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ABSTRACT

Millions of computer end users need to perform tasks over
tabular spreadsheet data, yet lack the programming knowl-
edge to do such tasks automatically. This paper describes
the design and implementation of a robust natural language
based interface to spreadsheet programming. Our method-
ology involves designing a typed domain-specific language
(DSL) that supports an expressive algebra of map, filter, re-
duce, join, and formatting capabilities at a level of abstrac-
tion appropriate for non-expert users. The key algorithmic
component of our methodology is a translation algorithm
for converting a natural language specification in the con-
text of a given spreadsheet to a ranked set of likely programs
in the DSL. The translation algorithm leverages the spread-
sheet spatial and temporal context to assign interpretations
to specifications with implicit references, and is thus robust
to a variety of ways in which end users can express the same
task. The translation algorithm builds over ideas from key-
word programming and semantic parsing to achieve both
high precision and high recall. We implemented the system
as an Excel add-in called NLyze that supports a rich user
interaction model including annotating the user’s natural
language specification and explaining the synthesized DSL
programs by paraphrasing them into structured English. We
collected a total of 3570 English descriptions for 40 spread-
sheet tasks and our system was able to generate the intended
interpretation as the top candidate for 94% (97% for the top
3) of those instances.

Categories and Subject Descriptors

D.1.2 [Programming Techniques]: Automatic Program-
ming; 1.2.2 [Artificial Intelligence]: Program Synthesis;
H.5.2 [User Interfaces]: Natural language
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Program Synthesis, End-user Programming, Spreadsheet Pro-
gramming, User Intent

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’14, June 22-27, 2014, Snowbird, UT, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2612177.

Mark Marron
Microsoft Research
marron@microsoft.com

1. INTRODUCTION

The IT revolution over the recent decades has resulted in
two significant advances: the digitization of massive amounts
of data and widespread access to computational devices. It is
thus not surprising that more than 500 million people world-
wide use spreadsheets for storing and manipulating data.
These business end users have myriad diverse backgrounds
and include commodity traders, graphic designers, chemists,
human resource managers, finance professionals, marketing
managers, underwriters, compliance officers, and even mail-
room clerks. They are not professional programmers but
they often need to create small, often one-off, scripts to per-
form business tasks [5].

Unfortunately, the state of the art for interfacing with
spreadsheets is far from satisfactory. Spreadsheet systems,
like Microsoft Excel, come with a maze of features, and
end users struggle to find the correct features to accom-
plish their tasks [16]. More significantly, programming is
still required to perform tedious and repetitive data analy-
sis/manipulation tasks. Excel allows users to write macros
using a rich inbuilt library of string and numerical functions,
or to write arbitrary scripts in Visual Basic or .Net program-
ming languages. However, since end users are not proficient
in programming, they find it too difficult to write desired
macros/scripts. Moreover even skilled programmers might
hesitate to write a script for a one-off repetitive task.

Recently, Gulwani developed a programming by example
(PBE) technique to automate string manipulation tasks in
spreadsheets [7] (released as the popular Flash Fill feature
in Excel 2013 [1]). However, there are important classes of
tasks such as reduce and filter operations that are not eas-
ily described using examples. Consider the employee payroll
spreadsheet shown in Fig. 1. Suppose one wants to “sum the
totalpay for the capital hill baristas”. This conditional arith-
metic task requires combination of a filter operation (namely
to filter rows whose location is “capital hill” and whose title
is “barista”) and a reduce operation (namely to add up the
totalpay values for those rows). These operations are not
easily expressible using examples. In particular, filter oper-
ations would require too many examples, and reduce oper-
ations may require the user to construct small mock exam-
ples [40]. We studied Excel help forums and observed that
end users often struggle with such tasks and communicate
their intent to the forum experts using natural language.
Inspired by this observation, we have developed a program-
ming by natural language (PBNL) methodology and imple-
mented a Microsoft Excel add-in called NLyze which enables
end users to automate common tasks using natural language.



sum the totalpay for the capitol hill baristas

sum the totalpay for the capitol hill baristas ~ SUMIFS (WeeklyHours [totalpayl, WeeklyHours[location], "capitol hi.
sum the totalpay for the eapitot hill baristas ~ SUMIF (WeeklyHours[titlel, "barista", WeeklyHours[totalpayl)
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=SUMIFS(WeeklyHours[totalpay], WeeklyHours[location], "capitol hill", WeeklyHours[title], "barista")
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location title

1
2 |capitol hill aaron chef 18
3 capitol hill blanca cashier 25
4 capitol hill  chris manager 40
5 capitol hill deeraj barista 40
6 capitol hill grace barista 21
7 capitol hill hannah  cashier 40
g capitol hill irene barista 40
9 queen anne tom chef 16
10 queen anne susan barista 26
11 queen anne steve cashier 22

otpay totalpay

0 $243.00 $0.00  $243.00
0 $193.75 $0.00 $193.75
10 $990.00 $371.25 $1,361.25
0 $352.00 $0.00 $352.00
0 $184.80 $0.00 $184.80
3 $310.00 $34.88 $344.88
0 $352.00 $0.00 $352.00
0 $216.00 $0.00 $216.00
0 $228.80 $0.00 $228.80
0 $170.50 $0.00 $170.50

Figure 1: NLyze: Sum on Coffee Shop sheet.

Variations in Language on Same Task

Variations in Task and Composition

sum hours capitol hill baristas

sum the capitol hill barista hours

sum the hours for the baristas where the location is capitol hill
computer please sum the hours for the capitol hill location baristas
get the baristas for the capitol hill location and sum the hours

get the hours for baristas who work at capitol hill and sum them up
compute the total sum of the hours for the people who are baristas

and work at the capitol hill location

find sum of totalpay for all of capitol hill baristas

e what is totalpay sum for baristas at capitol hill

e sum column H where column C is barista and A is capitol hill

what are the average hours worked at capitol hill

for each employee lookup the payrate and multiply by hours
take the nonzero othours and get the hours and sum them
add the hours and the othours columns

get the rows with othours bigger than 0 and color them red
which country has the largest gdp per capita

which countries have a gdp per capita larger than the average
sum the gdp for all countries that are not in europe

how many countries are in europe but do not use the euro
basepay plus otpay times 1.10

select rows with employees at queen anne with over 20 hours

Table 1: Variations on expressing a single intent from 67 clusters of sentences describing the same task (Left
column). A selection of the variety of tasks included in the evaluation sets (Right column).

The two major challenges in this work are: (i) variability
in how different users may express the same task in natural
language and (ii) the range of tasks (actions and their com-
binations) that users want to perform. The first column in
Tab. 1 shows a small selection of English descriptions that
were provided by end users for the same task category. On
one hand, we have a minimalistic keyword based description
(as often used in search engines) such as “sum hours capital
hill baristas”. On the other hand, we have a verbose de-
scription such as “computer please sum hours for the capitol
hill location baristas”. There are also descriptions that use
implicit references (e.g., “get the hours for the baristas who
work at capitol hill and sum them”) or use linguistic idioms
or implicit relations in the table structure (e.g., “capitol hill
baristas” instead of explicitly stating the “and” conjunction,
or simply saying “capitol hill” instead of the explicit “loca-
tion column equals capitol hill”).

Besides observing linguistic variety in task descriptions,
we also observed that users want to perform a rich compo-
sition of some basic functions. The second column in Tab. 1
shows a sample of the kinds of actions and their combina-
tions that we encountered in our evaluation and user study.
There are task descriptions that involve multiple Boolean
connectives including negation (e.g., “how many countries
are in europe but do not use the euro”), that nest reduc-
tion operations inside other functions (e.g., “which countries
have a gdp per capita larger than the average”), and that
combine lookup functions with other operations (e.g., “for
each employee lookup the payrate and multiply by hours”).

The first step in our methodology is to design a domain-
specific language (DSL) that on one hand is expressive enough
to express desired categories of tasks. On the other hand
it should be restricted enough to allow effective translation
from varied descriptions in natural language and to allow
for a simple end-user friendly interaction model. With these
goals in mind, we developed a richly-typed DSL that sup-
ports compositions of some basic forms of map, filter, and
reduce operations. Its typed and compositional nature en-
ables effective translation from natural language. Its com-
positional nature and the choice of core operators allow for
automation of a wide variety of common spreadsheet tasks
that end users struggle with (such as conditional filtering,
conditional arithmetic, and lookup tasks). The DSL also
supports selecting and formatting of spreadsheet cells. This
not only supports common conditional formatting tasks, but
also allows users to define views that can be referenced in
subsequent computations, thereby allowing users to perform
complex tasks in a sequence of smaller steps.

The key algorithmic contribution of this paper is a transla-
tion algorithm for converting natural language specifications
into a ranked set of likely programs in our DSL. Our trans-
lation algorithm improves over and combines ideas from two
different approaches, namely keyword programming and se-
mantic parsing, that have been used in the literature in
different communities. The idea of keyword programming,
which has been explored in the Programming Languages
(PL) community [26, 31, 39] and the Human-Computer In-
teraction (HCI) community [24, 25], is to generate all valid



programs that can be obtained by combinations of user pro-
vided tokens or their representative keywords. Keyword
programming approaches have high recall but low preci-
sion and rely on the user to select the intended program
from among several options. The idea of semantic parsing,
which has been explored in the Natural Language Process-
ing (NLP) community [28, 32, 42] and the Database (DB)
community [11, 21, 33], is to use a set of rules to translate
well-formed sentences into their corresponding logical repre-
sentations. Semantic parsing approaches typically have high
precision but lower recall and can be sensitive to grammat-
ically incorrect or ill-formed specifications.

Our translation algorithm uses a dynamic programming
based approach and an effective ranking scheme to com-
bines ideas from keyword programming and semantic pars-
ing. Our translation algorithm employs a more sophisticated
form of template rules than have traditionally been used for
semantic parsing. It also leverages the spreadsheet spatial
and temporal context to assign interpretations to natural
language specifications with implicit references, and is thus
robust to a variety of ways in which end users can express
the same task. It thus achieves both high precision and high
recall on a challenging benchmark consisting of real world
colloquial descriptions of spreadsheet tasks.

This paper makes the following contributions:

e We present the design of a richly-typed DSL for spread-
sheet programming (§2). Our language supports a com-
positional algebra of basic map, filter, and reduce op-
erations and provides first class treatment to highlight-
ing/formatting of spreadsheet cells and their referencing.
These features allow natural expression of a wide variety
of spreadsheet tasks that end users struggle with and also
enable effective translation from natural language speci-
fications and a simple user interface.

e We present a novel translation algorithm for translat-
ing natural language specifications into a ranked set of
programs in the DSL (§3). Our translation algorithm
combines ideas from keyword programming and seman-
tic parsing and leverages spreadsheet context to interpret
specifications with implicit references.

e We describe an interactive data programming environ-
ment (§4) around our DSL and translation algorithm.
This includes (a) ambiguity resolution by annotating user’s
specification and paraphrasing of synthesized DSL pro-
grams, and (b) programming of sophisticated tasks in
steps by issuing a sequence of DSL programs that com-
municate through spreadsheet updates.

e We collected a large real world data set and performed an
extensive evaluation of the robustness of our translation
algorithm to a variety of tasks and to a variety of ways
in which users may express the same task (§5). We also
performed controlled experiments to evaluate the various
components of our translation algorithm.

2. DOMAIN-SPECIFIC LANGUAGE

Fig. 2 describes our command style DSL for programming
spreadsheets. The DSL is structured around a core alge-
bra of reduce, filter, and map operations (partly inspired by
SQL) and their type-safe compositions. This allows support
for conditional arithmetic, conditional formatting and lookup
operations, and their composition. These are key categories

Program :=  MakeActive(Q) | Format(fe,Q) | v | V

SelectRows(rs, f) | SelectCells(C,rs, f)
GetTable(7Tbl) | MTable()
GetActive() | GetFormat(Tbl, fe)
{fmt,, ..., fmt,}

relop(C,v) | relop(v,C) | relop(C,C)
ma(f, f) | 0x(f, f) | Not(f) | True
rop(C,rs, f) | Count(rs, f) | bop(v,v)
Lookup(v,rs,C,C) | ¢

bop(V,V) | bop(V,v) | bop(v,V) | C
Lookup(C, rs, C, C)

Color(c) | FontSize(c) | Bold(b)
Italics(b) | Underline(b) |

Add | Sub | Mult | Div

Sum | Avg | Min | Max

Lt | Gt | Eq

Query Expr Q =

Row Source Expr rs

Format Expr fe
Filter Expr f

Scalar Expr v

Vector Expr V

Format Fn fmt

Binary Fn bop
Reduce Fn rop  :=
Relational Fn relop  :=

Figure 2: DSL: C denotes a column name. 7 denotes
a table name. c denotes a scalar constant, while b
denotes a Boolean constant.

of tasks that spreadsheet users struggle with, as we observed
on Excel help forums. Furthermore, since users solicit help
at this level, this seems to be the right level of abstraction
at which users think or plan out their overall tasks.

A program in the DSL reads and updates the underlying
spreadsheet over which it is executed. We model a spread-
sheet as a collection of tables Tbl, where each table is a
set of rows and has uniquely labeled and typed columns
C. Each spreadsheet cell has formatting attributes includ-
ing Boolean attributes like Bold and Underline and quan-
titative attributes like Color and FontSize. A program ei-
ther produces a scalar value v or a vector value V' (which
is placed at the location of the active cursor in the spread-
sheet), or results in highlighting (MakeActive(Q)) or for-
matting (Format(fe,Q)) of a set of spreadsheet rows/cells
filtered by the query expression ). This design enables the
steps programming model that we discuss later in §4. Fig. 1
shows the result of a program that performs a reduce Sum
operation and whose result is placed in the active cell I2.

A query expression ) returns a set of spreadsheet rows
or cells. The query expression SelectCells(C,rs, f) takes
as input a set of columns C, a row source expression rs,
and a filter expression f, can be likened to the standard
SQL select-from-where expression. It filters the set of rows
identified by 7s using f and then projects the result to the
columns C. The query expression SelectRows(rs, f) selects
the entire rows (i.e., all the columns) that are filtered by f
in rs. In both cases the result set of cells/rows is activated
to enable further processing via natural language or via in-
teractive manipulation such as copy/paste or formatting.

A row source expression rs returns a set of spreadsheet
rows in one of three ways. The construct GetTable(T) re-
turns the set of all rows in spreadsheet table T'. (For read-
ability, we drop the argument 7" in our examples whenever
there is a single table or the context makes it clear.) The
GetActive() construct returns the set of all rows that con-
tain the active cells in the spreadsheet. The GetFormat (T, fe)
construct returns the set of all rows in the given table that
contain cells whose attributes match the collection of for-
matting attributes (such as Bold(true), Color(pink)).



A filter expression f maps a row to true or false. It is a
Boolean expression that includes standard Boolean connec-
tives and whose predicates involve standard relational func-
tions, such as Eq and Lt, over values in specific columns.

A scalar value can be produced by performing standard
operations on scalar values, or by using a reduce operator
rop (e.g., summation, average, min, max), or by using Count
or Lookup. The construct rop(C,rs, f) takes as input a col-
umn name C, a row source expression rs, and a filter expres-
sion f. It performs a conditional arithmetic computation by
first filtering the set of rows in rs using f and then applying
the reduce function rop to values in column C. The Count
construct Count(rs, f) takes as input a row source expression
rs and a filter expression f. It returns the number of rows in
rs that satisfy f. The construct Lookup(v,rs,C1,C2) takes
as input a value v, a row source expression s, a primary key
column name C; and another column name C3. It returns
the value in Cs for that row whose value in C is equal to v.

A vector value can be produced by either referring to a
column C' or by performing a map operation in one of three
ways: (a) by applying a scalar binary function bop pair-
wise on the elements from two vectors of the same size as in
bop(V, V), (b) by applying the scalar binary function bop to
a vector V and a scalar v as in bop(V, v) or bop(v, V), to each
element in the input vector, and (c) by using a lookup con-
struct Lookup(Cy, s, C2, Cs), which returns a vector whose
i'" element is equal to Lookup(v;,s, Ca,C3), where v; de-
notes the i*" element in C71. The vector valued version of
the lookup function allows users to perform the equivalent
of a single column join, based on the primary key column
from the second table, with the data in the current table.

The DSL supports a strict, but intuitive, type system
whose formal description is left out for space constraints.
For example, multiplication is well defined on two numbers,
or a number and a currency, but not on two currency val-
ues [12]. The vector operations are defined only on vectors
of the same size. Each reference to a column name should
be consistent with the table in scope. We encapsulate these
constraints using the function Valid, which takes as input
a DSL expression e and returns true iff e is well-typed. The
translation algorithm (in §3) makes use of this function.

3. TRANSLATION ALGORITHM

We now describe our algorithm (Algo. 1) for translating a
user’s natural language input into a ranked set of likely pro-
grams in our DSL. We first describe the main algorithm and
then describe the sub-algorithms in subsequent subsections.

Algo. 1 takes as input an English sentence S and a spread-
sheet H, and returns an ordered list of top-level expressions
(i-e., programs) in our DSL that are likely interpretations of
the sentence S over spreadsheet H. The algorithm is based
on dynamic programming and it iteratively computes the set
of all expressions that can be produced for larger and larger
contiguous sub-sequences (also referred to as fragments) of
the sentence S (Loop at line 1). It then returns the set of
expressions ordered by score (as defined on Line 8).

The iterative computation of expressions in the loop at
line 1 is performed using two different kinds of algorithms,
namely Synth (Algo. 2) and Rule (Algo. 3). Both these algo-
rithms take as input a sentence S, indices (or word positions)
¢ and j into the sentence and a spreadsheet H, and return a
set of expressions (in our DSL) that are likely interpretations
of S[i..j] over H. The type-based synthesis algorithm Synth

Algorithm 1: Translate

Input: Sentence S, Spreadsheet H
1 for span < 1; span < S.Len; ++span do
for pos < 0; pos < S.Len — span; ++pos do
end < pos + span;
rulev < Rule(S, pos,end, H);
synthv < Synth(S, pos, end);
TMap[pos, end] < rulev U synthv;

O Tk N

7 for e in TMap|0, S.Length — 1] do
8 | pscore(e) <= ProdSc(e) x CoverSc(e) x MizSc(e);

9 return expressions in TMap|0, S.Len — 1] ordered by pscore;

does this by generating all type-safe compositions (Algo. 2,
line 5) of expressions that are (recursively) generated from
smaller fragments (Algo. 2, line 2). The rule based transla-
tion algorithm Rule does this by applying a set of pattern
rules (Algo. 3, Loop at line 2) which build up expressions
based on matching words in the user input and the sets of
previously computed expressions (Algo. 3, line 16).

The pattern rule based translation algorithm (Algo. 3 in
§3.3) relies on matching common patterns and idioms in
natural language to construct the appropriate expression.
This type of algorithm has high precision but suffers from
low recall when the natural language input is outside of the
set of expected patterns. To enable translation of inputs
that do not nicely match these expected patterns we intro-
duce a second type of translation algorithm based on type
driven expression synthesis (Algo. 2 in §3.2) that trades pre-
cision for higher recall by ignoring much of the structure of
the user’s input. Applying the combination of these algo-
rithms at each step in a bottom-up dynamic programming
manner (in Algo. 1) combines the complimentary strengths
of the two translation algorithms. The high precision pat-
tern rules are applied as much as possible while the type
based synthesis is used whenever needed to synthesize ex-
pressions for parts of the input that are outside of the set of
common/known patterns. The ranking, described in §3.4,
selects the most likely results based on the sequence of ap-
plied operations and other features of the result expression.

3.1 Preliminaries

Partial Expression. A DSL expression e is either an atom
(a numeric/currency value, a column name, or a value from
the sheet), or a function/operator applied to a list of argu-
ments. A partial expression extends the notion of an expres-
sion to also allow for a hole, a symbolic placeholder for an
expression, as an argument.
Hole ::= O¢é where i € NA ¢ € {G,L,C,V}

A Hole has an integer identifier in N which can be used to
refer to it and a restriction symbol ¢ that provides restric-
tions on what kind of expression can be used to instantiate
the hole. The G value indicates a general hole with no re-
strictions on the expression that fills it, L, C, and V values
indicate the expression should be a literal, column header,
or a sheet value respectively. In order to avoid verbosity, we
often refer to a partial expression as simply an expression.

As an example the Add operator from the DSL definition
in Fig. 2 can be fully instantiated to produce expressions
such as Add (3, 5) or Add(3, Sub(8, 3)). We can also par-
tially instantiate the operator, assigning a hole to the second
argument, to produce Add(3, 0OG1). To ensure that the first
argument can only be bound with a literal value we can in-
stead partially instantiate it as Add(OL2, 0OG1).



Given an expression e = F'(...,O¢i,...) with a hole O¢i,
we can substitute another expression e’ to fill the hole:

6[D¢i<_e,]:{ éF(...,e’,...)} if A

otherwise
A = ¢ is consistent with ¢ A Valid(F(...,¢,...))

This can be generalized to substitute multiple values at the
same time, denoted as e[d@mm < em, ..., Oppn < en].

Derivation History. A derivation history for an expression
e consists of the following fields.

UsedW(e) = Positions of words used to generate e

UsedCW(e) = Positions of column names used to generate e
€], [eT, ... eR])

Used W is the set of the positions of all those words that were
matched by rules that instantiated e and any sub-expressions
of e. UsedCW consists of the positions of the words that
were matched to produce column names that appear in e
or any sub-expressions. History, is a 3-ary tuple consisting
of the top-most pattern rule that instantiated e, the list of
expressions bound during this instantiation, and the list of
expressions that were used during any synthesis steps.

3.2 Synthesis Based Translation Algorithm

The synthesis based translation algorithm (Algo. 2) com-
putes the closure of a set of expressions (taken from the re-
sults memoized in TMap) by enumerating all possible well-
typed combinations of the expressions in the set. In this
respect, it ignores any sentence structure aside from the key-
words matched to produce the initial expression set.

History(e) = (rule, [e], . .

Combination. The combination operator CombAll gener-
ates the set of all expressions that can be obtained by sub-
stituting a given expression e’ in some hole of another given
expression e. Given expressions e = F(e1,...,e;) and €'

COmbAll(e,e’) — { E)Jlgigk Subs

otherwise

where Usedne = UsedW(e) — UsedCW(e)

Usedye = UsedW(e') — UsedCW(e")
e[O¢j + €]

Subs(e;) = { {F(...,€e/,..

Combination proceeds by (1) iterating over all arguments
of e and producing substitutions for positions with holes
that are compatible with e’ and (2) recursively performing
the substitution in sub-expressions. The condition UsedycN
Usedy = () checks that the two expressions do not use over-
lapping sets of words from the user input (aside from words
used to produce column expressions). This ensures that the
set of possible combinations has a finite bound based on the
number of words in the input. The needed validity checks,
such as type safety and that the appropriate column names
exist in the table, occur during Valid check in the substi-
tutions, e[d¢j < €'], and ensures that all result expressions
are well defined wrt. the DSL semantics.

if e; = O¢yj
Jlei € CombAll(e;,e')} otherwise

Synthesis Example. Consider the scenario when the value
for result on line 2 in Algo. 2 is:

{$10, 5, Lt(OL1, totalpay), Not(OG2) }

(e:),if Usedne N Usedye =0

Algorithm 2: Synth

Input: Sentence S, int 4, int j
if (¢ = j) then return 0;
result < TMapli, 5 — 1] U TMapli + 1, j];
repeat
oldResult < result;
new <— U {CombAli(e1,e2)};
e1,eEresult
result < result U new;
7 until oldResult = result;
8 return result;

U W N

[=2)

There are multiple combinations possible for this set. One
choice is to combine 5 and Lt(OL1, totalpay) to produce
Lt(5, totalpay). We could also combine $10 and Lt(OL1,
totalpay) to get Lt($10, totalpay). At this point the syn-
thesis algorithm uses the type information from the Excel
document. As we treat currency and integers as different
types, only one of the combinations is Valid. In our exam-
ple the type of the “totalpay” column is a currency and thus
only Lt($10, totalpay) is produced. In a later iteration the
algorithm can combine the Lt expression with the hole in
Not(OG2) to produce Not(Lt($10, totalpay)) as well.

3.3 Rule Based Translation Algorithm

The rule based translation algorithm (Algo. 3) applies a
set of rules Rules to translate the fragment S[é..j] into a
set of expressions. A rule T' — e comprises of a template T
and a partial expression e. To support ranking we associate
a numeric score (score € [0,1]) with each rule. Each rule
T — e in Rules generates a set of expressions (indicated
by E at Line 18) by aligning the template T' against the
fragment S[i..j] (Line 3) and by filling in some (or all) of the
holes in the expression e appropriately. The latter process
may make use of the translations for smaller fragments that
are in TMap (Line 16). We next describe these aspects in
detail. §3.3.1 describes the format of rules and how they
are learned from some training data. §3.3.2 describes the
translation algorithm that makes use of these rules.

3.3.1 Rules

Rule Language. Fig. 3 describes the rule language. A rule
consists of a template, a partial expression, and a score. A
template is a sequence of patterns. There are various kinds
of patterns, which we explain below. The MustPat pattern
uses multi-word sequences for matching fragments that are
fundamental to understanding the central intent of a user de-
scription. Each option consists of a multi-word phrase and
we require exactly one of these to be present in the align-
ment. The OptPat pattern provides a flexible mechanism for
matching (multiple) words that may optionally appear and
provide extra context for the user description. To enable the
rules to exclude any sheet-concept specific words and pro-
vide additional recall, the OptPat alignments can include an
optional slack word (SLACK) that provides an ability to drop
words that may be specific to a given spreadsheet or domain
(and would not be part of a general purpose rule set).

The next patterns match numeric or currency literals as
well as columns and non-numeric spreadsheet values, such
as “chef” or “capitol hill”. The pattern LiteralPat matches
any literal or cell reference (e.g. D2) that contains a number
or currency value. The integer identifier is a unique label
used to associate the value matched by the pattern with the
location in rule expression where the value should be placed.



Rule = Template — Expression

Template Pattern; ...Pattern;

Pattern :=  MustPat | OptPat | LiteralPat

| ValuePat | SpanPat
MustPat =  (wi1...Wik|...|wi ... wij)
OptPat (Wm] ... |wn)*SLACK? (W] . . . |wp)*
LiteralPat :=  %Li where i € N

ValuePat :=  %Ci|%Vi where i € N

SpanPat %i where 1 € N

Figure 3: The language for rules.

User descriptions, such as those in Tab. 1, are executed
in the context of a spreadsheet, such as Fig. 1, which pro-
vides meaning to column name references, like hours, and to
special value names, like baristas, as well as to other tables
and the columns defined in them, like the PayRates table
which contains the payrate column. The ValuePat matches
column names (e.g., “title”) with %Ci or spreadsheet values
(e.g., “chef”) with %Vi. Similar to the literal patterns the
ValuePat matches have integer identifiers to associate the
matched pattern with the location in rule expression where
the value should be placed.

The final pattern for the rules is a general SpanPat pat-
tern. It matches a non-deterministic span of words in the
user input and is roughly equivalent to the non-deterministic
regular expression “(\w+\s)+”. Again, we associate a unique
identifier with each span pattern that appears in a rule.

The span pattern does not place any structural restric-
tions on the range of matched words. This choice is critical
to the feasibility of Algo. 1, as it decouples the algorithm
that computes the expression semantics for the span of words
from the algorithm that uses the results. Thus, we can dy-
namically decide to apply different (or multiple) translation
algorithms on various subcomponents of the sentence de-
pending on the words in the span. For example we could eas-
ily extend the Algo. 1 to include a parser for Excel formula
to allow for a mixture of NL and Excel formula in the input,
e.g. “highlight rows with totalpay > MEDIAN(H2:H14)".
Further, due to the uninterpreted nature of the holes [29],
we do not need to modify (or re-train) the existing Rule or
Synth algorithms when adding the Excel parsing algorithm!

Learning Candidate Rules. In order to learn the various
rules and their scores, we utilize a variation on the tech-
nique described by Kate et.al. in [14]. For each of the par-
tial expressions for which we want to learn rules, we gather
all examples from our training set that contain the desired
subexpression. To focus the learning on a subexpression of
interest we first delete, or replace by holes, the unrelated
parts in the overall expressions. Simultaneously we heuristi-
cally delete the corresponding components of the NL input.
We then cluster the inputs based on order and word simi-
larity. For each cluster we derive one or more rules.

Learning Candidate Rule Example. Consider the case
below where we have an example of an input along with
the desired expression that matches the target expression
for which we want to learn a rule:
Input = “sum the totalpay where hours less than 20”
Desired = Sum(totalpay, Lt(hours, 20)))
Target = Sum(OC1, OG2)

The first step is to unify the desired expression with the tar-
get expression to determine which subexpressions are mapped
to holes. In our example this produces the mappings OC1 —
totalpay and O0G2 — Lt(hours, 20). With this mapping we
use synonym sets derived from wordnet [38] to identify the
likely set of English words associated with these expressions.
In our example the sets are totalpay — {totalpay}, hours —
{hours}, 20 — {20, twenty}, Lt — {less, smaller, under, ... }.
We then delete words in these sets from the input sentence,
replacing the deleted segments with the spans from the map-
pings, to get: “sum the %C1 where %2”.

After performing this extraction on all of the examples
that unify with the target expression we cluster the rules
derived from the specific examples into equivalence classes
based on structure and word similarity. In our example the
sentences “sum all %C1 where %2” and “sum %C1 %2” both
end up in the same cluster. We then unify all the sentences
in a cluster, making words associated with the target expres-
sion must patterns and the remaining words may patterns.
The result of this unification is the rule:

sum (all|the)* %C1 (where)* %2 — Sum(OC1, OG2)

Rule Selection and Scoring. Once the candidate learn-
ing task has been performed for each partial expression,
we end up with an over-approximation of the desired rule
set due to multiple non-deterministic choices in mapping
holes and due to multiple possible rules for each cluster. To
prune the rule set we iteratively run the translation algo-
rithm with the current rule set over our training data. For
each rule r, we compute a goodness score goodness(r) =
pos(r)? /(pos(r) + neg(r)) where pos(r) is the number of ex-
amples that were translated correctly (i.e., the desired ex-
pression was one of the expressions produced by the algo-
rithm) and where the rule was applied, and neg(r) is the
number of examples that were not translated correctly and
where the rule was applied. For each rule we also compute
the set of examples for which the rule was applicable. The
goodness score reflects the overall accuracy and coverage of
the rule. We then attempt to discard any rules with low
goodness scores or those that are subsumed by another rule
with more general applicability and with an equivalent, or
better, goodness score. This process is repeated until we
cannot remove any more rules without reducing the F1 score
on the training data. At this point we stop and use a Naive
Bayes Classifier to estimate the score to assign to each rule.

Rule Selection Example. After a set of rules is produced
there may be multiple rules, some more useful than others,
that capture similar concepts. Consider the set:

sum — Sum(OC1, Lt(OC2, OL3))

sum (the)* %C1 %C2 less %L3 — Sum(OC1, Lt(0C2, OL3))
sum (all|the)* %C1 — Sum(OC1, True)

sum (all|the)” %C1 %2 — Sum(OC1, OG2)

In this example the first rule is very general, matching any
sentence containing the word “sum”, but produces a very
specific expression which is unlikely to be what the user in-
tended; so it will have a low goodness score and will be dis-
carded. The remaining rules all have high goodness scores
but the second rule is subsumed by the last rule (i.e., the last
rule is more general) and eliminating the second rule from
the rule set does not have any impact on precision/recall on
the training set. So the second rule is discarded as well.
However, the third rule applies in some important cases



where the last rule does not, e.g., “sum the hours” which
has no predicate, and thus eliminating it drops the preci-
sion/recall substantially; so it is retained in the set.

Unbound Holes. A rule may have holes in the expression
with labels that do not correspond to any patterns in the
template. These holes are left unbound by the rule based
algorithm and are available for substitution by the synthesis
algorithm (Algo. 2). An example of such a rule is:

sum (the|values)” %C1 — Sum(OC1, OG2)

In this rule the hole defined for the column header has a
pattern with the corresponding identifier on the left-hand
side and it will be instantiated during Algo. 3. However, the
general hole with identifier 2 does not have a corresponding
pattern; so it will not be instantiated and is available for
substitution later in Algo. 2.

Alignment. Given a template T' = pat, ...pat, and a frag-
ment S = w; ...wg, we define the set of valid alignments of
the template T" and the fragment S as:

Align(S,T) = set of all alignment mappings A where:
A:{paty,...,pat;} = {[l,u]|l <T<wu <k}
AY pat; Match(pat,, S[A(pat,).l, A(pat,).u])
A A(paty).l = 1A A(pat;).u =k
AV pat,,pat;, ; = A(pat;).u+1= A(patH_l).l

An alignment is a map from each of the patterns to a range
of words in the sentence. The first condition ensures that
each pattern is mapped to an appropriate range of words
in the sentence. The next two conditions ensure that all
patterns together cover the entire sentence and there are no
gaps/overlaps between the ranges covered by each pattern.

3.3.2  Translation Using Rules

Algo. 3 takes a span of words S[i...j], finds all possi-
ble alignments of the rule templates on this span (line 3),
and then produces all possible substitutions of the partial
expression in the rule based on the alignments (lines 5-18).
Filling holes in an expression in a rule involves looping over
each hole that appears in the expression. In the case where
there is no pattern with a corresponding identifier in the
template 7" the hole is skipped and left unbound (Line 6).
Otherwise the next step is to use the identifier i from the
hole to lookup the corresponding pattern from the template
to resolve the lower | and upper v bounds for the pattern
match in the alignment. This is done using the function
LookupRangeForPatternID (Line 8).

Once the span is known the algorithm proceeds to the
switch statement in the rule application algorithm and does
a case split on the given hole restriction to produce the set
of expressions that can be used to fill the hole. In the case
of literal (L) holes the words in the corresponding range are
converted into the equivalent literal expression values. For
the sheet value (V) restriction the words in the range are
compared with the values seen in the spreadsheet H and
the expressions corresponding to these values are returned.
For the column header case the ResolveCol function must
determine if the matched text represents a column name or
if the matched text is a sheet value. If the text represents a
column name in H then it can be converted directly. In the
case where the text represents a sheet value but the corre-

Algorithm 3: Rule
Input: Sentence S, int i, int j, Spreadsheet H

1 result < 0;
2 foreach T'— e € Rules do
3 foreach A € Align(S[i..j],T) do
4 B+ 0
5 foreach O¢z € e do
6 if O¢x is unbound in T then
7 | Continue;
8 [l,u] = LookupRangeForPatternID(A, T, x);
9 switch ¢; do
10 case L:
11 | BlB¢x] « MakeLiteral(S[l, u])
12 case V:
13 | B[O¢z] + MakeValue(S[l, u], H)
14 case C:
15 | B[B¢z] < ResolveCol(S[l, u], H)
16 case G:
17 | B[B¢z] < TMapll, u]
18 E + {e[0¢m « em,...,0¢n < ey]le € B[Ogkl};
19 | result < resultU Ej

20 return result;

sponding hole restriction is C then the columns that contain
the value in the spreadsheet H must be identified and this
set of column header expressions is returned. The final case
is the general restriction (G) which can be instantiated with
any expression. To compute this set the given range is looked
up in the TMap table.

Pattern Rule Application Example. We now illustrate
Algo. 3 using the following input and two rules:

Input: “sum the totalpay for the chef titles”
Rules: sum (alljthe)” %C1 %2 — Sum(OC1, 0G2)
%V1 %C2 — Eq(0OV1, OC2)

One possible alignment for this input maps %C1 <« “to-
talpay” and %2 < “for the chef titles”. There is only one
possible column expression for the column header “total-
pay” and this column expression is substituted into the hole
OC1. There are several expressions that could have been
previously computed for the sentence fragment “for the chef
titles” including Eq(chef, title) and the expression title.
However, only Eq(chef, title) has a type of Filter that
matches the type signature of Sum in the DSL. Thus, the
only possible result is Sum(totalpay, Eq(chef, title)).

3.4 Ranking

The multiple DSL expressions produced by the translation
algorithm are ranked using the product (Algo. 1, line 8) of
the scores, which we describe below.

Production Score. The first feature is based on the way in
which an expression was produced in terms of the rules used
and the number of times a hole was filled using a synthesis
operation vs. pattern rule application.

Z RScore(e') * SScore(e’)

ProdSc(e) = | SubExprs(e)

e’ € SubExprs(e)
To compute the overall score we take the product of RScore
and SScore values for all non-terminal sub-expressions (in-
cluding the top-level expression) SubFEzprs and normalize
their sum by the total number of non-terminal sub-expressions.



RScore(e) = Z rule.score + HiS;OTy(eg).rule.score
m

SScore(e) = H

ep€{ef,....en}

rule.score x History(ey,).rule.score

semls[e1, .- enl)

Intuitively, we want to favor the application of rules with
high scores and prefer expressions constructed via pattern
rule applications over the use of synthesis combinations. We
scale the score of the rules to the range [0,1] by using the
average operator to combine score for sub-expressions in the
pattern rules and multiplication operator for the synthe-
sis applications. Repeated applications of synthesis quickly
drives the production score to 0 while repeated applications
of pattern rules will slowly converge towards an average of
the rule scores in the expressions. During the scoring of the
pattern rules we sum the pairwise average of the score for the
rule that was applied and the scores of each sub-expression
that was bound to the rule. However, for the synthesis rules,
which we have lower confidence in, we take the product of
the scores for the sub-expressions in the synthesis steps.

where History(e) = (rule, [e], . ..

Coverage and Order Scores. Algo. 1 may produce ex-
pressions that ignore or reorder parts of the user input. In
some cases these actions are needed to make sense of the
user input, but they may also lead to erroneous expressions.
The coverage score CoverSc ranks the expression based
on how completely it covers the words in the user input.
The intuition for this is that if a user included a word in
the input then this word conveys some information on the
user’s intent. An expression that covers a larger number of
words is seen as better explaining the input and thus having
a higher likelihood of correctly capturing the intent behind
it. Our formulation is non-linear to strongly down weight
expressions that ignore large numbers of words, presumably
some of which are important to the user’s intent, while not
unduly penalizing expressions that ignore a few possibly re-
dundant words. Thus, given the input § = wi ... w, and
the expression e = F(eq,...,ex) we define:
CoverSc(e) = 1/ Maz((m — UsedW(e))?,1)
The mix score MizSc recursively counts all pairs of sub-
expressions that mix words from different parts of the user
input. Intuitively we want to allow the re-ordering of parts
of the user input but we should not mix different fragments
of the input. For example in a conditional sum like “get the
rows where othours is less than 20 and sum the hours”, the
condition/reduction may be expressed at the beginning or
end of the sentence, which we want to allow the synthesizer
to reorder, but we do not want to swap the column name
that appears in the condition, “othours” with the column
name that appears with the sum “hours”.
MizSe(e) = { } — Swizzled(e) / AllPairs(e) ?f e= Flei,...
if e is an atom

Swizzled(e) = Z
e;€{e1,..., et
Owerlap(e, ') = Span(e) N Span(e’) # 0
Span(e) = [Min(UsedW(e)), Max(UsedW(e))]
AllPairs(e) =k x (k—1) + Z AllPairs(e;)

e;€{e1,....,ex}

Swizzled(e;) + |{ej| Overlap(e;, e;)}|

Ranking Example. To illustrate how the ranking function
identifies expressions that are likely matches for a user’s in-
tent, we look at two candidate expressions produced for “for
all hours less than 20 sum the totalpay”. One possible result
expression is e = Sum(totalpay, True) derived using a sin-
gle pattern rule with a score value of 0.7. If all literal deriva-
tions have a weight of 1 then ProdSc(e) = (0.85 x 1)/1 =
0.85. If the expression only uses last 3 words of the sentence
we have CoverSc(e) = m = 0.027. There is no
interleaving; so the final score is 0.023.

Another possibility is ¢/ = Sum(totalpay, Lt (hours, 20))
derived using a synthesis step over the sub-expressions e
= Lt (hours, 20) and e, = Sum(totalpay, 0G2), each of
which is derived using a pattern rule with score 0.7. Thus,
ProdSc(e’) = (RScore(e) x SScore(el,))/2 + (RScore(es) x
SScore(es))/2. In this case, RScore(e,) = 0.7 and SScore(e,) =
0.49. Thus, ProdSc(e’) = (0.7 x 0.49)/2 + (0.85 x 1)/2 =
0.597. The result expression covers all relevant words (“for
all” is not matched); thus we have CoverSc(e’) = 0.25. The
synthesis operation reordered words used in the expression
but did not interleave them. Thus, the final score is 0.149
compared to 0.023 for the erroneous expression. So, we rank
the desired expression first in the result list.

3.5 Full Algorithm Example

To illustrate how Algo. 1 is able to leverage the best char-
acteristics of the rule based algorithm and the type based
synthesis algorithm we consider the user description:

“for all hours less than 20 sum the totalpay”

Assuming the above description is issued over the sheet from
Fig. 1 the algorithm will identify the words “hours” and “to-
talpay” as representing special column header symbols. As
the dynamic programming algorithm progresses it will pro-
cess “sum the totalpay” which, as a common way to express
summation intents, will match rules of the form:

sum (all|the)* %C1 — Sum(OC1, True)
sum (all|the)* %C1 %2 — Sum(OC1, OG2)
sum (all|the)* %C1 — Sum(OC1, OG2)

When matching these rules Algo. 3 will fail on the sec-
ond rule (as there are no matches for %2). However, the
first and third rules will succeed, producing the expression
Sum(totalpay, True) and the expression Sum(totalpay,
0G2) with an unbound hole.

Algo. 1 will also process “hours less than 20” which matches
the rule “%C1 less (than)* %L2” with %Cl=*hours” and
%L2="20" to yield Lt (hours, 20). When the algorithm
reaches “hours less than 20 sum the totalpay”, there are no
rules that match the entire fragment; so the type based syn-
thesis algorithm will be run with:

{Sum(totalpay, True), Lt(hours, 20), totalpay,
Sum(totalpay, 0G2), 20, Lt(0C1,0G2),...}
The type based synthesis algorithm will produce several ex-
pressions including the substitution of Lt (hours, 20) into

the hole OG2 in the expression Sum(totalpay, 0G2) to pro-
duce the the desired result expression:

Sum(totalpay, Lt(hours, 20))

The algorithm will continue to process increasingly larger
sub-sequences of the input description, including the pre-
fix “for all”, until it reaches the complete input. At this



point the algorithm will produce the the union of all possi-
ble translations for the full input which includes the desired
result. Finally, based on the ranking, the desired expression
will be the top ranked result.

4. PROGRAMMING MODEL

Ambiguity Resolution. Since natural language is ambigu-
ous and our translation algorithm may not be perfect, the
output of our translation algorithm is a ranked set of likely
programs in the DSL. Fig. 1 shows how multiple candidate
results are generated and displayed to the user. In general
we show up to three results that have confidence scores over
a given threshold. However, to illustrate various features of
the UI, the top three results are shown for the example re-
gardless of their confidence score. We let the user select from
among the synthesized programs in two orthogonal ways.

Each entry in the list has an annotated version of the
user’s description on the left (and the corresponding Excel
function on the right). The annotated version of the descrip-
tion uses highlighting to show the words that were identified
as column names or values from the sheet, red underlines to
show misspelled words, and strike-through indicating words
that were ignored when producing the corresponding expres-
sion. In Fig. 1 the first interpretation of the user description
has identified totalpay as a column along with baristas and
capitol hill as values that appear in the sheet contents. None
of the parts of the description are struck out, indicating that
all of the parts of the description were taken into account
when producing the resulting expression. The next two en-
tries in the list correspond to expressions that can be derived
from the user description but are ranked as less likely be-
cause they ignore parts of the description, the statements
about baristas and capitol hill respectively, shown by the
strike-though on the words.

We transform each result expression into both Excel for-
mulas and structured unambiguous English. Translation
into Excel formulas is enabled by syntax-directed rewriting
strategies that are standard in the compiler literature, and
is done to avoid forcing users to learn our DSL. *

Translation into structured English is supported since many
end users struggle with understanding Excel formulas. For
this purpose, we associate pre-defined English descriptions
with both the templates as well as the DSL operators. Thus,
the same DSL expression can be paraphrased into different
structured English descriptions depending on how the user
originally specified the task. This allows our paraphrased
English description to stay closer to the style of the user’s
original description. For the running example the para-
phrased NL is “sum up the totalpay where title = barista
and location = capitol hill”. This description pops up in our
UI when the user hovers over the displayed Excel formula.

Programming in Steps. Our interactive programming
model for data analysis in spreadsheets allows the user to
accomplish a sophisticated task using a sequence of steps. In
each step, the user first selects the intended program from
the ranked list of synthesized programs; the intended pro-
gram is then executed and the state of the spreadsheet is

"We target our DSL as an intermediate representation as
Excel formulas do not naturally express a number of con-
structs, such as Or(b1, b2) which in Excel is often imple-
mented using IF(b1l+b2, 1, 0). These limitations hinder
both translation and paraphrasing.

changed as in a live programming model. The user may
then proceed to the next step in the task pipeline. The se-
quence of programs produced can be automatically executed
to update the output values if the user changes any input
in the spreadsheet. This sequence of programs can also be
executed on any similar spreadsheets.

Programs in our DSL change the spreadsheet state in one
of two ways. One way is to generate a new scalar or vector
value that is placed at the location of the current cursor as in
Fig. 1. A program may lead to creation of a new value that
can be used in subsequent programs to incrementally per-
form tasks. For instance after computing the totalpay sum
for the capitol hill baristas the user may want to know what
fraction this is of the overall payroll. One way to do this is
to compute the total payroll in cell I3 with the description
“column H total” and then perform the division “divide 12
by I3”. Alternatively the user can combine these steps into
a single description “divide 12 by the total of column H”.

Another way the spreadsheet state can change is by cre-
ating active selections or adding emphasis to the result of a
query that selects certain rows/cells in the spreadsheet. The
act of activating selections or adding emphasis (such as bold,
color, etc.) to the spreadsheet values changes the meaning
of implicit row/cell references in subsequent operations.

Creating emphasis can be likened to creating new view
definitions (if the intended emphasis does not already ex-
ist in the spreadsheet) or updating view definitions (if the
intended emphasis already exists). Generating emphasis
might be the preferred mode of operation if the view def-
inition created might be used in multiple subsequent oper-
ations. For example to compute totalpay sum for the chefs
and the baristas the user could first create a new set of the
chef totalpay values “color the chef totalpay red”, followed
by extending this set with the barista totalpay values “color
the totalpay for the baristas red”, and finally adding all the
values in this set “add up all the values in the red cells”.

On the other hand highlighting can be likened to creating
an anonymous view definition, which can be referenced im-
plicitly in a subsequent description. Highlighting might be
a preferred mode of operation if the view definition (i.e., the
query result) created is only used in the subsequent descrip-
tion. For example, a user could compute the totalpay sum
for the capitol hill baristas by first selecting all the relevant
rows “select the rows for the capitol hill baristas” and then
adding the totalpay up for the selection, “get the totalpay
from the selected rows and sum it”.

Inter-operability with PBE. Our PBNL methodology uses
the same principles used in the PBE methodology for spread-
sheet data manipulation [9], namely: design of an appropri-
ate DSL, translation algorithm for mapping specifications
(whether examples or natural language) to likely DSL pro-
grams, and ranking those programs. This allows easy inte-
gration of PBE features like Excel’s Flash Fill [1, 7] as one of
the sequencing steps to achieve a sophisticated task in our
programming model. For example, consider a table with
three columns: Paper title, a string of comma-separated
authors, and year of publication (as obtained from Google
Scholar for some researcher R). Our DSL cannot express the
task "How many papers have R as the first author”. How-
ever, the user can start out by extracting the first authors
in a new column by simply giving an example and invoking
Flash Fill followed by using NLyze to complete the task.



S. IMPLEMENTATION AND EVALUATION

In this section we evaluate our approach for translating
natural language to spreadsheet formulas. We implemented
all of the algorithms described as a Excel add-in (using C#)
called NLyze. The Excel product team provided us with 4
spreadsheets that contained data from conceptually different
areas, employee payrolls, inventory management, country
facts, and sales invoices. These sheets provided a variety for
the vocabulary and implicit relations that users might have
in a natural language description. Using questions asked
in online forms and data from the Excel product team, we
constructed 40 tasks involving conditional reduce/selection
operations, lookup tasks, arithmetic formula, and combina-
tions of these operations. We took before and after screen
shots of performing these tasks on one or more of the 4
spreadsheets and, via an online crowd-sourcing, asked users
to look at the before/after images and describe what they
would tell a human to do in order to accomplish the illus-
trated task. This resulted in a suite of 3570 natural language
descriptions over the different tasks and spreadsheets.

In addition to containing a range of tasks, our data con-
tains many variations on how a person may express each
task. We performed clustering on the natural language in-
puts for a given intent based on the orders of the column
names/values and word similarity [41]. On average we found
37.7 distinct clusters for each intent, which demonstrates the
wide range of ways different users express the same intent.
The template algorithm needs to see representative exam-
ples covering all of these variations. However, the combined
algorithm can leverage the synthesis sub-algorithm to suc-
cessfully interpret these variations even when the training
data, and thus translation rules, do not contain any exam-
ple from some clusters. To construct the rules we performed
a random 70/30 split of collected natural language descrip-
tions and used the 70% split to build a set of 105 rules.

5.1 Overall Performance

We begin by evaluating the running time, precision, and
recall of the overall translation algorithm. Tab. 2 shows the
performance of the translation algorithm on the test data for
the 4 different spreadsheets and, in the last row, cumulative
results over all the sheets.

The second column in Tab. 2 shows the average time taken
to translate from a user description to the Excel formula
results. The translation is fast enough, between one and
two hundredths of a second on average, to support a real-
time search style UI where the user can see, in real time, the
current results and how they change as the input changes.

The next two columns in Tab. 2 show how often the de-
sired expression is (1) the top ranked result shown to the
user and (2) how often the desired expression is in the top
three results shown to the user. For each spreadsheet the de-
sired result is top ranked for over 90% of the inputs and over
all sheets/inputs the desired expression is the top ranked re-
sult in 94% of the inputs. In the search style UI a user can
easily scan the first few results, with the help of expression
paraphrasing provided by the system when needed, to se-
lect the desired formula. The last column in Tab. 2 shows
the percentage of user descriptions for which the system was
able to generate the correct result anywhere in the results
list. There are a small number of cases (under 2%) where the
correct formula can be produced but where it is not ranked

Sheet Avg. Time | Top Rank | Top 3 All
Sheet #1 0.010s 94.4% | 96.7% | 97.5%
Sheet #2 0.015s 95.5% | 97.5% | 99.1%
Sheet #3 0.007s 94.5% | 97.3% | 97.9%
Sheet #4 0.019s 90.7% | 96.7% | 96.9%
All Sheets 0.011s 94.1% | 97.1% | 98.2%

Table 2: The average time per translation is shown
in Avg. Time. The Top Rank, Top 3, and All
columns show the percentage of task descriptions
for which the intended program is respectively: the
top ranked, in the top 3, or anywhere in the results.

in the top three results. The last row shows that the recall
rate of the algorithm is 98% over all the sheets and inputs.

A standard metric for evaluating the overall performance
of a translation system is the F'I score (also called F-score or
F-measure) which is the harmonic mean of the precision and
recall values: 2 X (precisionx recall) /(precision+recall). This
measure provides a balanced combination of both the recall
(how often the system produces an answer) and the precision
(how often a returned answer is correct) of the system. Using
the recall and precision results we see that, in practice, the
system provides the user with an Excel formula that matches
their intent with a 97.6% F1-score success rate. The high
value for the F1 score shows that the system performs well
from a users perspective by both consistently producing an
answer and a correct one.

5.2 End-User Evaluation

To further evaluate the ability of our system to success-
fully interpret user descriptions in practice we performed a
second study where end-users were able to use the NLyze
system. In this study we distributed the Excel add-in to a
small group of users, provided a tutorial on the features sup-
ported by the system and demonstrated a number of sample
tasks. We then asked them to use our add-in on a spread-
sheet of their choice. We logged this usage and collected 62
task description/spreadsheet pairs.

The task descriptions seen in this study included vocab-
ulary not in the training set (e.g. “nonzero othours”) and
contained more composition of expressions (e.g. combin-
ing lookup inside arithmetic operations) than the crowd-
sourced data collected for training. Despite these challenges
the translation algorithm (using the same set of rules that
were derived in the first study) was able to generate the
desired expression as the top candidate for 90.3% of the
inputs, 93.5% for the top 3, and 95.1% anywhere in the
result list. Further, the study participants reported that
the ability to see multiple results, along with which words
were used/ignored and paraphrasing of the expressions, gave
them confidence that the Excel formula they selected would
perform the desired calculation.

5.3 Evaluation of Algorithm Components

The overall system combines the basic pattern rule algo-
rithm (Algo. 3) and the synthesis algorithm (Algo. 2) to im-
prove recall, and leverages the ranking methodology (§3.4)
to improve precision. To understand how these components
contribute to the overall behavior, we examine results for
each step in the process.

The first row of Tab. 3 shows the result of running just
the baseline pattern rule algorithm (Algo. 3) and using only
the scores of the rules and the production tree to rank the



result expressions. The recall rate for the algorithm is high,
89.8%, which indicates that the rule language and matching
semantics (e.g., the slack tokens and kleene star matching
of the OptPat patterns) allow for the construction of a rule
set that covers most of the ways that users express their
intents. The second row of Tab. 3 shows the result of running
just the baseline synthesis algorithm (Algo. 2) and using
only the scores of the rules to rank the result expressions.
As expected the recall rate is higher than for the template
algorithm, 98.2%, but the rates at which the desired result
is the top ranked (67.4%) is substantially lower. However,
for both algorithms there are many cases where the desired
expression is not generated or where the desired expression
is not the top ranked result (or is not in the top-3).

The third row in Table 3 shows the result of running
the combined translation algorithm (Algo. 1) using only the
scores of the rules and the production tree to rank the result
expressions. The combination of the rule and the synthesis
algorithms succeeds in producing the correct DSL expres-
sions in cases where the baseline pattern algorithm alone
fails. Thus, the recall (the All column) increases by 8.4%
to near the limit of what is possible at 98.2% while the top
ranked and top-3 scores are much higher than possible with
the synthesis algorithm alone. However, the simplistic rank-
ing based just on the production history is not enough to
distinguish the desired expression from other expressions.
Thus, the Top 3 and Top ranked rates remain a respectable
but still unsatisfactorily low 89.4% and 75.1% respectively.

The final row in Tab. 3 shows the results after the addition
of the full ranking methodology from §3.4 and is equivalent
to full algorithm (i.e., same as in Tab. 2). The results show
that, as expected, the improved ranking does not affect the
overall recall, unchanged at 98.2%, but it drastically im-
proves the rate at which the desired expression is Top 3 and
the Top ranked to 97.1% and 94.1% respectively. As a re-
sult we conclude that all thee components of the combined
interpretation, the pattern rule algorithm, the synthesis al-
gorithm, and the ranking, are critical to the overall results.
Further, the combination of these techniques result in a re-
call rate of 98.2%, the placement of the desired expression as
the top ranked result for 94.1% of the inputs, and in the top
3 results for 97.1% of the inputs. From a user standpoint
these results imply that the user will almost always find their
desired result in the top 3 results and for roughly 19 out of
20 inputs the desired result will be the first suggestion.

6. RELATED WORK

Programming by demonstration (PBD) based sys-
tems, which use a trace of a task performed by a user, and
programming by example (PBE) systems [8, 9], which
learn from a set of input-output examples, have been used
to enable end-user programming for a variety of domains.
For PBD these domains include text manipulation [19] and
table transformations [13]. Recent work on PBE by Gulwani
et.al. has included domains for manipulating strings [7, 35],
numbers [36], and tables [10]. Both PBD and PBE based
techniques struggle when the desired transformations in-
volve conditional operations. This is because the number
of examples required increases rapidly with the number of
conditionals. In several scenarios, even a large number of
examples fail to precisely characterize the desired condition-
als. In contrast, natural language based approaches perform
well for both simple and multi-conditional operations.

Extensions Top Rank | Top 3 All
Pattern Rule Only 74.0% | 83.6% | 89.8%
Synthesis Only 67.4% | 85.6% | 98.2%
Pattern Rule & Synthesis 75.1% | 89.4% | 98.2%
Complete Algorithm 94.1% | 97.1% | 98.2%

Table 3: The performance of the base pattern rule
(semantic parsing) and synthesis (keyword program-
ming) algorithms and the impact of the combina-
tion. The Top Rank, Top 3, and All columns show
the percentage of user descriptions where the in-
tended expression is in the category.

Yessenov et. al. [40] present a programming by steps
system, where the user provides mock examples at each step.
Our steps programming model allows use of both natural
language and examples, but more significantly, its support
for emphasis, highlighting, and implicit referencing allows
easy communication between various steps.

There has been extensive research on developing natu-
ral language interfaces to databases (NLIDB) [2, 30].
NaLIX [21, 22] presents a natural language query interface
to an XML database using the structure of the natural lan-
guage parse tree derived from the user description. PRE-
CISE [11, 33, 34] translates semantically tractable NL ques-
tions into corresponding SQL queries by matching tokens
identified in the user description with the schema of the
database to produce the SQL query. The tabular and fre-
quently relational nature of spreadsheet data makes the task
of translating natural language descriptions to spreadsheet
formula somewhat similar. However, the spreadsheet do-
main requires different design choices than in the database
domain because of (a) lack of explicit data schema, (b) the
interactive and live programming nature of the environment,
and (c) the need to support non-developer users (who, as we
found out, use much less structured and colloquial English
than what is present in previous data sets).

Keyword programming refers to the process of trans-
lating a set or sequence of keywords into a program. This
program may consist either of operations in an existing pro-
gramming language [31, 39] or a DSL constructed for a
specific class of tasks [24, 25]. Keyword programming ap-
proaches generally have high recall but low precision and rely
on the user to select the intended program from among mul-
tiple possible candidate result programs. Le et.al. present a
system [20] that extracts keywords along with some data-
flow relations from natural language descriptions and ex-
tends them to programs in the underlying DSL. Their sys-
tem has high precision, but is specialized to the domain of
smartphone automation scripts.

Semantic parsing [28] uses NLP based techniques to
construct a program from natural language. Several ap-
proaches have been presented, namely: syntax directed [14],
those that use parse trees [4], SVM driven [15], combina-
tory categorial grammars [18, 42, 43], and dependency-based
semantics [23, 32] among others. These approaches typi-
cally have high precision but lower recall and are sensitive
to grammatically incorrect/ill-formed descriptions.

We combine techniques from keyword programming and
semantic parsing in a novel unified framework to achieve
both high precision and high recall. Our translation algo-
rithm applies the pattern rule based semantic parsing ap-
proach as much as possible (to achieve high precision) while
interleaving it with type based synthesis (a keyword pro-



gramming approach) for those parts of the input that are
outside the set of common/known patterns (to achieve high
recall). Furthermore, any advances in semantic parsing (or
keyword programming) can be easily plugged into our uni-
fied framework to further improve our results.

7. CONCLUSION AND FUTURE WORK

Program synthesis is the task of automatically synthe-
sizing a program in some underlying domain-specific lan-
guage from a given specification using some search tech-
nique [6]. The traditional view of program synthesis has
been to synthesize programs from formal and complete spec-
ifications [27, 37]. Recent work has shown how to synthesize
programs from examples, which are an ambiguous specifica-
tion of the user’s intent, using ranking and interactivity [7—
9]. This line of work, which is targeted for end users, has
been relatively more successful, and is a promising direc-
tion to enable end users to program computers. We build
over this recent line of work to synthesize programs from
natural language, which constitutes another useful form of
(ambiguous) specification.

Our domain-specific language for spreadsheet data analy-
sis/manipulation combines functional and compositional na-
ture of SQL queries along with formatting based side effects
that are common in spreadsheet environments. Our synthe-
sis technique combines and builds over ideas from keyword
programming (in PL/HCI communities) and semantic pars-
ing (in NLP/DB communities). Our interaction model is
end-user friendly with support for ambiguity resolution, se-
quencing of communicating DSL programs, and integration
with programming by example techniques.

Opportunities for future work include the application of
our generic translation algorithm to other data manipula-
tion domains like text processing and table formatting. It
would also be interesting to consider incorporating similarity
matching techniques [3, 17] for column names and spread-
sheet values and extending the lookup capability of NLyze
to search over collections of web tables in addition to a user’s
own tables (as in [35]).
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