = F ( u )  

F 2 ( u )  = F ( u / a )  

The only difference is the 1 / a  scale factor in the Fourier transform of the dilated function. The 
remainder of this Appendix develops the same argument for 2D functions. 

The 2D texture function is f ( x ,  y )  , and it is windowed by a 2D rectangular window with dimen- 
sions 1, and f , shown in Figure A4.1. The windowed Fourier transform is Y 

i y / 2  1,/2 

-1/2 -1J2 

dxdy -j2n ( u x  + vy) 
F ,  = I f ( r Y ) e  

= I 1 sinc ( I p ,  Iyv) * F ( u ,  v) 
X Y  (A4 7 )  

The affine transformed version of f ( x ,  y) is f ( a l x  + bly, a2x + b2y)  . Its windowed Fourier 
transform is 

i / 2  i x / 2  

- ly /2  -1/2 

dxdy -j2% ( u x  + v y )  Fz(u ,  v) = J’ J f ( a l x + b l y , a 2 X + b 2 Y ) e  

We make the following substitutions with the following Jacobian determinant: 
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t' 

CI = a l n + b l y  

fl = a2x+b2y  

Then 
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This integral is evaluated over the affined transformed window in Figure A4.1. This window has an 
area of Dl 1 which is D times the area of the original rectangular window. We will make the same 
assumption for this window as we did for the 1D case. That is, the value of this integral taken over a 
window D times as large as the window in Equation (A4 8) is D times as large as that integral. The 
approximation gives 

X Y  

- 1 / 2  -IJ2 

b2 a2 bl  al  = I 1 sinc ( I p ,  lYv )  * F (  --u - -v, - -u + -v) 
X Y  D D D D  (A4 11) 

Comparing F ,  (u, v) and F2 (u, v) , we see that they are f i n e  transforms of each other and both 
convolved with sinc (lx-u, lyv)  . If l x  and 1 are large enough, then sinc {Z,u, iyv) will be narrow, and 
we can neglect the convolution. To summarize, when we ignore the window effect we get 

Y 

3 MX, Y )  I = F(u, v) 

1 b2 a2 bl a1 3 m a l x  + b l y ,  a2x + b2y)}  = -F( - -u  - -v, - -u + - v )  ID1 D D D D 

Accounting for a large window, we get instead 

F i ( u ,  V )  J F(u, V) 

b2 a2 bl a1 F2 (u ,  v )  = F ( -u - -v, - -u + - v )  D D D D  

(A4 12) 

(A4 13) 

This is the relationship we used in our shape-from-texture algorithms. In spite of the approximations, 
and in spite of the fact that we use a window that falls off to zero smoothly at the edges, the data and 
results support its use. 
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Appendix 5 Enumerating Pairs of Point 
Matches 

In Section 3.7.2 ("Finding and Matching Peaks" on page 128), we discussed an algorithm that 
matches discrete peaks between two power spectra. In order to find the best set of matches, we con- 
sider every possible set of matches, including leaving some of the peaks unmatched. This appendix 
shows how many matches we have to consider. 

Suppose there are nl points in the first set and n2 points in the second set. There can be from 0 to 
min ( n l ,  n2) matched pairs between these two sets. If there are rn matched pairs, then there are ri) possible sets of points from the first set to match with i",z) sets of points from the second set, 
where 

(as 1) 
- number of combinations of n 

distinct objects taken mat  a time 
- n! 

m! ( n  - m) ! 

If there are rn points to match in each set, then there are m! possible ways of pairing these points. 
Considering all possible numbers of matched pairs, the total number of sets of distinct matches to 
consider is 

The number of matches that must be considered for various values of n1 and n2 are given in Table 
A5.1. In our case, we allow a maximum of 6 peaks for each patch, so we never have to consider more 
than 13,327 sets of matches. 
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Table A5.1:Number of distinct sets of matches between sets of n1 and n2 
points. 
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Appendix 6using the canon xap Shot 
Camera 

We used a Canon Xap Shot camera, model RC-250, to take some of our test images. The Xap 
Shot is a portable still video camera that can store up to 50 images on its floppy disk. It can be con- 
nected to a video monitor to display the images or to a digitizer to digitize the images. We had to cal- 
ibrate the camera, because our shape-from-texture algorithms need the focal length, pixel size, and 
pixel center of the image. This appendix describes the calibration and preprocessing necessary for 
using these images. 

We used Reg Willson’s convenient camera calibration program (publicly archived, anonymous ftp 
to FTP.TELEOS.COM). The input to this program is a list of 3D scene points and their corresponding 
image points. Our calibration target was a 10x16 lattice of dots on one-inch centers on a flat board. 
We positioned the target on a rail table whose motion was approximately parallel to the camera’s opti- 
cal axis. We took three pictures of the target at three different distances from the camera. The closest 
distance was approximately 65 inches, We moved the target back nice inches for the second image 
and another nine inches for the third image. 

A close look at the calibration images showed that the dots were split horizontally, as shown in the 
close-up in Figure A6.1. The manufacturer told us that during playback the camera inserts new rows 
in between the rows actually produced by the 250-line CCD. Apparently their algorithm for generat- 
ing the new lines cannot maintain small features, or we would not have noticed the phenomenon. Our 
Mabox digitizer gave images with 480 rows, but we threw out the artificial rows starting with the sec- 
ond from the top and alternating down the image. This made the images look squashed vertically, 
which we corrected by displaying and printing them with each row repeated twice. 

Willson’s program requires data on the camera’s CCD and the digitizer. Specifically, we had to 
supply the physical size of the CCD pixels, the number of rows and columns of the CCD, the corre- 
sponding physical size of the digitizer’s pixels, and the number of rows and columns of the digitizer. 
The manufacturer’s specifications give the size of the CCD as 4.8 mm vertically and 6.4 mm horizon- 
tally. The manufacturer told us that the CCD has 250 rows and 782 columns. Thus, the physical size 
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Figu 
inserting new rows in between those actually produced 
by the CCD. 

of the pixels on the CCD is 4.8mm/250 = 0.0192mm vertically and 6.4mm/782 = 0.00818mm 
horizontally. The camera effectively halves the vertical size of the CCD pixels by inserting new rows, 
which we effectively double by throwing out alternate rows. Thus, the vertical size of the digitizer 
pixels is the same as the vertical size of the CCD pixels. The Matrox digitizer gives images with 480 
rows and 512 columns. For the horizontal size of the digitizer pixels, we estimate that the digitizer 
spreads it 5 12 columns over the horizontally scanned length of the CCD. We were told by the manu- 
facturer that the CCD is underscanned to 242 rows and 739 columns. This means that the digitizer’s 
512 rows are spread across 739 x 0.00818mm, giving a horizontal size of about 0.01 18mm for digi- 
tizer pixels. Willson’s program calibrates this value by computing sx - the “uncertainty factor for 
scale of horizontal scanline.” In our run, this came out to be 1.027753. We scaled our estimate of the 
size of the horizontal digitizer pixels by sx to get 0.0121mm. 

The calibration program gave a focal length of 10.94 mm, which is close to the manufacturer’s 
figure of 11 mm. The center rows was at 119.91 pixels from the top of the image and the center col- 
umn was 254.43 pixels from the left of the image. 

We noticed that the Xap Shot camera adds a high-frequency periodic pattern to its images, per- 
haps for dithering. Figure A6.2 shows a Xap Shot image of Jim Moody after removing alternate rows. 
We computed the spectrogram of this image using 64x64 windows on 64-pixel centers. The mean of 
all the power spectra is shown in Figure A6.3. Even though there don’t appear to be many textured 
objects in this scene, the mean spectrogram shows four high-frequency peaks at (row,column) coordi- 
nates of (0.1 I), (0,49), (63.11). and (63,49). After computing each power spectra for the spectrogram, 
we zeroed these points and their neighbors within a radius of four pixels for all the Xap Shot images. 
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Figure A6.2:Xap Shot image of Jim Moody after removing alternate 
rows. None of the objects In this image show much 
texture, yet the mean of the spectrogram in Figure A6.3 
shows high-frequency peaks. 

Figure A6.3:The mean of the spectrogram of the image in Figure 
A6.2 shows four high-frequency peaks that were 
artificially produced by the Xap Shot camera. We 
removed these peaks in the spectrograms. 
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