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Abstract. Simulated, false location reports can be an effective way to confuse a 

privacy attacker. When a mobile user must transmit his or her location to a 

central server, these location reports can be accompanied by false reports that, 

ideally, cannot be distinguished from the true one. The realism of the false 

reports is important, because otherwise an attacker could filter out all but the 

real data. Using our database of GPS tracks from over 250 volunteer drivers, we 

developed probabilistic models of driving behavior and applied the models to 

create realistic driving trips. The simulations model realistic start and end 

points, slightly non-optimal routes, realistic driving speeds, and spatially 

varying GPS noise. 
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1 Trip Simulations For Privacy 

Some location-based services require users to transmit location from their mobile 

device to a central server. These transmissions can be user-initiated and sporadic, 

such as a query to find nearby restaurants. Other location transmissions can be 

periodic and relatively frequent, like those querying for alerts about nearby friends, 

events, and advertising. These location transmissions and the responses from the 

server could be compromised by an attacker, resulting in a potentially sensitive 

privacy leak. 

One approach to bolstering privacy is to anonymize the location transmissions by 

stripping away any identifying information. The server often still requires a 

pseudonym, however, in order to know how to respond and to whom. It has been 

shown in [6] that an attacker can find a person’s home even with pseudonomized GPS 

tracks, and [10] shows how such an attack can go further and find the actual name of 

the victim based on publicly available street address listings. Even using completely 

anonymized tracks, with no pseudonym, [4] has shown how to find which location 

points belong together in the same track, effectively creating a pseudonym for each 

trip. 

Another commonly proposed technique for improving location privacy is 

obfuscation. This approach degrades the transmitted location in some way that 

reduces the chance that an attacker can find the potential victim’s true location. 



 

Obfuscation techniques include inaccuracy and imprecision, introduced for location 

privacy in [1]. Inaccuracy can be achieved by adding random noise to location 

measurements, and imprecision can be achieved by snapping measurements to a grid. 

Unfortunately, [10] showed that the amount of obfuscation necessary to foil an attack 

can be very high, e.g. an identity attack still worked after adding noise with a 1-

kilometer standard deviation. Gruteser and Grunwald [3] introduced k-anonymity for 

location privacy, in which point location reports are replaced by regions containing k-

1 other people, another way of achieving imprecision. While obfuscation can be 

effective, it necessitates the degradation of the location data, which can be fatal for 

certain applications. 

One little-explored but promising technique for location privacy is for the user to 

send several false location reports along with the real one. The server would respond 

to all the reports, and the user would ignore all but the response to their actual 

location. With enough false reports, the chances of an attacker picking the true one 

could be reduced to an acceptable level. This technique uses no obfuscation, meaning 

it would still work for location-based services that require accurate and precise point 

reports, such as alerts of nearby friends and location-based advertising. The only 

previous work exploring this idea appears to be that of Kido et al. [9] who explore an 

algorithm for reducing the inevitable increase in communication cost. 

The effectiveness of false reports depends heavily on minimizing the ability of an 

attacker to determine which reports are false. Reporting completely random locations 

is risky, because they may fall at obviously unlikely locations like lakes, oceans, 

swamps, and rugged mountains. Furthermore, since locations from the true report will 

follow a plausible path, the false reports must also be plausible paths. Otherwise, the 

continuity of the true path would be easy to distinguish from the “twinkling” of the 

false reports. 

The Kido paper concentrates on reducing communication costs, so its two 

proposed false path generation techniques are not emphasized. One of these 

techniques, “Moving in a Neighborhood”, is essentially a random walk model, while 

the other, “Moving in a Limited Neighborhood”, modifies the first to avoid clumping 

false reports near other users’ true locations. However, Duckam et al. [6] point out 

sophisticated techniques that can be used to filter out false reports. For instance, they 

note that movement may be constrained to a graph, like a road network. Also, people 

normally move with a goal in mind. Thus, random walk models are likely to be easily 

identifiable by an attacker who could then strip away all but the true location report. 

Related to our work is research on mobility patterns to model the use of wireless 

networks. For mobile networking, mobility simulations are important for wireless 

networking with both fixed base stations [11] and mobile peers [1, 3]. Because fixed 

base stations normally have a large range, the associated mobility models can work at 

the relatively coarse level of cells surrounding each base station, as in [18]. For 

mobile ad hoc networks (MANETS), however, finer grained simulations are 

necessary due to the short range of the participants’ radios. Such models are used to 

help simulate a collection of wireless nodes, such as automobiles, forming a network 

with no central control. The Random Waypoint model [2] is one of the first 

simulations relevant to this situation. Here, a subject moves in a straight line toward a 

randomly chosen waypoint at a randomly chosen speed, then chooses another 

waypoint and speed, etc. Other such mathematical models have been developed since, 



 

all aimed at increasing realism. For the case where the mobile nodes are vehicles [8], 

as in this paper, one of the more sophisticated models constrains the vehicles to a road 

network, either random or from a real map [20]. These mathematical models fall short 

of reality, however, because they lack the degrees of freedom to faithfully simulate 

real drivers. Maximum realism comes from trace-based models that use actual path 

traces played back from real subjects. These are limited, however, because measuring 

traces is relatively expensive, especially for high volumes of traffic in cities. 

We also note that simulated trips for privacy vs. wireless networking have different 

goals, and therefore different criteria. For instance, mobility simulations for wireless 

networking often try to account for group behavior and interactions among mobile 

nodes, because this can affect loads on base stations and present opportunities for 

messages to hop between peers. For privacy, however, our goal is to fool an attacker, 

which means we can give many isolated, false trips that do not need to show any 

regard for each other. 

This paper presents simulated traces based on an actual road network. Our method 

approaches the realism of actual traces by using probabilistic models of driving 

behavior abstracted from real traces. Our simulated driving trips exhibit these realistic 

characteristics, all derived from a statistical analysis of actual driving traces: 

• Realistic starting and ending points 

• Goal-directed routes with randomness 

• Random driving speeds 

• Spatially varying GPS noise 

We can generate an arbitrary number of these traces, all of which adhere to the 

statistical behaviors we see for actual drivers. 

The following sections describe how we model each of these characteristics, 

preceded by a description of our measured driving data. 
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Figure 1: (a) We analyzed and generated trips inside the 20 kilometer radius circle 

covering area around Seattle, Washington, USA. (b) Our road network is 

anchored by nodes that occur at intersections, dead ends, and road name changes. 
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Figure 2: We used a map-matching algorithm to determine which roads 

correspond to noisy GPS points. From [11]. 

2 Multiperson Location Survey 

Our statistical behavior models are based on observations of where drivers drive 

measured from GPS receivers. We have been gathering GPS data from volunteer 

drivers in our Multiperson Location Survey (MLS) starting in March of 2004. 

Volunteer drivers are loaned one of our 55 Garmin Geko 201 GPS receivers, capable 

of recording 10,000 time-stamped latitude/longitude measurements. The GPS 

receivers are set to an adaptive recording mode that records more points when the 

vehicle is moving and accelerating. The median interval between recorded points is 6 

seconds and 62 meters. 

For this study, we used data from 253 subjects. From these subjects, we have 

approximately 2.3 million time-stamped latitude/longitude points comprising about 

16,000 separate trips. We split the sequence of points into individual trips at gaps of 

more than five minutes and at apparent speeds of more than 100 miles per hour. We 

also eliminate trips with fewer than 10 measured points. High apparent speeds and 

unusually short trips often come from random, noise-induced measurements while a 

vehicle is parked. 

Approximately 80% of our GPS data is contained in a 20 kilometer radius circle 

centered in the Seattle, Washington, USA region, so we limited our analysis to this 

area, shown in Figure 1(a). 



 

3 Simulating Trip Endpoints 

The first step in our simulation is choosing start and end points of a trip. Vehicle trips 

normally start and end near a road, and some parts of a geographic region are more 

popular than others. We attempt to model this behavior, first, by constraining starting 

and ending points to nodes in a road network. The road network is a graph, in a 

mathematical sense, where roads are edges and nodes occur at intersections, dead 

ends, and changes in the road name, as shown in Figure 1(b). Our analysis region 

(Figure 1(a)) contains 51,637 nodes and 65,549 edges with an average length of 131 

meters. While actual trips could start or end almost anywhere, our nodes give a 

convenient spatial sampling of the geographic space. An attacker may notice that the 

false trips start only on nodes, but this is mitigated somewhat by the random GPS 

noise we add, described in Section 7. 

Our goal is to compute a probability for each node governing the chances that a 

trip will start or end there. Toward this end, we first examine our GPS data to find the 

node nearest to the start and end of each actual trip. In subsequent sections, we need 

to know the entire sequence of nodes for each trip, which we compute with a 

probabilistic map-matching technique [11], illustrated in Figure 2. This algorithm 

takes as input a sequence of time-stamped latitude/longitude points and produces a 

sequence of nodes that best represents the trip. The map-matching algorithm uses a 

hidden Markov model to produce a route that simultaneously minimizes the GPS 

error and accounts for the GPS time stamps in light of the road network’s connectivity 

and speed limits. After processing each GPS trip, we have a time-stamped sequence 

of nodes and edges for each one, including the start and end nodes. 

We examined a variety of features of the nodes to compute the probability 𝑃 𝑛𝑖  

that a node 𝑛𝑖  will be a start or end point of a trip. The features are shown in Table 1. 

All except the “USGS” (United States Geological Survey) and “Roads attached” 

features are actually features of road edges, not nodes. To compute the corresponding 

node feature, we let the attached edges vote for the feature value and take the 

Table 1: These are the features that determine the probability of a node being 

chosen as an endpoint of a trip. 

Feature Values “true” 

probability 

Autos allowed true/false 1.000 

Ferry route true/false 0.000 

Paved road true/false 0.997 

Private road true/false 0.050 

Roundabout true/false 0.001 

Through traffic true/false 0.965 

Toll true/false 0.000 

USGS 21 ground types -- 

Roads attached 1,2,3,4,5,6 -- 

Number of lanes 1,2,4 -- 

Road type 7 road types -- 

 



 

plurality. For instance, 

one of the features is 

called “Autos allowed”. 

This will be true if most 

of the node’s connected 

roads allow cars to drive 

on them. The meaning 

of the binary features is 

obvious from their 

names in Table 1. For 

these features, Table 1 

also gives the fraction of 

the endpoint nodes 

whose corresponding 

feature value was “true”. 

For instance, of all the 

endpoints extracted from 

the GPS data, a fraction 

of 0.997 of them were 

on nodes whose 

plurality of attached 

edges was paved. 

Similarly, no routes 

started or ended on 

nodes whose plurality of 

attached edges were toll 

roads or ferry routes, which makes intuitive sense. 

The “USGS” feature pertains to the ground cover at the node, e.g. urban, 

grasslands, etc. The USGS makes available free, digital maps of the U.S. giving a 

ground cover type for each 30m x 30m square of ground [7]. The 21 ground cover 

types and the associated probability of an endpoint node landing on them are shown 

in Figure 3. 

The “Roads attached” feature counts the number of roads attached to the node. The 

number of roads attached and associated probabilities of endpoint nodes occurring 

there are 1 (0.010), 2 (0.152), 3 (0.436), 4 (0.295), 5 (0.014), 6 (0.001).  

“Number of lanes” is the plurality of the number of road lanes on the node’s 

connected edges. The number of lanes and probabilities are 1 (0.751), 2 (0.241), 4 

(0.009). End points most often occur on single- and double-lane roads. 

“Road type” gives the plurality vote of the type of road connected to the node. The 

probabilities, shown in Figure 4, indicate that highways, ferries, and ramps are 

unpopular places to start or end a trip. 

To compute the probability of a given node being an endpoint, we use a naïve 

Bayes formulation for the 11 features 𝑓𝑗  from Table 1 that says 

𝑃𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡  𝑛𝑖|𝑓1, 𝑓2, … , 𝑓11 =  𝑃𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡  𝑛𝑖|𝑓𝑗 

11

𝑗 =1

 ( 1 ) 

 
Figure 3: The relative popularity of trip endpoints varies 

depending on the ground cover. 
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Figure 5: This distribution of trip times is used to pick 

random trip destinations. 
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We take the 

𝑃𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡  𝑛𝑖|𝑓𝑗   values 

from the feature 

probabilities described 

above. Using naïve 

Bayes carries a risk of 

overweighting some 

features that have 

correlations with each 

other, but it has been 

shown to work well in 

practice [13]. With this 

technique, we find that 

the least popular 

endpoints are grouped 

along highways and 

also appear at the ends 

of unpaved or private 

roads. 

The preceding analysis does not distinguish between the start and end point of a 

trip, based on the observation that each point normally serves both roles for a typical 

driver. However, having chosen a random starting point based on the probabilities in 

Equation (1), the ending point should not be chosen at an arbitrary distance away. 

Intuitively, we know that most car trips are measured in minutes, not hours, which 

limits the range of likely destinations. To quantify this intuition, we used data from 

the U.S. 2001 National Household Transportation Survey (NHTS) [8]. The NHTS 

collected data on daily and longer-distance travel from approximately 66,000 U.S. 

households based on travel diaries kept by participants. A histogram of trip times 

from this study is shown in Figure 5. 

We designate this 

distribution as 

𝑃𝑡𝑟𝑖𝑝  𝑡𝑖𝑚𝑒  𝑡 , where 𝑡 

is the trip time. Having 

chosen a random 

starting point 𝑛𝑠𝑡𝑎𝑟𝑡  

from Equation (1), we 

compute the driving 

times to all the other 

nodes, designated as 

𝑡 𝑛𝑠𝑡𝑎𝑟𝑡 , 𝑛𝑖 ., using a 

conventional path 

planner. The 

probability of picking a 

destination node 𝑛𝑖  is 

then 

 

 
Figure 4: Nodes with a plurality of highway, ferry, or 

ramp connections are unpopular places to start or end a 

trip. 
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𝑃𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛  𝑛𝑖|𝑓1, 𝑓2, … , 𝑓11 , 𝑛𝑠𝑡𝑎𝑟𝑡  

= 𝑃𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡  𝑛𝑖|𝑓1, 𝑓2, … , 𝑓11 𝑃 𝑛𝑖 𝑛𝑠𝑡𝑎𝑟𝑡  

= 𝑃𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡  𝑛𝑖|𝑓1, 𝑓2, … , 𝑓11 𝑃𝑡𝑟𝑖𝑝  𝑡𝑖𝑚𝑒  𝑡 𝑛𝑠𝑡𝑎𝑟𝑡 , 𝑛𝑖  

 

 

( 2 ) 

This is simply the endpoint probability of the candidate destination node multiplied 

by the distribution governing trip times, evaluated at the time it would take to drive to 

the candidate destination. This gives the false trips the same distribution of trip times 

as the NHTS study suggests. 

We use Equations (1) and (2) to randomly chose a start and end point of the trip, 

respectively. We note that the driving times used for computing 𝑡 𝑛𝑠𝑡𝑎𝑟𝑡 , 𝑛𝑖  are 

based on the speed limits in the road network database, which may or may not be 

realistic driving speeds. For choosing a route and ultimately making a time-stamped, 

simulated trip, we need probability distributions governing the speeds that drivers 

actually drive. This is the topic of the next section. 

4 Speeds At Nodes 

For simulating routes and eventually time-stamped location traces, we compute 

probability distributions of actual driving speeds at every node from our measured 

GPS data. For each trip from our GPS loggers, the map-matching algorithm generates 

a sequence of time-stamped locations along the road network. From this, we compute 

a sequence of time-stamped distances along the trip,  𝑡𝑖 , 𝑥𝑖 , 𝑖 = 1 … 𝑁. Here there are 

𝑁 points on the trip measured at times 𝑡𝑖 . The variable 𝑥𝑖  represents the accumulated 

distance along the trip, with 𝑥1 = 0, 𝑥𝑁  as the total length of the trip, and 𝑥𝑖   

monotonically non-decreasing with 𝑖. We note that the  𝑡𝑖 , 𝑥𝑖  representation is 

different from the more obvious, and ultimately less convenient, choice of 

representing our recorded trips as time-stamped latitude/longitude pairs. 

Since we need to sample locations at an arbitrary interval, we interpolate  𝑡𝑖 , 𝑥𝑖  

with a one-dimensional cubic spline, which gives 𝑥 𝑡  for any 𝑡 ∈  𝑡1, 𝑡𝑁 . A 

conventional cubic spline is not necessarily monotonic, thus the resulting wiggles in 

the spline could have the accumulated distance occasionally decreasing with time. We 

chose the monotonic cubic spline presented by Steffen [15], which is simple to 

implement and ensures monotonicity with time. Speed along the measured trip is 

simply 𝑥  𝑡 . 

While 𝑥  𝑡  approximates the speed on the trip at any point in time 𝑡, we still do not 

know which values of 𝑡 correspond to the nodes in the road network along the 

driver’s route. We need speed samples at these points in order to compute speed 

distributions at all the nodes. We solve this by computing the accumulated distance 

along the trip to each node encountered. From this, we can compute which particular 

spline section pertains to that part of the trip and then find 𝑡 at that point by solving a 

cubic equation. Thus, each measured trip gives a sample of the drivers’ speeds at each 

node along the way. 

Using a time and distance representation (i.e.  𝑡𝑖 , 𝑥𝑖  as above) proved to be a good 

alternative over using time-stamp coordinates like  𝑡𝑖 , lat𝑖 , long𝑖 . The time and 

distance representation made it relatively easy to interpolate points along the route 



 

without the worry of the interpolant wiggling off the road. It also made it easy to 

compute speeds with a simple derivative and, in Section 6, to solve a differential 

equation for filling in simulated locations between nodes. 

With sampled speeds at each node, we can compute a histogram of speeds for each 

node that was encountered in actual driving by our GPS subjects. However, we want 

speed distributions for all the nodes in our region of study, not just the ones we 

measured. Toward this end, we abstract away the particular node, replace it with node 

features, and compute a speed histogram as a function of the feature values. The 

features we choose for each node are the seven possible road classifications (listed in 

Figure 4) and the seven possible speed limits of the approach and departure edges. 

With these features, we can abstract speed distributions from particular, measured 

nodes into all the nodes in our region of study. These features are intentionally 

sensitive to the characteristics of the edges used to approach and depart from the 

node, because we 

expect speeds to be 

sensitive to the 

context surrounding 

the node. Therefore, 

the same node 

could have multiple 

speed distributions 

depending on the 

roads connected to 

it. An example 

speed distribution is 

shown in Figure 6, 

which shows the 

speed distribution 

on a node that 

connects a limited 

access highway to 

an off ramp. 

With a four-

dimensional feature 

vector (approach 

road classification, 

approach speed limit, departure road classification, departure speed limit), and seven 

possible values for each dimension, there are 7
4
=2401 possible features vectors. We 

observed only 434 (18%) in our GPS data. We explain in the subsequent sections how 

we actually generated random speeds for a node depending on the intended purpose. 

For each feature vector, we had an average of 2257 observations from our GPS data. 

 
Figure 6: Speed distribution observed going from a limited 

access highway (speed limit approximately 26 

meters/second) to a ramp (speed limit approximately 11 

meters/second). The average value is 21.4 meters/second, 

showing that drivers are generally slowing down from the 

highway’s maximum speed limit. This is based on 377 

observations at intersections of this type. 
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5 Random Routes 

Given random start and end points from Section 3, we could use a conventional path 

planner to find a reasonable, simulated route between them. However, we know from 

previous research that drivers do not always take the optimal route from the route 

planner’s point of view [12]. Drivers may be unaware of the “optimal” route, they 

may know a better route, or they may have preferences that go beyond the route-

planner’s idea of optimal, i.e. minimum time. We want our simulated trips to appear 

realistic to a privacy attacker. Thus they cannot always be optimal from a route 

planner’s point of view, because that optimality could be easily detected, even for 

partial trips. (A section of a minimum cost route is still the minimum cost route 

between the section’s start and end points.) 

We inject randomness into our routes by injecting randomness into the cost of all 

the edges. We do this by computing random speeds for the road edges from the speed 

distributions described in the previous section. Specifically, for each node, we draw 

randomly generated speeds from the speed distributions using all the possible 

approach/depart pairs for roads connected to the node. If we have not observed a 

particular approach/depart pair, we skip it. The speed assigned to the road between a 

pair of nodes is the average of the random speeds drawn for each of the two nodes. 

We generate new, random speeds before planning each route, which helps to 

differentiate different trips between the same start and end points. With these random 

speeds, we apply a standard A* search algorithm to find the minimum time route. 

Figure 7 shows parts of two routes, one generated with the road network’s built in 

speed limits and the other with random speeds as described above. Both appear 

reasonable. 

 

 
Figure 7: A trip starts at the right of the figure and moves toward the lower left. 

The black dots show nodes along the standard path planned using the roads' speed 

limits. The yellow (lighter) dots show a path planned with random speed limits. 



 

6 Points along Route 

The routes from the previous section demonstrate start points, end points, and routes 

that are reasonable but random. The next element is the time stamps and locations of 

points along the route. We want to simulate a GPS taking measurements at any 

frequency along the route. One simple alternative would be to take speed limits from 

the original road network representation and apply them to get distance along the 

route as a function of time. However, drivers do not drive at constant speeds along 

edges, they do not undergo step changes in speeds at changes in speed limits, and 

their behavior varies over time. 

We use our random speed distributions again to generate random speeds at each 

node encountered on the random route. For each node, we know the characteristics of 

the approach and departure edges, so we use the applicable speed distribution if we 

have it. If not, the computed speed for the node is the average of the nominal speeds 

limits on the approach and departure edges. This gives a speed at each node, and we 

do a linear interpolation of speed between nodes, resulting in a specification giving 

speed as a function of distance along the route. For example, at nodes 𝑖 and 𝑖 + 1, the 

(distance, speed) pairs along the route are  𝑥𝑖 , 𝑠𝑖  and  𝑥𝑖+1, 𝑠𝑖+1 . We linearly 

interpolate on distance to get the speeds between the two nodes. 

With speed as a function of distance, we have to solve a differential equation to get 

distance as a function of time, which is what we need to generate points along the 

route. For example, with linear interpolation along an edge, we have this relationship 

between speed 𝑑𝑥 𝑑𝑡  and distance 𝑥: 
 

𝑑𝑥

𝑑𝑡
= 𝑚𝑥 + 𝑏 ( 3 ) 

 

With the initial condition that 𝑥 = 0 when 𝑡 = 0, the solution in terms of 𝑡 is 

 

𝑥 =
1

𝑚
 𝑒𝑚𝑡 +ln 𝑏 − 𝑏  ( 4 ) 

 

We move along the route in 𝑥 as we increment 𝑡 with whatever ∆𝑡 we choose. For 

a computed 𝑥 along the route, we convert to latitude/longitude using our knowledge 

of the lengths and coordinates of the route’s constituent edges. The result of this step 

is a sequence of time-stamped latitude/longitude pairs along the route, sampled at 

whatever frequency we chose. Figure 9 shows the result of this step, where points 

have been filled in at one per second according to randomly chosen speeds. These 

points represent the locations where the simulated driver made GPS measurements. 

7 GPS Noise 

As a final step in simulating data from a real trip, we add noise to the simulated 

latitude/longitude points. This is not to obfuscate the data, but to make it look more 

realistic to a potential attacker. Although there are statistics published on GPS 



 

inaccuracy, e.g. [16], 

we chose to compute 

our own statistics 

from our data. In 

section 3, we 

explained how we 

matched each 

measured GPS point 

to a point on a nearby 

road. We regard the 

matched point as the 

driver’s actual 

location, giving us 

differences in 

distance for 

computing statistics. 

Adopting the 

Gaussian assumption 

from [16], we further 

assume that the GPS 

errors have zero 

mean, leaving only 

the standard deviation as the parameter of interest. Our observations show that some 

GPS measurements are outliers, so we use a robust estimate of the standard deviation, 

the median absolute distance (MAD) [14]. The MAD gives a valid estimate of 

standard deviation even if up to half the values are outliers. This is why, even if up to 

half our GPS measurements are outliers or mismatched to a road, we can still compute 

a reasonable estimate of GPS standard deviation. If the GPS errors are 𝑑𝑖 , the MAD 

formula is 

𝜎 = 1.4826 ∙ median 𝑑𝑖 − median 𝑑𝑖   ( 5 ) 

Here, since we assume that GPS error has zero mean, we replace median 𝑑𝑖  with 
zero. The factor of 1.4826 makes the estimate consistent for Gaussian distributions. 

We computed 𝜎 = 7.65 meters using data from all our subjects. 
Our observations also show that GPS error varies with location, with higher errors 

perhaps coming in areas with more obstacles to prevent a clear view of the GPS 

satellites. With this in mind, we compute a separate GPS error standard deviation for 

each node we observed in our GPS data. Specifically, for each GPS point matched to 

a road, we associate that error to the nearest road node and compute each node’s 

standard deviation from its associated errors. 

Figure 8 shows in black the 5% of nodes with the highest GPS error. Although 

there is no obvious pattern, there are several clear clusters of points, indicating areas 

of extended disruption, caused possibly by trees or buildings. 

 
Figure 8: GPS noise varies with location. The white dots 

show all the points where we estimated the standard 

deviation of GPS noise. The black dots show the 5% of 

points with the largest standard deviation. 



 

To add realistic GPS noise to our traces, for each point, we first generate a random 

direction with a uniform distribution, 𝜃~𝑈 0,2𝜋 . We then find the 𝜎 associated with 

the nearest node and generate a random magnitude 𝑑~𝑁 0, 𝜎 . The point is then 

moved by  ∆𝑥, ∆𝑦 =  𝑑 cos 𝜃, 𝑑 sin 𝜃 . Figure 9 shows a section of one of our 

traces, with and without added noise. 

Adding noise is the last step of our process. We note that this is the only step that 

does not abstract away the specific training region. Our simulated start and end points, 

routes, and speeds are based on generic features that could be extracted from any city 

without taking GPS data there (i.e. the road network and USGS ground cover data). A 

simple alternative to site-specific training for GPS noise would be to use the same 

value of 𝜎 everywhere. A more interesting alternative would be to learn a model that 

infers 𝜎 as a function of relevant features, perhaps USGS ground cover and the 

density of nearby buildings. 

8 Summary 

To summarize, this is the list of steps used to generate a false trip: 

 

1. Trip endpoints – Use features from Table 1 to compute the probability of 

each node serving as a trip endpoint. The start of the trip is chosen according 

to these probabilities. The end of the trip is chosen according to the same 

probabilities, augmented with the probability distribution of trip times given 

in Figure 5. This gives realistic starting and ending points and realistic trip 

times. 

2. Trip speeds – Based on simple learning from GPS traces, compute 

probabilistic speed distributions for each node as a function of the posted 

 
Figure 9: The larger black dots show points sampled at a rate of one per second, 

filled in along edges according to randomly generate speeds. The smaller, white 

dots have had spatially varying, GPS noise added to them. 



 

speed limits and types of road approaching and departing each node. For 

example, Figure 6 gives a speed distribution for going from a limited access 

highway with a certain speed limit to a ramp with another speed limit. 

3. Random routes – Given a random start and end of a trip, generate a route. 

Instead of using posted speed limits to compute the minimum time route, we 

use speeds randomly drawn from the speed distributions in the previous step. 

This makes the routes somewhat random and unpredictable, but still 

reasonable. 

4. Points along route – Draw another set of random speeds at nodes along the 

computed route. Linear interpolation gives the speed at any point along the 

route, and solving a simple differential equation gives distance along the 

route as a function of time. 

5. GPS noise – Add spatially varying GPS noise to the previously computed 

points on the route. The spatial variation was computed based on our 

sampled GPS data. 

9 Discussion 

The steps outlined in the preceding sections constitute a method for generating 

realistic, false trips for location privacy. Some false trips generated from the method 

are shown in Figure 10. As a way to enhance privacy, the technique’s ultimate utility 

comes in whether or not an attacker could distinguish the false trips from real ones. 

The likely attack method would be to find some characteristic of real trips and test to 

see which trips pass the test. The current method incorporates the major 

characteristics of everyday trips. 

Techniques like this should be subjected to scrutiny from unbiased researchers 

posing as attackers. If they find an unmodeled characteristic that distinguishes false 

trips from true trips, that characteristic should be incorporated into the simulation. 

Toward this end, we have made available 1000 simulated trips and 10 real trips from 

our test area available on a public Web site1. The simulated trips come from the 

technique described in this paper. This site also contains a movie showing the 

progress of the 1000 false trips on a map. The movie shows that most trips start and 

end in more urban areas, with fewer in less populated regions. 

While ours is one of the first efforts to produce realistic trips for location privacy, 

there are published criteria for trip simulation. One list of criteria comes from a 

survey of vehicular simulation techniques for mobile ad hoc networks [5]. Their five 

“macro-mobility” criteria apply to our technique: 

                                                           
1 http://research.microsoft.com/en-us/um/people/jckrumm/RealisticDrivingTrips/data.htm 

http://research.microsoft.com/en-us/um/people/jckrumm/RealisticDrivingTrips/data.htm


 

 Graph – Vehicular models that move on a map-derived graph, like ours, are 

considered more realistic. 

 Initial Destination and Position – Our endpoints are not random. They are 

restricted to the graph and represent characteristics of the endpoints we 

observe in data. 

 Trip Generation – Endpoints can be generated based on likely activities of 

drivers (e.g. shopping, entertainment). Our models do not account for this. 

 Path Computation – Our computed routes are based on random, but 

plausible, road speeds and thus demonstrate variability similar to actual 

drivers. 

 Velocity – We take driving speeds from probability distributions based on 

our GPS data. 

Another list of criteria, for a related purpose, comes from Duckham et al.’s [2] 

speculation on how a privacy attacker might attempt to refine obfuscated location 

data. The same refinement techniques could be applied to filter out false reports: 

 Maximum/minimum/constant Speed – Road speeds that deviate 

significantly from normal are suspicious. Our trips use speeds derived from 

observations. 

 Connected Refinement – An attacker would check that a sequence of 

location reports adheres to a connected graph of locations. Our false trips are 

consistent with the road network. 

 Goal-directed Refinement – A trip that wanders aimlessly is unlikely. Our 

trips move toward a goal, but they do not always follow the optimal path 

according to published speed limits, thereby enhancing realism. 

 
Figure 10: These are ten false trips generated by our method 



 

The benchmark for privacy-related, false trips is the random walk methods in Kido 

et al. [9], which is the only previous attempt we know of. Our trips are sensitive to the 

road network, the locations where drivers start trips, their destinations, the 

randomness of their routes, and the speeds they drive. While this is a significant 

improvement over previous work, there are more trip features to consider: 

 Time Sensitivity – All our models disregard the time of day, day of the 

week, etc. It is likely that trip characteristics vary with time. For instance, 

commuters normally leave residential areas in the morning to drive to 

commercial areas. However, our goal is to simulate plausible trips, not 

aggregate traffic flows, so time sensitivity is not critically important. It 

would be easy to retrain our driver behavior models with different time 

slices. 

 Stops – Without knowledge of the locations of stop signs, stop lights, and 

traffic slowdowns, we could not adequately model stops during a trip. While 

our speed distributions do admit very slow speeds, we do not explicitly 

model stops nor their durations. 

 GPS Outliers – We know that GPS receivers occasionally produce outliers, 

sometimes repeatedly whenever they return to a certain place. We do not 

attempt to model this. 

Increasing realism is not the only way to improve the effectiveness of false reports. 

It is also worth considering making the true report look more like a false one in order 

to confuse an attacker. For instance, if the false reports lack fidelity on a micro scale 

(e.g. lane selection before a turn, brief stops), it may be easier to simply add more 

noise to the false and true reports to cover minor infidelities. Decreasing precision 

and accuracy of location reports is an acknowledged method for protecting privacy 

[1], and it can make it more difficult for an attacker to distinguish real trips from false 

ones. Likewise, instead of adding outliers to the false reports, it may be easier to filter 

outliers from the real reports. 

Still unresolved is when a privacy-minded client would report false trips – 

continuously, only while the client is actually moving, random times? It would be 

possible to build a higher level process that invokes our realistic trips at realistic times 

of the day to simulate movement and stop patterns over extended periods of time. 

10 Conclusion 

Generating false trips is one way to enhance location privacy. We generate false trips 

by abstracting probabilistic models from real trips and using these probabilities to 

generate random start and end points, random routes, random speeds, and random 

GPS noise. 
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