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Figure 1: Left: self-supporting surfaces with unsupported (top) and supported (bottom) boundary constraints. Unsupported boundary vertices
and their corresponding power cells are colored in orange. Top right: initial self-supporting mesh. Spikes appear due to extremely small
reciprocal areas. Bottom right: applying our smoothing scheme (5 iterations) improves mesh quality. The power diagrams (black) show how
power cell area is distributed more evenly.

Abstract

Masonry structures must be compressively self-supporting; design-
ing such surfaces forms an important topic in architecture as well
as a challenging problem in geometric modeling. Under certain
conditions, a surjective mapping exists between a power diagram,
defined by a set of 2D vertices and associated weights, and the re-
ciprocal diagram that characterizes the force diagram of a discrete
self-supporting network. This observation lets us define a new and
convenient parameterization for the space of self-supporting net-
works. Based on it and the discrete geometry of this design space,
we present novel geometry processing methods including surface
smoothing and remeshing which significantly reduce the magnitude
of force densities and homogenize their distribution.
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1 Introduction

A structure is self-supporting when it stands in static equilibrium
without external support. This idealization is fundamental when
designing masonry structures which can withstand compression but
are weak against tensile stresses.

Many techniques have been employed to design self-supporting
structures, including the force network method [ODwyer 1999], the
hanging chain model [Kilian and Ochsendorf 2005], and the thrust
network [Fraternali 2010]. Recently, Block and Ochsendorf [2007;
2009] developed thrust network analysis which decouples the 3D
force equilibrium of a self-supporting network into horizontal (xy)
and vertical (z) components. Horizontal equilibrium is characterized
by the 2D network’s force diagram, called the reciprocal diagram
[Maxwell 1869; Cremona 1890]. By adjusting the reciprocal dia-
gram, thrust network analysis provides a powerful way to design
self-supporting structures. In particular, it allows a given shape to be
approximated by a self-supporting one [Block and Lachauer 2011;
Vouga et al. 2012].

An important limitation of existing approaches is that they fix the
structure’s network topology; i.e., the edge connectivity in a polyg-
onal mesh. But the choice of topology influences both the shape
of the result and the forces it generates under equilibrium. A non-
optimal choice overestimates forces and underestimates the strength
of a vaulted masonry structure [ODwyer 1999; Block 2009]. We
use a regular triangulation (also known as weighted Delaunay tri-
angulation) to parameterize the space of networks under equilib-
rium. Though the link between reciprocal diagrams and regular
triangulations has long been understood [Aurenhammer 1987b], we
exploit it computationally, to improve processing in the space of
self-supporting meshes. Our parameterization implicitly encodes
(rather than fixes) the network’s connectivity, letting it adapt.

Our contributions are summarized as follows.
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• We provide a novel and natural way to parameterize the space
of networks under equilibrium. The parameterization is based
on the 2D regular triangulation and its dual, the power diagram.
It comprises a simple set of 2D vertices each with a scalar
radius, and avoids encoding discrete connectivity variables.

• We analyze the dimensionality of the mapping from regular
triangulations to reciprocal diagrams. We introduce a simple
method that reduces the number of edge equations required to
infer power diagram weights.

• We present a novel smoothing scheme based on isotropic mean
curvature that removes irregularities in a self-supporting mesh.
We also present a novel remeshing method that optimizes and
reduces variation in force density by matching it to smoothly
interpolated stress. The connectivity adaptation afforded by
our parameterization is crucial to the effectiveness of these
methods.

2 Related Work

Self-supporting design Various techniques have been developed
since the nineteenth century; see [Block 2009, chapter 2] for a
detailed review. The fundamental theory is summarized as the Safe
Theorem [Heyman 1966; Heyman 1997] which states that if a set
of internal forces can be found that equilibrate the external loads
and are contained within the masonry, then the structure won’t
collapse. Computer-aided approaches for designing self-supporting
structures are a recent development. Two notable methods are the
hanging chain method [Kilian and Ochsendorf 2005] and thrust
network analysis [Block and Ochsendorf 2007]. The former utilizes
a particle-spring system to find the equilibrium positions of nodes.
The latter combines the force density method [Schek 1974] with
the idea of the reciprocal diagram. Both methods are discrete —
based upon polygonal curves or networks. The continuous analog,
Airy stress potential, is studied in [Fraternali et al. 2002; Fraternali
2010; Vouga et al. 2012]. By analyzing polyhedral stress potential
and optimizing the topology of a discrete network via a regular
triangulation, our method provides a good approximation to the
continuous notion.

Self-supporting approximation To match a self-supporting sur-
face to an arbitrary target shape, Block and Lachauer [2011] fix
the input mesh’s xy-coordinates and optimize the reciprocal dia-
gram only. Vouga et al. [2012] simultaneously optimize the xy-
coordinates of an input mesh and the edge lengths in the reciprocal
diagram via an alternating optimization strategy. Both methods need
an initial polyhedral mesh and do not change its connectivity as the
optimization proceeds.

Network topology adaptation Mesh connectivity influences
shape and determines force distributions, and is therefore criti-
cal in designing and analyzing compression-only (self-supporting)
and tension-only (membrane) surfaces and frameworks [ODwyer
1999][Kilian 2006, chapter 5]. It is desirable to automatically evolve
rather than specify the optimal network topology. On the other
hand, topology adaptation strategies have been studied in surface
and volume meshing. Methods include centroidal Voronoi tessel-
lation (CVT) [Du et al. 1999; Liu et al. 2009], optimal Delaunay
triangulation (ODT) [Chen and Xu 2004; Alliez et al. 2005] and
Hodge-optimized triangulation (HOT) [Mullen et al. 2011]. CVT
and ODT determine topology by a (restricted) Delaunay triangula-
tion, while HOT utilizes the more powerful regular triangulation.

Regular triangulation in geometry processing Cheng and Dey
use regular triangulations to eliminate slivers and protect features in
a tetrahedral mesh [2004]. Mullen et al. propose HOT-meshes [2011]
which encode the primal and dual of a regular triangulation, and in-
crease accuracy in many meshing applications such as finite element
analysis. Regular triangulation has also been applied to generate
blue noise point sets [de Goes et al. 2012].

Statics-based geometric modeling Smith et al. present a non-
linear optimization method for designing truss structures [2002].
Umetani et al. consider physical stability in furniture design [2012].
The TNA method [Block and Ochsendorf 2007] provides a flexible
way to design and analyze compression-only structures. Statics-
aware planar quadrilateral (PQ) meshing is considered in [Schiftner
and Balzer 2010] for architectural geometry. Whiting et al. apply
static analysis on existing masonry buildings to improve their struc-
tural stability [2009; 2012]. Whiting et al. ’s method supports struc-
tures with more general 3D topology but makes it difficult to guide
or explore in the shape space. Our method inherits the flexibility
of the TNA method for shape design as well as its restriction to
structures with a 2D primal diagram.

3 Triangular Self-Supporting Surfaces

We introduce the thrust network approach [Block and Ochsendorf
2007] in Section 3.1 and regular triangulation in Section 3.2. We
then show the theoretical connection between them, motivating our
idea for using regular triangulation to parameterize self-supporting
meshes in Section 3.3. Methods to manipulate this parameterization
and handle boundary conditions are presented in Section 3.4.

3.1 Thrust network equilibrium and reciprocal diagram

We restrict our study to structures with manifold mesh topology. A
3D structure is represented by a polyhedral meshM. We assume
that the vertical (gravitational) load applies only at vertices ofM,
and that there is no external horizontal load. The self-supporting
property requires that every vertex be in force equilibrium. At a
specific mesh vertex vi = (xi, yi, zi), this condition is:∑

j∼i

rij(xj − xi) =
∑
j∼i

rij(yj − yi) = 0, (1)

∑
j∼i

rij(zj − zi) = Fi. (2)

Here, j ∼ i denotes the index of one-ring neighbor vertices to vi.
Fi is the vertical load applied to vi. rij is the force density on
an edge: the ratio of horizontally projected force over horizontally
projected edge length. It satisfies rij = rji. For a compression-only
structure, rij ≥ 0. M must be a height field, or at least locally a
height field with possible global overlaps in xy, to ensure horizontal
equilibrium.

Horizontal equilibrium in Eq. (1) implies that the set of density-
weighted edges around a given vertex form a closed polygon. The
direction and length of this polygon’s j-th edge are respectively
v′j−v′i
‖v′j−v′i‖

and rij‖v′j − v′i‖, where v′ denotes orthogonal projec-

tion of v to the xy-plane. Assembling all these polygons forms a
reciprocal diagram [Maxwell 1869; Cremona 1890].

LetM′ be the 2D orthogonal projection ofM, called the primal
diagram. Based on these definitions, it is easy to see that the primal
and reciprocal diagrams have a simple relation: any edge of the
primal diagram has a dual edge in the reciprocal diagram and the
two edges are parallel. Fig. 2 illustrates their relationship.
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Figure 2: A primal diagram (left) and its reciprocal diagram (right).
Six axial forces at vertex p attain horizontal equilibrium and so form
a closed polygon in the reciprocal diagram.

Given a primal diagramM′ and a reciprocal diagramM∗, thrust
network analysis finds a unique self-supporting surfaceM via the
following simple method. The primal diagram already specifies
the xy-components of vertices and their connectivity in M. All
that remains is to compute the height (z component) for each of its
vertices. Force density is given by

rij = ‖e∗ij‖/‖eij‖, (3)

where ‖e∗ij‖ and ‖eij‖ are the lengths of the corresponding dual
and primal edges. Vertex heights can then computed by solving the
linear system represented by Eq. (2). Some vertices should be fixed
in the structure to provide support.

The reciprocal diagram corresponding to a given primal diagram
is not unique because of the choice of force densities; the space
of reciprocal diagrams offers the proper flexibility for designing
discrete self-supporting surfaces [Block and Ochsendorf 2007].

3.2 Power diagram and regular triangulation

In R2, d(x,p) = ‖x − p‖2 − wp represents the power distance
between points x and p, where wp is a weight associated to p.
This definition generalizes standard Euclidean distance. The tuple
(p, wp) can be regarded as a power circle with center p and radius√
wp. Given a set of n such circles {(pi, wi)}, Euclidean space can

be partitioned into n regions with respect to the power distance:

Vi , {x ∈ R2 | d(x,pi) ≤ d(x,pj), ∀j 6= i}.

This partition is called a power diagram [Aurenhammer 1987a], Vi
is called a power cell. A power cell can be empty; its associated
vertex is called hidden.

The dual to the power diagram is constructed by connecting pi

and pj if Vi and Vj are adjacent. The result is called the regular
triangulation. Alternatively, the regular triangulation can be defined
as the orthogonal projection (to the xy-plane) of the convex hull of
3D points {p̃i} where p̃i , (pi, (‖pi‖2 − wi)/2) [Aurenhammer
1987a]. The 3D point p̃i is called the lifted point of pi. The lifted
point of a hidden vertex lies inside the interior of the convex hull of
the other lifted vertices, so that it disappears from the triangulation.
Fig. 3 shows a typical power diagram and its corresponding regular
triangulation.

When all wi are equal, the power diagram and regular triangulation
revert to the standard Voronoi diagram and Delaunay triangulation.
Adding a constant value to all weights yields the identical power
diagram and regular triangulation.

Any triangle 4pipjpk in the regular triangulation possesses a
weighted circumcenter cijk formed by the intersection of any two
bisector lines d(x,pi) = d(x,pj) and d(x,pi) = d(x,pk). cijk
is also the shared vertex of Vi, Vj , and Vk. 4pipjpk and cijk are
called dual to each other. The edge cijkcijl in the power diagram

Figure 3: Left: power circles of vertices and the resulting power
diagram (edges in red). Right: the corresponding regular triangula-
tion (edges in blue). The vertex colored in green is hidden and has
no influence on the resulting regular triangulation.

is dual to the shared edge eij , pipj between adjacent triangles
4pipjpk and 4pipjpl. From these definitions it is easy to see
that dual edges must be orthogonal.

Local regularity and the orthogonal dual Given a planar trian-
gle mesh T and a weight associated with each vertex, a dual diagram
D can be constructed by connecting each pair of weighted circum-
centers between two adjacent triangles. D is called an orthogonal
dual of T . If all the cells of D are convex, we say T preserves
local regularity everywhere. Local regularity generalizes the pre-
vious definition of regular triangulation — a regular triangulation
is identical to a locally regular T containing no holes or overlaps
and having a convex boundary. Local regularity implies that there
is positive (non-stretching) thrust on each edge and so correctly
yields a self-supporting structure, even in the presence of holes or
(non-height-field) overlaps. Hereafter, we use the term “regular” to
mean “locally regular” and “power diagram” to refer to the dual
diagram constructed in this way.

Constructing the regular triangulation Various methods exist
for computing the 2D power diagram and regular triangulation [Au-
renhammer 1987a]. The edge flipping algorithm [Lawson 1977] is a
powerful method to convert an arbitrary planar triangulation to a De-
launay triangulation. It can also be generalized to regular triangula-
tion. An edge of a triangle mesh is flippable if it is not locally regular
and the quadrilateral formed by its adjacent triangles is convex. Lo-
cal regularity of an edge e between4pipjpk and4pipjpl is char-
acterized by the signed edge length ratio re ,

|cijk−cijl|
|e| [Wardet-

zky et al. 2007]: if re ≥ 0, e is locally regular. If no hidden vertices
exist, flipping all such flippable edges iteratively leads to the regular
triangulation [Glickenstein 2005]. Hidden vertices can be handled
by the following augmented algorithm.

• Step 1. Flip all flippable edges iteratively until no flippable edge
remains.

• Step 2. If there is an non-locally regular edge but the associated
quadrilateral is concave, the vertex at the quadrilateral’s con-
cave corner must be a hidden point. Remove it and its adjacent
triangles, re-triangulate the hole, and goto Step 1.

• Step 3. Stop and output the regular triangulation.

Although the above algorithm is inefficient (Step 1 runs in time
O(n2) in the worst case while an optimal method runs in time
O(n logn) [Aurenhammer 1987a]), it computes a locally regular
triangulation and thus handles 2D triangle meshes with holes and
overlaps.

3.3 Parameterizing thrust networks with regular trian-
gulations

The space of regular triangulations and reciprocal diagrams are re-
lated. Let P , {pi}ni=1 represent a set of 2D vertices in the primal
diagram of a polygonal, self-supporting surface mesh, forming a



manifold with boundary and possible holes. We also make a rea-
sonable assumption that no primal faces is degenerate, i.e., areas of
faces are not zero and no three consecutive vertices on a face are
collinear. Let P and P∗ represent the space of regular triangulations
and compression-only reciprocal diagrams on P, respectively. The
following proposition relates these two spaces.

Proposition 1 A surjection exists from P to P∗ if vertices on holes
and concave parts of the exterior boundary are unsupported. A
lower bound on the dimension of the kernel of this surjection is 2.

We sketch the proof as follows. (1) regular triangulation =⇒ recipro-
cal diagram. Since each edge of the power diagram is orthogonal to
the primal edge and the power cells of interior vertices are closed, the
power diagram must be a reciprocal diagram rotated 90◦ around the
z-axis. (2) reciprocal diagram =⇒ regular triangulation. Without
loss of generality, assumeM′ is triangular since any non-triangular
primal diagram can be triangulated by adding edges. We add edges
to triangulate the spaces formed by any holes and concave exterior
segments, forming a simply-connected mesh with convex boundary,
which we call the extended primal diagram. Added edges correspond
to dual edges with zero lengths. The primal diagram so extended
must be a regular triangulation according to a well-known theo-
rem: a reciprocal diagram for a triangulation exists if and only
if the triangulation is regular [Aurenhammer 1987b; Glickenstein
2005; Wardetzky et al. 2007]. This theorem assumes the reciprocal
diagram is simply-connected; i.e., without holes.

We show how to compute power weights from the reciprocal dia-
gram and count the dimensionality from P∗ to P . Applying the
formula for the diagonal Hodge star operator in a regular triangula-
tion [Mullen et al. 2011, page 7] to the shared edge eij = pi − pj

between adjacent triangles4pipjpk and4pipjpl, we obtain:

(?1)ij , sgn((cijk − cijl) · e⊥ij)
‖cijk − cijl‖
‖eij‖

, (4)

=
1

2

(
cotαikj + cotαjli (5)

+ (wi − wk)
cotαkji

‖eij‖2
+ (wj − wk)

cotαjik

‖eij‖2

+ (wi − wl)
cotαijl

‖eij‖2
+ (wj − wl)

cotαlij

‖eij‖2

)
.

pi

pj

pl

pk

αjik

αikj

αkji

αjli

αlij

αijl

cijk

cijl

Here e⊥ij denotes an edge in the
regular triangulation rotated 90◦

around the z-axis, and cijk, cijl
denote the weighted circumcenters
of the adjacent triangles. Compar-
ing Eqs. (3) and (4), and recalling
that an edge in the power diagram
is e∗ij = cijk−cijl, we see that the
Hodge star operator yields a signed
version of the edge’s force density,
rij . It is also known that the trian-
gulation is regular if and only if all
Hodge star edge evaluations are nonnegative [Wardetzky et al. 2007].
This implies that the reciprocal diagram has a corresponding power
diagram, since rij ≥ 0 for all its edges. We next show that there
exists a set of weights in a regular triangulation such that each of
its edge’s Hodge star evaluations matches the reciprocal diagram’s
force density, or (?1)e = re, via Eq. (5). On edges added to triangu-
late non-triangular cells, holes, and concave boundary, (?1)e = 0;
no axial force should be applied. The linear equations formed by
{(?1)e = re, ∀e} characterizes the mapping P∗ to P .

Suppose that the extended primal diagram contains Ne edges, Nf

faces, Ni interior vertices, and Nb boundary vertices. The total

number of vertices is denoted Nv = Nb +Ni. Without loss of gen-
erality, assume no face contains only supported boundary vertices.
The equations (?1)e = re form a (Ne −Nb) ×Nv linear system
with respect to the weights wi. But in each dual cell polygon, two of
its edges are determined by the rest. The reason is that the reciprocal
diagram’s edge directions are fixed regardless of the weight assign-
ment, and its edge vectors sum to zero. So any two of the cell’s edge
vectors are uniquely determined by decomposing the negative sum
of its remaining vectors along the two given edge directions. This
property is called the closure condition of the polygon. Thus 2Ni of
these equations can be eliminated from the linear system.

The number of rows thus reduces toNe−Nb−2Ni = Nf−Ni−1.1

By the shift invariance property of the power diagram, we can fix
one weight to obtain a (Nf −Ni − 1) × (Nv − 1) linear system.
The lower bound on the dimensionality of its solution space is
(Nv−1)− (Nf −Ni−1) = 2. Deriving this last step again applies
the edge-counting formula.�

We conjecture that a unique weight assignment exists if there are
no degenerate triangles and we fix the 2D translation of the recip-
rocal diagram. In other words, the dimension of the kernel of the
surjection is 2 exactly. We have numerically verified this conjec-
ture by computing the SVD of the linear system in many examples.
This means we can impose as a constraint the 2D location of one
weighted circumcenter in the power diagram to make the solution of
the above linear system unique. The power diagram so determined
matches the given reciprocal diagram.

Limitation: When there are supported vertices on holes or concave
parts of the exterior boundary, it is possible that no regular trian-
gulation exists. For some reciprocal diagrams, interior vertices of
the extended primal diagram cannot all be in 2D equilibrium, no
matter how we extend the primal diagram to a simply-connected
convex domain or assign forces on the added edges. In other words,
we cannot extend the reciprocal diagram to be simply-connected.
The linear system formed by Eq.(5) has no solution. This limitation
is less significant than it may appear. In Section 3.4, we describe
a way to find a set of power weights that directly fit a given self-
supporting mesh rather than a reciprocal diagram. By allowing
some flexibility in satisfying vertical equilibrium, we typically find
a regular triangulation that reproduces the mesh. This implicitly
amounts to perturbing the reciprocal diagram to find one that has a
valid extension.

Remark 1. The definition of power diagram and regular triangula-
tion can be generalized. Given a triangle mesh and a set of per-vertex
weights, the general power diagram connects adjacent weighted cir-
cumcenters of triangles. Rotating it 90◦ horizontally, we obtain
a generalized reciprocal diagram. Self-intersecting or nonconvex
cells can appear. A dual edge whose direction is opposite to its
corresponding primal edge implies a negative force density. This
generalization makes it possible to model self-supporting structures
allowing tension as well as compression.

3.4 Computing the parameterization

Computing power weights from a reciprocal diagram For a
primal and reciprocal diagram pair satisfying the conditions of
Prop. 1, we show how to compute a set of power weights that repro-
duce it. The following procedure selects Ne −Nb − 2Ni linearly
independent constraints from edges in the extended primal diagram.

1This can be derived by applying Euler’s formula for a simple-connected
triangular mesh with boundary: Nf + Nv − Ne = 1. The derivation
also applies the formula 2Ne −Nb = 3Nf for triangular meshes, derived
by counting edges on all triangles, which counts interior edges twice and
boundary edges once.
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Figure 4: Boundary conditions for a self-supporting mesh. A convex
boundary vertex (white circle) must be supported. In order to achieve
horizontal equilibrium, each unsupported concave boundary vertex
(orange circle) must possess a closed power cell, drawn in red. All
cells along the same segment must share a common dual vertex (blue
circle).

1. Initially we have an equation for each inner edge. By the
closure condition, we can remove two equations for each in-
ner vertex vi corresponding to two of its non-parallel edges.
We ensure that the edges we remove are new (not previously
removed from a vertex visited earlier) by tagging edges.

2. We emit the equality constraint (?1)e = re for each selected
edge e using Eq. (5), where re is the known force density on e.

We then assemble these constraints as a linear system AW = B
where W is the vector of unknown weights. Due to the shift invari-
ance property, we set one weight to zero. Based on Prop. 1 and our
conjecture, we can solve the linear system directly by specifying the
2D coordinate of one weighted circumcenter.

Computing power weights from a self-supporting mesh For
a self-supporting meshM, we can find a set of weights that approx-
imatesM by solving an inequality-constrained quadratic program-
ming (QP) problem:

arg min
W

∑
vj

∑
j∼i

((?1)ij(zi − zj)− Fi)
2

under (?1)ij ≥ 0,∀eij . Here W is the vector of unknown weights
and vj are the unsupported vertices. One weight is set to zero
due to shift invariance. The objective function penalizes vertical
disequilibrium. Inequalities maintain the connectivity of the input
triangulation. Horizontal equilibrium of unsupported vertices is
implicitly maintained by parameterizing with a regular triangulation;
no additional equality constraints need be imposed. If the objective
vanishes, then the above optimization finds a power diagram that is
a 90◦ rotated reciprocal diagram for M .

Boundary conditions Weights and locations of vertices on the
boundary (including its exterior extent and interior holes) of a pri-
mal diagram must satisfy certain constraints. We first consider the
exterior boundary and then discuss holes. Boundary vertices can
be supported (in contact with the ground) or unsupported (hanging
freely above the ground) as shown on the left side of Fig. 1.

• Boundary vertices are categorized as convex and concave.
Boundary edges at a convex vertex form an outside angle
no less than π; the outside angle at a concave vertex is smaller
than π. Convex vertices can not be in horizontal equilibrium
with compression-only forces and must be supported.

• Unsupported concave boundary vertices can be divided into
segments, separated by chains of supported vertices. Every
segment includes two supported vertices at its ends. Refer to
Fig. 4. For each segment Sk : {pk,i}, the weighted bisector
lines of each of its edges must intersect at a common point
since the adjacent power cells share the same dual edge. More

precisely, a point ck = (ak, bk) must exist satisfying (pk,i −
ck)2−wk,i = (pk,i+1−ck)2−wk,i+1 for i = 1, . . . , nk−1.
These equations expand to p2

k,1 −wk,1 − 2ck · pk,1 = · · · =
p2
k,nk
−wk,nk−2ck ·pk,nk . Letting hk = (p2

k,1−wk,1)/2−
ck · pk,1, we conclude that all lifted points (pk,i, (p

2
k,i −

wk,i)/2) lie on the plane z = ak x+ bk y + hk. The segment
tuple (ak, bk, hk) parameterizes weights and vertex locations
on the boundary Sk; hk is called the segment plane offset.

• Two segments sharing the same supported vertex must also
share the same segment plane offset.

• (ak, bk) is actually a vertex in the power diagram. For a bound-
ary primal edge e connecting to two unsupported vertices,
connecting the circumcenter of its adjacent face to (ak, bk)
determines the dual edge e∗.

These constraints similarly apply to vertices on holes. There is one
exception. When a hole has one or zero supported vertices, the
corresponding segment has only one or zero end points. In this case,
a single segment tuple parameterizes weights and locations of all
vertices on the hole.

Computing the 3D mesh We also want to perturb self-supporting
surfaces to explore their neighboring space. One possible method
to do this is to first modify the vertices of the reciprocal diagram
without considering the constraint of edge parallelism in the primal
diagram, and then to apply this constraint by minimizing the change
in force densities via an iterative algorithm [Rippmann et al. 2012].
The self-supporting surface is finally computed by solving Eq. (2).
This method fixes the primal diagram’s edge connectivity. Our
approach using regular triangulation lets us edit weights and segment
tuples freely while preserving equilibrium. Edge connectivity varies
naturally as those weights change.

Given a set of 2D points with weights (pi, wi) that satisfy bound-
ary conditions, boundary polylines, and the 3D coordinates of all
supported points, we compute the corresponding self-supporting
polyhedral mesh as follows:

1. Create a 2D initial triangulation connecting points and boundary
lines via constrained Delaunay triangulation [cga ].

2. Apply the edge flipping algorithm (see Section 3.2) to convert it
to a regular triangulation. The result serves as the primal diagram.

3. Construct its dual. For each triangular face of the primal diagram,
compute its weighted circumcenter. This gives the 90◦-rotated
reciprocal diagram.

4. Compute force densities via the edge length ratio in Eq. (3).
5. Solve the linear system in Eq. (2) by sparse LU decomposition to

find the heights of unsupported vertices.

Hidden vertices can appear when some weights have especially
small or large values relative to the rest. This wastes degrees of
freedom: more hidden vertices lead to a lower-resolution mesh. The
presence of hidden vertices is efficiently detected during the edge
flipping algorithm.

4 Self-supporting geometry processing

The discrete differential geometry of self-supporting surfaces is
studied in [Vouga et al. 2012]. Polyhedral stress potential plays an
important role. We review and relate it to regular triangulation in Sec-
tion 4.1, and then present our methods for self-supporting smoothing
and remeshing in Sections 4.2 and 4.3. Smoothing changes both
the stress potential and the shape of the result, while remeshing
preserves shape while improving mesh topology to better match the
stress distribution.
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Figure 5: Smoothing results on a self-supporting surface with supported boundary. In this example, H=1 and all Fi=0.03. Spikes in the
initial surface (a) result from variations in the size of power cells. The result of our smoothing method after 1, 5, 15, 35 iterations is shown
in b, c, d, e respectively, with corresponding reciprocal diagrams. Simple averaging of weights via w′i = (

∑
j∼i wj)/(

∑
j∼i 1) is shown

in (f). Such averaging does not converge and even after 500 iterations fails to eliminate all the rough edges and spikes (dashed red boxes).

4.1 Polyhedral stress potential

The polyhedral stress potential Φ is the discrete analog for polygonal
meshes of the continuous (Airy) stress potential for a smooth self-
supporting surface [Fraternali et al. 2002; Fraternali 2010]. Φ is
represented as a convex polyhedral mesh with 3D vertices (pi,Φi)
and edge connectivity identical to the self-supporting meshM. A
face of Φ lies on the plane z = αx + β y + γ where (α, β) is
the dual vertex in the 90◦-rotated reciprocal diagram. Φ is related
to the reciprocal diagram and force densities: ‖e∗ij‖ = rij‖eij‖
represents the jump in Φ’s derivative when crossing an edge [Vouga
et al. 2012].

We can construct Φ based on a regular triangulation and power
diagram. Lifting a primal face (i.e. a face in the regular triangulation)
4pipjpk yields a 3D triangle through p̃i, p̃j , and p̃k. It is easy to
verify that this face satisfies the plane equation z = cx x+ cy y+ γ
where (cx, cy) is the triangle’s weighted circumcenter (i.e. a vertex
in the power diagram). Φ is the piecewise union of all such lifted
triangles. It can be regarded as a piecewise-linear discretization
of the continuous locally convex function Φ(x, y) = (x2 + y2 −
w(x, y))/2, where w(x, y) is a continuous weight function.

4.2 Shape smoothing

Large variations in reciprocal cell size tend to produce a “rough”
mesh with spikes and creases. Direct smoothing, such as by ap-
plying the Laplacian operator on vertices, does not respect the self-
supporting property. We present a novel method that effectively
smooths self-supporting meshes. To do this, we measure curvature
and try to hold it constant.

The isotropic mean curvature of a self-supporting surface
with respect to its stress potential is defined as Hrel(vi) =
∆M(pi)/∆Φ(pi) [Vouga et al. 2012], where ∆ is the (discrete)
Laplacian operator. The notationM(p) represents the height func-
tion of the meshM and vi = (pi,M(pi)) = (pi, zi) one of its
3D vertices. The curvature can be expressed asHrel(vi) = 2Fi/Ai

where Ai is the area of the power cell associated with pi. When
Hrel is constant everywhere, we call the resulting surface constant
isotropic mean curvature (CIMC) with respect to Φ. We conclude
that a self-supporting triangular surface is CIMC if and only if

2Fi = AiH (6)

at all vertices vi. The constant H represents the mean curvature.

Given a polyhedral self-supporting surfaceM parameterized by a
regular triangulation, a curvature constant H , and a set of vertical
loads Fi on vertices, we develop the following method to evolve
M to an CIMC surface by incrementally updating weights. The
xy-coordinates of vertices remain fixed through the iteration to
preserve the original 2D design. The iteration produces much more
uniformly-sized reciprocal cells and thus a smoother self-supporting

mesh result. It evolves power diagram weights and updates the
mesh using the method described in Section 3.4 (“Computing the
3D mesh”).

Since 1
4
(?1)ij (‖eij‖2 −wj +wi) is the signed area of the triangle

formed by pi and the two weighted circumcenters of faces adjacent
to edge eij , it is not difficult to show that

4Ai =
∑
j∼i

(?1)ij ‖eij‖2 −
∑
j∼i

(?1)ij (wj − wi) (7)

=
∑
j∼i

(?0)ij ‖eij‖2 +
∑
j∼i

[
(?1)ij + (?0)ij

]
(wi − wj)

Here (?0)ij , 1
2
(cotαikj + cotαjli) is the cotan Laplacian op-

erator (refer to the inset in Prop. 1) and (?1)ij is the Hodge star
operator previously defined in Eq. (5). Applying Newton iteration
on the equality constraint in Eq. (6) yields the following update rule
for the vertex weight wi:

w′i = wi + λ

Ei −
∑
j∼i

[
(?1)ij + (?0)ij

]
(wi − wj)∑

j∼i

[(?1)ij + (?0)ij ] +
∑
j∼i

∂wi(?
1)ij(wi − wj)

.

(8)

where Ei = 8Fi/H −
∑

j∼i(?
0)ij ‖eij‖2 and λ is the damping

parameter with initial value 1. Iteratively applying this formula to
each vertex yields a progressively smoother self-supporting mesh.2

Our implementation currently fixes the weights at boundary vertices.

Hidden points may appear as the iteration proceeds. We do a simple
adjustment after each iteration to handle them. It finds the triangle
in which the hidden vertex lies and resets its weight so that its lifted
point lies exactly on the corresponding lifted triangle.

The above method does not prevent changes of mesh topology which
may be undesirable in some applications. λ can be decreased until
no edge swap is detected when computing the regular triangulation.

If H is not specified, we can estimate it by the median curvature
value from {2Fi/Ai}ni=1. Fig. 5 shows the results of our weight
updating scheme; a few iterations significantly reduce spikes and
creases.

4.3 Shape remeshing

The force distribution of a self-supporting structure at equilibrium
depends on the topology of its primal diagram [Block 2009, Chap-
ter 4]. An arbitrary mesh can greatly exaggerate force densities. We

2Updating the weights can alter the connectivity implied in j ∼ i and
changes the evaluation of Hodge star and Laplacian edge operators in subse-
quent iterations. The regular triangulation and its dual needs to be recom-
puted after each iteration.



seek a discretization that provides better guidance about the strength
and load capacity of a smooth surface structure. Our remeshing
method improves the accuracy of stress estimation and typically
reduces the magnitude of force density. This avoids overdesign and
allows a better tradeoff between strength and expense in the choice
of building material.

We observe that a major source of error in stress and force density
approximation is the fact that the stress potential has been polygo-
nally discretized. Our method works by minimizing the difference
between the polyhedral stress potential Φ and a smooth version of
that same function, Φ0. It comprises the following two steps.

1. Stress potential estimation A self-supporting surface mesh
M is specified as input. If a smooth target stress potential Φ0 is not
specified directly, we can define it given per-vertex weights onM
via

Φi , Φ(pi) , (x2
i + y2

i − wi)/2. (9)

Per-vertex weightswi can be computed fromM using the procedure
in Section 3.4. We then employ modified butterfly subdivision [Zorin
et al. 1996] to define a smoother mesh Φ0 that interpolates these
discrete values Φi. Our implementation subdivides the discrete
stress potential twice and uses that result to evaluate Φ0.

Weights can then be computed from the smooth potential Φ0 at any
xy-location by evaluating

w0(x, y) , x2 + y2 − 2 Φ0(x, y). (10)

2. Discretization error minimization We measure error from
stress potential discretization defined as

E ,
∫

Ω

|Φ(x, y)− Φ0(x, y)| dx dy, (11)

where Ω is the 2D domain (footprint) of the mesh. Since the vertices
of Φ are sampled from Φ0 and Φ0 is (locally) convex, Φ is always
above Φ0 in general and the absolute value operator in E can be
removed. E simplifies to [Chen and Xu 2004]:

E =
1

n+ 1

∑
i

Φ0(pi)|Ωi| −
∫

Ω

Φ0 dxdy. (12)

Ωi denotes the one-ring of triangles around pi; |Ωi| denotes its area.
n is the number of vertices ofM. If the triangulation of the mesh is
optimal in the sense of minimizing E, then for an interior vertex pi,
following Chen’s and Xu’s result [2004, Theorem 3.5], we have

∇E(pi) = − 1

|Ωi|
∑
4j∈Ωi

∇pi |4j |
∑

pk∈4j ,pk 6=pi

Φ(pk)

 ,

(13)

where 4j ∈ Ωi denotes the j-th triangle in the i-th one-ring. In-
spired by the approach presented in Alliez et al. ’s work [2005], we
define an update rule for each vertex by enforcing∇E(pi) = 0:

p′i =

∑
4j∈Ωi

|4j | c4j∑
4j∈Ωi

|4j |
+
∇piw0(pi)

2
, (14)

where c4j is the weighted circumcenter of 4j . The equivalence
of ∇E(pi) = 0 and Eq. (14) can be verified by substituting the
formula for weighted circumcenters in terms of power weights.

Based on these results, our iterative remeshing method works as
follows.

(a) For every interior vertex pi of M′, update its position by
Eq. (14).

(b) Update all weights by w′i ← w0(pi).
(c) Update the regular triangulation ofM′. Sincewi are interpolated

from the locally convex function Φ0, no hidden points appear.
(d) Measure the maximal movement of ‖p′i − pi‖+ ‖w′i − wi‖. If

greater than a threshold 10−4 L where L is the diagonal length
of the bounding box of the primal diagram, goto (a), otherwise
goto (e).

(e) Compute the z-coordinates ofM by solving the vertical equi-
librium constraints. To assign vertical loads on unsupported
vertices, we first construct a piecewise-linear load distribution
function F(x, y) from the initial triangle meshM0. It associates
a load density per area (pressure) of F 0

i /A(p0
i ) to each vertex p0

i

where A(p0
i ) is the projected 2D area of the one-ring region of

p0
i . A load of A(pi)F(pi) is then assigned to vertex pi during

the remeshing iteration. This method preserves the initial load
distribution.

Fig. 6a shows a self-supporting mesh having a grid layout, which
yields a “polarized” distribution of force densities. This example
assumes an analytic stress potential, Φ(x, y) = x2 + 5y2 + xy, so
that power weights are known at any vertex location. Fig. 6b&c
shows two remeshing results using the analytic stress potential Φ
and the estimated version Φ0, respectively. Our method produces
a more balanced distribution of densities (encoded by edge width)
and reduces the average force density by 24% (b) and 25% (c).
Fig. 7 shows another remeshing example where the stress potential
is estimated from the initial mesh (left) using modified butterfly
subdivision. The remeshing result (right) better approximates the
estimated stress potential and reduces average force density by 10%.

Our remeshed result also yields a more accurate stress distribution
compared to an underlying smooth surface, as shown in Fig. 8. This
example assumes an analytic form for the self-supporting surface,
s(x, y) = (−2x2 − 4y2 − xy + 1)/4, and its stress potential,
Φ(x, y) = (x2 + y2)/2. The stress tensor σ(x, y) can also be com-
puted analytically; see the derivation in [Vouga et al. 2012, Sec 2.1].
We estimate face stress tensors σf from the primal and reciprocal
diagrams and compute their deviations from the true stress tensor
σ(x, y) using the Frobenius norm. Average errors are weighted
by triangle area. The formula for computing face stress tensors
is provided in a supplement. We note that the analytic Φ is only
used for computing the ground truth stress tensor. Our remeshing
is based on stress potential estimated from the initial mesh.

Remark 2. Our remeshing technique is actually a generalized
version of optimal Delaunay triangulation (ODT) [Chen and Xu
2004; Alliez et al. 2005]. Eq. (14) generalizes the update for-

(a) (b) (c)

Figure 6: Remeshing result. An initial self-supporting mesh and
its reciprocal diagram are shown in (a). Using the analytic form
of the stress potential, our remeshing result after 100 iterations
is shown in (b). (c) shows our remeshing result using the stress
potential estimated from (a). Edge thickness encodes force density;
histograms of force densities are plotted above the meshes.



Figure 7: Remeshing comparison. Left: a self-supporting mesh
with two supported holes designed by our method as described in
Section 5. The input primal mesh is a grid-like triangle mesh. Right:
our remeshing distributes force density more evenly and reduces
its largest magnitudes. Edge thickness encodes force density; the
histograms of force densities are plotted above the meshes.

max = 5.479 avg = 0.472 max = 1.329 avg = 0.298

Figure 8: Stress tensor comparison based on an analytic self-
supporting surface. Left: initial mesh. Its primal mesh is computed
by unstructured triangulation of the given polygonal domain. Right:
remeshed result. Maximum and average deviations from the true
(smooth surface) stress tensor are shown below the mesh. Remeshing
provides a more accurate stress estimate.

mula for ODT where w0 vanishes and the weighted circumcen-
ter degenerates to the circumcenter of the primal triangle. It
can be used to remesh a 2D region equipped with an arbitrary,
anisotropic metric ∇2f(x, y) where f is a convex function. ODT
fixes this function as f(x, y) = 1

2
(x2 + y2). We simply update

vertex positions using Eq. (14) iteratively with the weight function
w(x, y) = −f(x, y) + 1

2
(x2 + y2).

5 Self-supporting surface editing

The regular triangulation provides a convenient parameterization for
interactively creating and editing self-supporting surfaces.

Manipulating weights We provide
a simple UI to directly control weights,
represented by circles centered at ver-
tices. The user selects a circle associ-
ated with one vertex pi∗ and changes
its radius, corresponding to the square
root of its weight. Height varies in-
versely with weight, falling when it
rises, and rising when it falls, as a re-
sult of the vertical equilibrium con-
dition (Eq. (2)). Weights of nearby
vertices are also modified according
to their distance to pi∗ , via a sim-
ple exponential falloff in weight change: ∆w(p) , exp(−(p −
pi∗)

2/σ) ∆w(pi∗). After updating the weights, a new self-
supporting surface can be computed by solving for vertical equilib-
rium with the vertical loads using Eq. (2). Force densities rij in
these equations are determined from the weights via Eqs. (3) and (5).

Figure 9: Editing a sea-shell-like self-supporting mesh. The edit
increases weights on the red vertices. Unsupported boundary curves
are colored in orange in the middle inset. Vertical loads are kept
constant. Upper: initial mesh with its primal and dual diagrams.
Lower: resulting mesh after editing and two-steps smoothing with
its primal and dual diagrams.

If the mesh topology must be fixed during editing, we constrain the
magnitude of the weight change via the following QP problem:

arg min
w1,...,wn

n∑
i=1

(wi − ŵi)
2, (15)

Subject to (?1)e > 0 ∀ e.

where ŵi represents the desired weight after editing. The Hodge
star inequalities preserve mesh topology. If unsupported boundary
vertices exist, their segment plane constraints are appended to the
edge inequalities: (x2

k,i + y2
k,i−wk,i)/2 = ak xk,i + bk yk,i + hk.

Segment plane coefficients ak, bk, hk can be treated as unknown
variables or fixed. Any boundary conditions and any desired vertex
weights can be directly manipulated by the user.

The inset shows an example. The upper image is the initial self-
supporting mesh. By increasing the weight of the red vertex and
decreasing weights of the two yellow ones, we obtain the deformed
self-supporting mesh shown on the bottom.

Fig. 9 shows weight editing on a sea-shell-like self-supporting mesh.
The geometry in this example is not a height field globally; its primal
diagram contains overlaps. A self-supporting result is correctly
generated using our extended edge flipping algorithm.

Fig. 10 shows an example where we manipulate segment tuples
directly and keep the connectivity of vertices. As shown in the upper
power diagram, forces at unsupported boundary vertices (colored
in orange) are much larger than interior forces. This happens be-
cause the dual vertices (colored in green) lie too far away from most
power cells. We can directly move them towards interior power
cells along the red arrows shown. Note that these dual vertices are
the orthogonal projection of the segment tuples {(ak, bk, hk)}3k=1

(see “Boundary conditions” in Section 3.4). Moving the green dual
vertices is achieved simply by specifying the points {(ak, bk)}. To
preserve connectivity, we solve the QP problem defined by Eq. (15)
with h1, h2, h3 added as variables to the set of weights. We append
an additional term

∑3
k=1(hk − ĥk)2 to the objective function pe-

nalizing the change in hk; ĥk is the value before editing. The edited
result (lower part of figure) shows that forces on the boundary are
reduced, as expected.
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Figure 10: Unsupported boundary edit. Upper: an initial self-
supporting mesh and its power diagram. Orange circles indicate
unsupported boundary vertices. All vertical loads are kept constant.
Lower: the edited self-supporting mesh and its power diagram. The
power diagram shows that this edit reduces large forces on the
unsupported boundary.

Creating sharp features Sharp surface features can be created by
increasing or decreasing weights by the same amount over a feature
curve in the 2D domain. We then fix these weights and minimize
Eq. (15). Fig. 11 shows a result.

Manipulating vertex positions and mesh topology Changing
vertex positions as well as weights provides greater freedom. The
connectivity of the triangle mesh responds through the regular trian-
gulation. We note that if an unsupported boundary vertex moves to
become “convex”, it must be supported to avoid horizontal disequi-
librium.

Directly specifying mesh topology breaks horizontal equilibrium un-
less new weights are computed. To find them, we can again solve the
QP problem in Eq. (15) with Hodge star inequality constraints. But
this solver can fail: not all triangle meshes are regular [Aurenham-
mer 1987a]. A small random jitter on 2D vertex positions sometimes
resolves the problem; otherwise, the topology operation should be
rejected. This is not a problem with our parameterization, but rather
the unavoidable price for directly manipulating mesh topology in
the space of self-supporting surfaces.

6 System Performance

Interactive editing depends on QP solution when the mesh topol-
ogy is specified. For a typical mesh with about 700 vertices, a QP
problem can be solved in about 0.2 seconds using the OOQP li-
brary [Gertz and Wright 2003], on a desktop PC with a 2.83 GHz
Intel Core Quad and 8 GB of RAM. This performance is acceptable
for interactive design. If no predefined mesh topology is enforced,
editing is possible in milliseconds; the computation involves only
edge flipping to compute the regular triangulation and sparse linear
equation solution to satisfy vertical equilibrium.

For self-supporting smoothing and remeshing, iterations to update
weights and vertices are performed efficiently and only require
computation of the regular triangulation and Hodge star edge
operators. A QP problem is solved once in remeshing to generate
the polyhedral stress potential; its performance depends on the size
of the underlying mesh.

Figure 11: Sharp feature creation. The upper image shows a pri-
mal diagram and its corresponding self-supporting surface. All the
weights are zero and the boundary vertices are supported. vertical
loads keep constant. The lower left image shows how weights are
changed on two feature lines (drawn in black). Circle radii corre-
spond to the square root of the weights. The resulting mesh exhibits
creases as shown in the lower right.

Figure Vertices Edges Iterations Time(seconds)
Fig. 5 172 468 35 0.05
Fig. 6b 289 800 90 0.3
Fig. 6c 289 800 100 0.1
Fig. 7 287 784 180 0.9
Inset in Section 5 758 2150 - 0.2
Fig. 9 180 483 - 0.03
Fig. 10 687 1911 - 0.2
Fig. 11 289 800 - 0.1
Fig. 1-right 758 2150 5 0.3

Table 1: Statistics and timings.

We list timing and other statistics from our experiments in Table 1.

7 Conclusion

A 2D regular triangulation provides a natural way to represent a 3D
self-supporting mesh. Our parameterization has three advantages
over previous ones. It requires fewer variables (a weight per vertex
rather than a force density per edge). It encodes edge connectivity
only implicitly and so lets it adapt. And it preserves equilibrium by
construction.

Using this representation, we present new ways to smooth and opti-
mize force density on a self-supporting mesh. We show how to
directly manipulate our representation to interactively edit self-
supporting surfaces. Our remeshing procedure provides a more
faithful estimation to the capacity of self-supporting surfaces.

Our approach also inherits a basic limitation of thrust network anal-
ysis — it cannot handle non-manifold structures. It also neglects
external horizontal forces. Study of a more generalized regular tri-
angulation and its dual may lift some of these restrictions. We are
interested in further investigation of discrete geometry processing
for self-supporting surfaces and interactive design of stress potential.
Exploring the design space of self-stressed surfaces under both ten-
sion and compression is another area for future work suggested by
the generalized power diagram.
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