

Realistic Driving Trips For Location Privacy

John Krumm

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052 USA

jckrumm@microsoft.com

Abstract. Simulated, false location reports can be an effective way to confuse a

privacy attacker. When a mobile user must transmit his or her location to a

central server, these location reports can be accompanied by false reports that,

ideally, cannot be distinguished from the true one. The realism of the false

reports is important, because otherwise an attacker could filter out all but the

real data. Using our database of GPS tracks from over 250 volunteer drivers, we

developed probabilistic models of driving behavior and applied the models to

create realistic driving trips. The simulations model realistic start and end

points, slightly non-optimal routes, realistic driving speeds, and spatially

varying GPS noise.

Keywords: location privacy, location-based services, false trips, GPS

1 Trip Simulations For Privacy

Some location-based services require users to transmit location from their mobile

device to a central server. These transmissions can be user-initiated and sporadic,

such as a query to find nearby restaurants. Other location transmissions can be

periodic and relatively frequent, like those querying for alerts about nearby friends,

events, and advertising. These location transmissions and the responses from the

server could be compromised by an attacker, resulting in a potentially sensitive

privacy leak.

One approach to bolstering privacy is to anonymize the location transmissions by

stripping away any identifying information. The server often still requires a

pseudonym, however, in order to know how to respond and to whom. It has been

shown in [6] that an attacker can find a person’s home even with pseudonomized GPS

tracks, and [10] shows how such an attack can go further and find the actual name of

the victim based on publicly available street address listings. Even using completely

anonymized tracks, with no pseudonym, [4] has shown how to find which location

points belong together in the same track, effectively creating a pseudonym for each

trip.

Another commonly proposed technique for improving location privacy is

obfuscation. This approach degrades the transmitted location in some way that

reduces the chance that an attacker can find the potential victim’s true location.

Obfuscation techniques include inaccuracy and imprecision, introduced for location

privacy in [1]. Inaccuracy can be achieved by adding random noise to location

measurements, and imprecision can be achieved by snapping measurements to a grid.

Unfortunately, [10] showed that the amount of obfuscation necessary to foil an attack

can be very high, e.g. an identity attack still worked after adding noise with a 1-

kilometer standard deviation. Gruteser and Grunwald [3] introduced k-anonymity for

location privacy, in which point location reports are replaced by regions containing k-

1 other people, another way of achieving imprecision. While obfuscation can be

effective, it necessitates the degradation of the location data, which can be fatal for

certain applications.

One little-explored but promising technique for location privacy is for the user to

send several false location reports along with the real one. The server would respond

to all the reports, and the user would ignore all but the response to their actual

location. With enough false reports, the chances of an attacker picking the true one

could be reduced to an acceptable level. This technique uses no obfuscation, meaning

it would still work for location-based services that require accurate and precise point

reports, such as alerts of nearby friends and location-based advertising. The only

previous work exploring this idea appears to be that of Kido et al. [9] who explore an

algorithm for reducing the inevitable increase in communication cost.

The effectiveness of false reports depends heavily on minimizing the ability of an

attacker to determine which reports are false. Reporting completely random locations

is risky, because they may fall at obviously unlikely locations like lakes, oceans,

swamps, and rugged mountains. Furthermore, since locations from the true report will

follow a plausible path, the false reports must also be plausible paths. Otherwise, the

continuity of the true path would be easy to distinguish from the “twinkling” of the

false reports.

The Kido paper concentrates on reducing communication costs, so its two

proposed false path generation techniques are not emphasized. One of these

techniques, “Moving in a Neighborhood”, is essentially a random walk model, while

the other, “Moving in a Limited Neighborhood”, modifies the first to avoid clumping

false reports near other users’ true locations. However, Duckam et al. [6] point out

sophisticated techniques that can be used to filter out false reports. For instance, they

note that movement may be constrained to a graph, like a road network. Also, people

normally move with a goal in mind. Thus, random walk models are likely to be easily

identifiable by an attacker who could then strip away all but the true location report.

Related to our work is research on mobility patterns to model the use of wireless

networks. For mobile networking, mobility simulations are important for wireless

networking with both fixed base stations [11] and mobile peers [1, 3]. Because fixed

base stations normally have a large range, the associated mobility models can work at

the relatively coarse level of cells surrounding each base station, as in [18]. For

mobile ad hoc networks (MANETS), however, finer grained simulations are

necessary due to the short range of the participants’ radios. Such models are used to

help simulate a collection of wireless nodes, such as automobiles, forming a network

with no central control. The Random Waypoint model [2] is one of the first

simulations relevant to this situation. Here, a subject moves in a straight line toward a

randomly chosen waypoint at a randomly chosen speed, then chooses another

waypoint and speed, etc. Other such mathematical models have been developed since,

all aimed at increasing realism. For the case where the mobile nodes are vehicles [8],

as in this paper, one of the more sophisticated models constrains the vehicles to a road

network, either random or from a real map [20]. These mathematical models fall short

of reality, however, because they lack the degrees of freedom to faithfully simulate

real drivers. Maximum realism comes from trace-based models that use actual path

traces played back from real subjects. These are limited, however, because measuring

traces is relatively expensive, especially for high volumes of traffic in cities.

We also note that simulated trips for privacy vs. wireless networking have different

goals, and therefore different criteria. For instance, mobility simulations for wireless

networking often try to account for group behavior and interactions among mobile

nodes, because this can affect loads on base stations and present opportunities for

messages to hop between peers. For privacy, however, our goal is to fool an attacker,

which means we can give many isolated, false trips that do not need to show any

regard for each other.

This paper presents simulated traces based on an actual road network. Our method

approaches the realism of actual traces by using probabilistic models of driving

behavior abstracted from real traces. Our simulated driving trips exhibit these realistic

characteristics, all derived from a statistical analysis of actual driving traces:

• Realistic starting and ending points

• Goal-directed routes with randomness

• Random driving speeds

• Spatially varying GPS noise

We can generate an arbitrary number of these traces, all of which adhere to the

statistical behaviors we see for actual drivers.

The following sections describe how we model each of these characteristics,

preceded by a description of our measured driving data.

intersection

name

change

dead end

(a) (b)

Figure 1: (a) We analyzed and generated trips inside the 20 kilometer radius circle

covering area around Seattle, Washington, USA. (b) Our road network is

anchored by nodes that occur at intersections, dead ends, and road name changes.

measured

GPS points

1

2

3

inferred

path

Figure 2: We used a map-matching algorithm to determine which roads

correspond to noisy GPS points. From [11].

2 Multiperson Location Survey

Our statistical behavior models are based on observations of where drivers drive

measured from GPS receivers. We have been gathering GPS data from volunteer

drivers in our Multiperson Location Survey (MLS) starting in March of 2004.

Volunteer drivers are loaned one of our 55 Garmin Geko 201 GPS receivers, capable

of recording 10,000 time-stamped latitude/longitude measurements. The GPS

receivers are set to an adaptive recording mode that records more points when the

vehicle is moving and accelerating. The median interval between recorded points is 6

seconds and 62 meters.

For this study, we used data from 253 subjects. From these subjects, we have

approximately 2.3 million time-stamped latitude/longitude points comprising about

16,000 separate trips. We split the sequence of points into individual trips at gaps of

more than five minutes and at apparent speeds of more than 100 miles per hour. We

also eliminate trips with fewer than 10 measured points. High apparent speeds and

unusually short trips often come from random, noise-induced measurements while a

vehicle is parked.

Approximately 80% of our GPS data is contained in a 20 kilometer radius circle

centered in the Seattle, Washington, USA region, so we limited our analysis to this

area, shown in Figure 1(a).

3 Simulating Trip Endpoints

The first step in our simulation is choosing start and end points of a trip. Vehicle trips

normally start and end near a road, and some parts of a geographic region are more

popular than others. We attempt to model this behavior, first, by constraining starting

and ending points to nodes in a road network. The road network is a graph, in a

mathematical sense, where roads are edges and nodes occur at intersections, dead

ends, and changes in the road name, as shown in Figure 1(b). Our analysis region

(Figure 1(a)) contains 51,637 nodes and 65,549 edges with an average length of 131

meters. While actual trips could start or end almost anywhere, our nodes give a

convenient spatial sampling of the geographic space. An attacker may notice that the

false trips start only on nodes, but this is mitigated somewhat by the random GPS

noise we add, described in Section 7.

Our goal is to compute a probability for each node governing the chances that a

trip will start or end there. Toward this end, we first examine our GPS data to find the

node nearest to the start and end of each actual trip. In subsequent sections, we need

to know the entire sequence of nodes for each trip, which we compute with a

probabilistic map-matching technique [11], illustrated in Figure 2. This algorithm

takes as input a sequence of time-stamped latitude/longitude points and produces a

sequence of nodes that best represents the trip. The map-matching algorithm uses a

hidden Markov model to produce a route that simultaneously minimizes the GPS

error and accounts for the GPS time stamps in light of the road network’s connectivity

and speed limits. After processing each GPS trip, we have a time-stamped sequence

of nodes and edges for each one, including the start and end nodes.

We examined a variety of features of the nodes to compute the probability 𝑃 𝑛𝑖

that a node 𝑛𝑖 will be a start or end point of a trip. The features are shown in Table 1.

All except the “USGS” (United States Geological Survey) and “Roads attached”

features are actually features of road edges, not nodes. To compute the corresponding

node feature, we let the attached edges vote for the feature value and take the

Table 1: These are the features that determine the probability of a node being

chosen as an endpoint of a trip.

Feature Values “true”

probability

Autos allowed true/false 1.000

Ferry route true/false 0.000

Paved road true/false 0.997

Private road true/false 0.050

Roundabout true/false 0.001

Through traffic true/false 0.965

Toll true/false 0.000

USGS 21 ground types --

Roads attached 1,2,3,4,5,6 --

Number of lanes 1,2,4 --

Road type 7 road types --

plurality. For instance,

one of the features is

called “Autos allowed”.

This will be true if most

of the node’s connected

roads allow cars to drive

on them. The meaning

of the binary features is

obvious from their

names in Table 1. For

these features, Table 1

also gives the fraction of

the endpoint nodes

whose corresponding

feature value was “true”.

For instance, of all the

endpoints extracted from

the GPS data, a fraction

of 0.997 of them were

on nodes whose

plurality of attached

edges was paved.

Similarly, no routes

started or ended on

nodes whose plurality of

attached edges were toll

roads or ferry routes, which makes intuitive sense.

The “USGS” feature pertains to the ground cover at the node, e.g. urban,

grasslands, etc. The USGS makes available free, digital maps of the U.S. giving a

ground cover type for each 30m x 30m square of ground [7]. The 21 ground cover

types and the associated probability of an endpoint node landing on them are shown

in Figure 3.

The “Roads attached” feature counts the number of roads attached to the node. The

number of roads attached and associated probabilities of endpoint nodes occurring

there are 1 (0.010), 2 (0.152), 3 (0.436), 4 (0.295), 5 (0.014), 6 (0.001).

“Number of lanes” is the plurality of the number of road lanes on the node’s

connected edges. The number of lanes and probabilities are 1 (0.751), 2 (0.241), 4

(0.009). End points most often occur on single- and double-lane roads.

“Road type” gives the plurality vote of the type of road connected to the node. The

probabilities, shown in Figure 4, indicate that highways, ferries, and ramps are

unpopular places to start or end a trip.

To compute the probability of a given node being an endpoint, we use a naïve

Bayes formulation for the 11 features 𝑓𝑗 from Table 1 that says

𝑃𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑛𝑖|𝑓1, 𝑓2, … , 𝑓11 = 𝑃𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑛𝑖|𝑓𝑗

11

𝑗 =1

 (1)

Figure 3: The relative popularity of trip endpoints varies

depending on the ground cover.

0 0.1 0.2 0.3 0.4

commercial
low intensity residential

evergreen forest
shrubland
grasslands

deciduous forest
mixed forest

pasture
quarry

high intensity residential
urban

transitional
small grains

water
fallow

perennial ice
bare rock

orchard
row crops

woody wetlands
emergent herbacous wetlands

Normalized Frequency

Ground Cover at Endpoints

Figure 5: This distribution of trip times is used to pick

random trip destinations.

0

0.05

0.1

0.15

0.2

0.25

N
o

rm
al

iz
e

d
 F

re
q

u
e

n
cy

Trip Time (minutes)

Trip Time Distribution

We take the

𝑃𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑛𝑖|𝑓𝑗 values

from the feature

probabilities described

above. Using naïve

Bayes carries a risk of

overweighting some

features that have

correlations with each

other, but it has been

shown to work well in

practice [13]. With this

technique, we find that

the least popular

endpoints are grouped

along highways and

also appear at the ends

of unpaved or private

roads.

The preceding analysis does not distinguish between the start and end point of a

trip, based on the observation that each point normally serves both roles for a typical

driver. However, having chosen a random starting point based on the probabilities in

Equation (1), the ending point should not be chosen at an arbitrary distance away.

Intuitively, we know that most car trips are measured in minutes, not hours, which

limits the range of likely destinations. To quantify this intuition, we used data from

the U.S. 2001 National Household Transportation Survey (NHTS) [8]. The NHTS

collected data on daily and longer-distance travel from approximately 66,000 U.S.

households based on travel diaries kept by participants. A histogram of trip times

from this study is shown in Figure 5.

We designate this

distribution as

𝑃𝑡𝑟𝑖𝑝 𝑡𝑖𝑚𝑒 𝑡 , where 𝑡

is the trip time. Having

chosen a random

starting point 𝑛𝑠𝑡𝑎𝑟𝑡

from Equation (1), we

compute the driving

times to all the other

nodes, designated as

𝑡 𝑛𝑠𝑡𝑎𝑟𝑡 , 𝑛𝑖 ., using a

conventional path

planner. The

probability of picking a

destination node 𝑛𝑖 is

then

Figure 4: Nodes with a plurality of highway, ferry, or

ramp connections are unpopular places to start or end a

trip.

0 0.2 0.4 0.6 0.8

street

arterial

major road

limited access highway

ramp

ferry

highway

Normalized Frequency

Road Types at Endpoints

𝑃𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑛𝑖|𝑓1, 𝑓2, … , 𝑓11 , 𝑛𝑠𝑡𝑎𝑟𝑡

= 𝑃𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑛𝑖|𝑓1, 𝑓2, … , 𝑓11 𝑃 𝑛𝑖 𝑛𝑠𝑡𝑎𝑟𝑡

= 𝑃𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑛𝑖|𝑓1, 𝑓2, … , 𝑓11 𝑃𝑡𝑟𝑖𝑝 𝑡𝑖𝑚𝑒 𝑡 𝑛𝑠𝑡𝑎𝑟𝑡 , 𝑛𝑖

(2)

This is simply the endpoint probability of the candidate destination node multiplied

by the distribution governing trip times, evaluated at the time it would take to drive to

the candidate destination. This gives the false trips the same distribution of trip times

as the NHTS study suggests.

We use Equations (1) and (2) to randomly chose a start and end point of the trip,

respectively. We note that the driving times used for computing 𝑡 𝑛𝑠𝑡𝑎𝑟𝑡 , 𝑛𝑖 are

based on the speed limits in the road network database, which may or may not be

realistic driving speeds. For choosing a route and ultimately making a time-stamped,

simulated trip, we need probability distributions governing the speeds that drivers

actually drive. This is the topic of the next section.

4 Speeds At Nodes

For simulating routes and eventually time-stamped location traces, we compute

probability distributions of actual driving speeds at every node from our measured

GPS data. For each trip from our GPS loggers, the map-matching algorithm generates

a sequence of time-stamped locations along the road network. From this, we compute

a sequence of time-stamped distances along the trip, 𝑡𝑖 , 𝑥𝑖 , 𝑖 = 1 … 𝑁. Here there are

𝑁 points on the trip measured at times 𝑡𝑖 . The variable 𝑥𝑖 represents the accumulated

distance along the trip, with 𝑥1 = 0, 𝑥𝑁 as the total length of the trip, and 𝑥𝑖

monotonically non-decreasing with 𝑖. We note that the 𝑡𝑖 , 𝑥𝑖 representation is

different from the more obvious, and ultimately less convenient, choice of

representing our recorded trips as time-stamped latitude/longitude pairs.

Since we need to sample locations at an arbitrary interval, we interpolate 𝑡𝑖 , 𝑥𝑖

with a one-dimensional cubic spline, which gives 𝑥 𝑡 for any 𝑡 ∈ 𝑡1, 𝑡𝑁 . A

conventional cubic spline is not necessarily monotonic, thus the resulting wiggles in

the spline could have the accumulated distance occasionally decreasing with time. We

chose the monotonic cubic spline presented by Steffen [15], which is simple to

implement and ensures monotonicity with time. Speed along the measured trip is

simply 𝑥 𝑡 .

While 𝑥 𝑡 approximates the speed on the trip at any point in time 𝑡, we still do not

know which values of 𝑡 correspond to the nodes in the road network along the

driver’s route. We need speed samples at these points in order to compute speed

distributions at all the nodes. We solve this by computing the accumulated distance

along the trip to each node encountered. From this, we can compute which particular

spline section pertains to that part of the trip and then find 𝑡 at that point by solving a

cubic equation. Thus, each measured trip gives a sample of the drivers’ speeds at each

node along the way.

Using a time and distance representation (i.e. 𝑡𝑖 , 𝑥𝑖 as above) proved to be a good

alternative over using time-stamp coordinates like 𝑡𝑖 , lat𝑖 , long𝑖 . The time and

distance representation made it relatively easy to interpolate points along the route

without the worry of the interpolant wiggling off the road. It also made it easy to

compute speeds with a simple derivative and, in Section 6, to solve a differential

equation for filling in simulated locations between nodes.

With sampled speeds at each node, we can compute a histogram of speeds for each

node that was encountered in actual driving by our GPS subjects. However, we want

speed distributions for all the nodes in our region of study, not just the ones we

measured. Toward this end, we abstract away the particular node, replace it with node

features, and compute a speed histogram as a function of the feature values. The

features we choose for each node are the seven possible road classifications (listed in

Figure 4) and the seven possible speed limits of the approach and departure edges.

With these features, we can abstract speed distributions from particular, measured

nodes into all the nodes in our region of study. These features are intentionally

sensitive to the characteristics of the edges used to approach and depart from the

node, because we

expect speeds to be

sensitive to the

context surrounding

the node. Therefore,

the same node

could have multiple

speed distributions

depending on the

roads connected to

it. An example

speed distribution is

shown in Figure 6,

which shows the

speed distribution

on a node that

connects a limited

access highway to

an off ramp.

With a four-

dimensional feature

vector (approach

road classification,

approach speed limit, departure road classification, departure speed limit), and seven

possible values for each dimension, there are 7
4
=2401 possible features vectors. We

observed only 434 (18%) in our GPS data. We explain in the subsequent sections how

we actually generated random speeds for a node depending on the intended purpose.

For each feature vector, we had an average of 2257 observations from our GPS data.

Figure 6: Speed distribution observed going from a limited

access highway (speed limit approximately 26

meters/second) to a ramp (speed limit approximately 11

meters/second). The average value is 21.4 meters/second,

showing that drivers are generally slowing down from the

highway’s maximum speed limit. This is based on 377

observations at intersections of this type.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2.5 7.5 12.5 17.5 22.5 27.5 32.5

N
o

rm
al

iz
e

d
 F

re
q

u
e

n
cy

Speed (meters/second)

Speed Histogram From Highway to Ramp

5 Random Routes

Given random start and end points from Section 3, we could use a conventional path

planner to find a reasonable, simulated route between them. However, we know from

previous research that drivers do not always take the optimal route from the route

planner’s point of view [12]. Drivers may be unaware of the “optimal” route, they

may know a better route, or they may have preferences that go beyond the route-

planner’s idea of optimal, i.e. minimum time. We want our simulated trips to appear

realistic to a privacy attacker. Thus they cannot always be optimal from a route

planner’s point of view, because that optimality could be easily detected, even for

partial trips. (A section of a minimum cost route is still the minimum cost route

between the section’s start and end points.)

We inject randomness into our routes by injecting randomness into the cost of all

the edges. We do this by computing random speeds for the road edges from the speed

distributions described in the previous section. Specifically, for each node, we draw

randomly generated speeds from the speed distributions using all the possible

approach/depart pairs for roads connected to the node. If we have not observed a

particular approach/depart pair, we skip it. The speed assigned to the road between a

pair of nodes is the average of the random speeds drawn for each of the two nodes.

We generate new, random speeds before planning each route, which helps to

differentiate different trips between the same start and end points. With these random

speeds, we apply a standard A* search algorithm to find the minimum time route.

Figure 7 shows parts of two routes, one generated with the road network’s built in

speed limits and the other with random speeds as described above. Both appear

reasonable.

Figure 7: A trip starts at the right of the figure and moves toward the lower left.

The black dots show nodes along the standard path planned using the roads' speed

limits. The yellow (lighter) dots show a path planned with random speed limits.

6 Points along Route

The routes from the previous section demonstrate start points, end points, and routes

that are reasonable but random. The next element is the time stamps and locations of

points along the route. We want to simulate a GPS taking measurements at any

frequency along the route. One simple alternative would be to take speed limits from

the original road network representation and apply them to get distance along the

route as a function of time. However, drivers do not drive at constant speeds along

edges, they do not undergo step changes in speeds at changes in speed limits, and

their behavior varies over time.

We use our random speed distributions again to generate random speeds at each

node encountered on the random route. For each node, we know the characteristics of

the approach and departure edges, so we use the applicable speed distribution if we

have it. If not, the computed speed for the node is the average of the nominal speeds

limits on the approach and departure edges. This gives a speed at each node, and we

do a linear interpolation of speed between nodes, resulting in a specification giving

speed as a function of distance along the route. For example, at nodes 𝑖 and 𝑖 + 1, the

(distance, speed) pairs along the route are 𝑥𝑖 , 𝑠𝑖 and 𝑥𝑖+1, 𝑠𝑖+1 . We linearly

interpolate on distance to get the speeds between the two nodes.

With speed as a function of distance, we have to solve a differential equation to get

distance as a function of time, which is what we need to generate points along the

route. For example, with linear interpolation along an edge, we have this relationship

between speed 𝑑𝑥 𝑑𝑡 and distance 𝑥:

𝑑𝑥

𝑑𝑡
= 𝑚𝑥 + 𝑏 (3)

With the initial condition that 𝑥 = 0 when 𝑡 = 0, the solution in terms of 𝑡 is

𝑥 =
1

𝑚
 𝑒𝑚𝑡 +ln 𝑏 − 𝑏 (4)

We move along the route in 𝑥 as we increment 𝑡 with whatever ∆𝑡 we choose. For

a computed 𝑥 along the route, we convert to latitude/longitude using our knowledge

of the lengths and coordinates of the route’s constituent edges. The result of this step

is a sequence of time-stamped latitude/longitude pairs along the route, sampled at

whatever frequency we chose. Figure 9 shows the result of this step, where points

have been filled in at one per second according to randomly chosen speeds. These

points represent the locations where the simulated driver made GPS measurements.

7 GPS Noise

As a final step in simulating data from a real trip, we add noise to the simulated

latitude/longitude points. This is not to obfuscate the data, but to make it look more

realistic to a potential attacker. Although there are statistics published on GPS

inaccuracy, e.g. [16],

we chose to compute

our own statistics

from our data. In

section 3, we

explained how we

matched each

measured GPS point

to a point on a nearby

road. We regard the

matched point as the

driver’s actual

location, giving us

differences in

distance for

computing statistics.

Adopting the

Gaussian assumption

from [16], we further

assume that the GPS

errors have zero

mean, leaving only

the standard deviation as the parameter of interest. Our observations show that some

GPS measurements are outliers, so we use a robust estimate of the standard deviation,

the median absolute distance (MAD) [14]. The MAD gives a valid estimate of

standard deviation even if up to half the values are outliers. This is why, even if up to

half our GPS measurements are outliers or mismatched to a road, we can still compute

a reasonable estimate of GPS standard deviation. If the GPS errors are 𝑑𝑖 , the MAD

formula is

𝜎 = 1.4826 ∙ median 𝑑𝑖 − median 𝑑𝑖 (5)

Here, since we assume that GPS error has zero mean, we replace median 𝑑𝑖 with
zero. The factor of 1.4826 makes the estimate consistent for Gaussian distributions.

We computed 𝜎 = 7.65 meters using data from all our subjects.
Our observations also show that GPS error varies with location, with higher errors

perhaps coming in areas with more obstacles to prevent a clear view of the GPS

satellites. With this in mind, we compute a separate GPS error standard deviation for

each node we observed in our GPS data. Specifically, for each GPS point matched to

a road, we associate that error to the nearest road node and compute each node’s

standard deviation from its associated errors.

Figure 8 shows in black the 5% of nodes with the highest GPS error. Although

there is no obvious pattern, there are several clear clusters of points, indicating areas

of extended disruption, caused possibly by trees or buildings.

Figure 8: GPS noise varies with location. The white dots

show all the points where we estimated the standard

deviation of GPS noise. The black dots show the 5% of

points with the largest standard deviation.

To add realistic GPS noise to our traces, for each point, we first generate a random

direction with a uniform distribution, 𝜃~𝑈 0,2𝜋 . We then find the 𝜎 associated with

the nearest node and generate a random magnitude 𝑑~𝑁 0, 𝜎 . The point is then

moved by ∆𝑥, ∆𝑦 = 𝑑 cos 𝜃, 𝑑 sin 𝜃 . Figure 9 shows a section of one of our

traces, with and without added noise.

Adding noise is the last step of our process. We note that this is the only step that

does not abstract away the specific training region. Our simulated start and end points,

routes, and speeds are based on generic features that could be extracted from any city

without taking GPS data there (i.e. the road network and USGS ground cover data). A

simple alternative to site-specific training for GPS noise would be to use the same

value of 𝜎 everywhere. A more interesting alternative would be to learn a model that

infers 𝜎 as a function of relevant features, perhaps USGS ground cover and the

density of nearby buildings.

8 Summary

To summarize, this is the list of steps used to generate a false trip:

1. Trip endpoints – Use features from Table 1 to compute the probability of

each node serving as a trip endpoint. The start of the trip is chosen according

to these probabilities. The end of the trip is chosen according to the same

probabilities, augmented with the probability distribution of trip times given

in Figure 5. This gives realistic starting and ending points and realistic trip

times.

2. Trip speeds – Based on simple learning from GPS traces, compute

probabilistic speed distributions for each node as a function of the posted

Figure 9: The larger black dots show points sampled at a rate of one per second,

filled in along edges according to randomly generate speeds. The smaller, white

dots have had spatially varying, GPS noise added to them.

speed limits and types of road approaching and departing each node. For

example, Figure 6 gives a speed distribution for going from a limited access

highway with a certain speed limit to a ramp with another speed limit.

3. Random routes – Given a random start and end of a trip, generate a route.

Instead of using posted speed limits to compute the minimum time route, we

use speeds randomly drawn from the speed distributions in the previous step.

This makes the routes somewhat random and unpredictable, but still

reasonable.

4. Points along route – Draw another set of random speeds at nodes along the

computed route. Linear interpolation gives the speed at any point along the

route, and solving a simple differential equation gives distance along the

route as a function of time.

5. GPS noise – Add spatially varying GPS noise to the previously computed

points on the route. The spatial variation was computed based on our

sampled GPS data.

9 Discussion

The steps outlined in the preceding sections constitute a method for generating

realistic, false trips for location privacy. Some false trips generated from the method

are shown in Figure 10. As a way to enhance privacy, the technique’s ultimate utility

comes in whether or not an attacker could distinguish the false trips from real ones.

The likely attack method would be to find some characteristic of real trips and test to

see which trips pass the test. The current method incorporates the major

characteristics of everyday trips.

Techniques like this should be subjected to scrutiny from unbiased researchers

posing as attackers. If they find an unmodeled characteristic that distinguishes false

trips from true trips, that characteristic should be incorporated into the simulation.

Toward this end, we have made available 1000 simulated trips and 10 real trips from

our test area available on a public Web site1. The simulated trips come from the

technique described in this paper. This site also contains a movie showing the

progress of the 1000 false trips on a map. The movie shows that most trips start and

end in more urban areas, with fewer in less populated regions.

While ours is one of the first efforts to produce realistic trips for location privacy,

there are published criteria for trip simulation. One list of criteria comes from a

survey of vehicular simulation techniques for mobile ad hoc networks [5]. Their five

“macro-mobility” criteria apply to our technique:

1 http://research.microsoft.com/en-us/um/people/jckrumm/RealisticDrivingTrips/data.htm

http://research.microsoft.com/en-us/um/people/jckrumm/RealisticDrivingTrips/data.htm

 Graph – Vehicular models that move on a map-derived graph, like ours, are

considered more realistic.

 Initial Destination and Position – Our endpoints are not random. They are

restricted to the graph and represent characteristics of the endpoints we

observe in data.

 Trip Generation – Endpoints can be generated based on likely activities of

drivers (e.g. shopping, entertainment). Our models do not account for this.

 Path Computation – Our computed routes are based on random, but

plausible, road speeds and thus demonstrate variability similar to actual

drivers.

 Velocity – We take driving speeds from probability distributions based on

our GPS data.

Another list of criteria, for a related purpose, comes from Duckham et al.’s [2]

speculation on how a privacy attacker might attempt to refine obfuscated location

data. The same refinement techniques could be applied to filter out false reports:

 Maximum/minimum/constant Speed – Road speeds that deviate

significantly from normal are suspicious. Our trips use speeds derived from

observations.

 Connected Refinement – An attacker would check that a sequence of

location reports adheres to a connected graph of locations. Our false trips are

consistent with the road network.

 Goal-directed Refinement – A trip that wanders aimlessly is unlikely. Our

trips move toward a goal, but they do not always follow the optimal path

according to published speed limits, thereby enhancing realism.

Figure 10: These are ten false trips generated by our method

The benchmark for privacy-related, false trips is the random walk methods in Kido

et al. [9], which is the only previous attempt we know of. Our trips are sensitive to the

road network, the locations where drivers start trips, their destinations, the

randomness of their routes, and the speeds they drive. While this is a significant

improvement over previous work, there are more trip features to consider:

 Time Sensitivity – All our models disregard the time of day, day of the

week, etc. It is likely that trip characteristics vary with time. For instance,

commuters normally leave residential areas in the morning to drive to

commercial areas. However, our goal is to simulate plausible trips, not

aggregate traffic flows, so time sensitivity is not critically important. It

would be easy to retrain our driver behavior models with different time

slices.

 Stops – Without knowledge of the locations of stop signs, stop lights, and

traffic slowdowns, we could not adequately model stops during a trip. While

our speed distributions do admit very slow speeds, we do not explicitly

model stops nor their durations.

 GPS Outliers – We know that GPS receivers occasionally produce outliers,

sometimes repeatedly whenever they return to a certain place. We do not

attempt to model this.

Increasing realism is not the only way to improve the effectiveness of false reports.

It is also worth considering making the true report look more like a false one in order

to confuse an attacker. For instance, if the false reports lack fidelity on a micro scale

(e.g. lane selection before a turn, brief stops), it may be easier to simply add more

noise to the false and true reports to cover minor infidelities. Decreasing precision

and accuracy of location reports is an acknowledged method for protecting privacy

[1], and it can make it more difficult for an attacker to distinguish real trips from false

ones. Likewise, instead of adding outliers to the false reports, it may be easier to filter

outliers from the real reports.

Still unresolved is when a privacy-minded client would report false trips –

continuously, only while the client is actually moving, random times? It would be

possible to build a higher level process that invokes our realistic trips at realistic times

of the day to simulate movement and stop patterns over extended periods of time.

10 Conclusion

Generating false trips is one way to enhance location privacy. We generate false trips

by abstracting probabilistic models from real trips and using these probabilities to

generate random start and end points, random routes, random speeds, and random

GPS noise.

References

1. Duckham, M. and L. Kulik, A Formal Model of Obfuscation and Negotiation for

Location Privacy, in 3rd International Conference on Pervasive Computing

(Pervasive 2005). 2005, Springer: Munich, Germany. p. 152-170.

2. Duckham, M., L. Kulik, and A. Birtley, A Spatiotemporal Model of Strategies and

Counter Strategies for Location Privacy Protection, in 4th International

Conference on Geographic Information Science (GIScience 2006). 2006,

Springer: Münster, Germany. p. 47-64.

3. Gruteser, M. and D. Grunwald, Anonymous Usage of Location-Based Services

Through Spatial and Temporal Cloaking, in First ACM/USENIX International

Conference on Mobile Systems, Applications, and Services (MobiSys 2003).

2003, ACM Press: San Francisco, CA USA. p. 31-42.

4. Gruteser, M. and B. Hoh, On the Anonymity of Periodic Location Samples, in

Second International Conference on Security in Pervasive Computing. 2005:

Boppard, Germany. p. 179-192.

5. Harri, J., F. Filali, and C. Bonnet, Mobility Models for Vehicular Ad Hoc

Networks: A Survey and Taxonomy. 2007, Institut Eurecom, Department of

Mobile Communications: Sophia-Antipolis, FRANCE.

6. Hoh, B., et al., Enhancing Security and Privacy in Traffic-Monitoring Systems, in

IEEE Pervasive Computing Magazine. 2006, IEEE. p. 38-46.

7. http://landcover.usgs.gov/ftpdownload.asp.

8. Hu, P.S. and T.R. Reuscher, Summary of Travel Trends, 2001 National

Household Travel Survey. 2004, U. S. Department of Transportation, U.S. Federal

Highway Administration. p. 135.

9. Kido, H., Y. Yanagisawa, and T. Satoh, An Anonymous Communication

Technique Using Dummies For Location-based Services, in IEEE International

Conference on Pervasive Services 2005 (ICPS2005). 2005: Santorini, Greece. p.

88-97.

10. Krumm, J., Inference Attacks on Location Tracks, in Fifth International

Conference on Pervasive Computing (Pervasive 2007). 2007: Toronto, Ontario,

Canada. p. 127-143.

11. Krumm, J., J. Letchner, and E. Horvitz, Map Matching with Travel Time

Constraints, in Society of Automotive Engineers (SAE) 2007 World Congress.

2007: Detroit, MI USA.

12. Letchner, J., J. Krumm, and E. Horvitz, Trip Router with Individualized

Preferences (TRIP): Incorporating Personalization into Route Planning, in

Eighteenth Conference on Innovative Applications of Artificial Intelligence

(IAAI-06). 2006: Boston, Massachusetts USA.

13. Rish, I. An Empirical Study of the Naive Bayes Classifier. in IJCAI-01 Workshop

on Empirical Methods in AI. 2001.

14. Rousseeuw, P.J. and C. Croux, Alternatives to the Median Absolute Deviation.

Journal of the Americal Statistical Association, 1993. 88(424): p. 1273-1283.

15. Steffen, M., A Simple Method for Monotonic Interpolation in One Dimension.

Astronomy and Astrophysics, 1990. 239(November (II)): p. 443-450.

16. van Diggelen, F., GNSS Accuracy: Lies, Damn Lies, and Statistics, in GPS

World. 2007.

http://landcover.usgs.gov/ftpdownload.asp

