FAKULTAT
FUR INFORMATIK for (S te |
Faculty of Informatics y I

Bound Analysis of Imperative
Programs with the
Size-change Abstraction

Florian Zuleger, TU Vienna
SAS, Venice, 16.09.2011

Joint work with
Sumit Gulwani, Microsoft Research
Moritz Sinn, Helmut Veith, TU Vienna

Resource Bounds

Programs consume a variety of resources:
— CPU time, memory, network bandwidth, power

Bounding the use of such resources is important:
— Economic incentives
— Better user experience
— Hard constraints on availability of resources

Program correctness depends on bounding
guantitative properties of data:

— Information leakage, Propagation of numerical errors

i The Reachability-bound Problem

(Gulwani, Zuleger, PLDI 2010)

void main (int n, C[] temp) {

Given a control int i := 0;
: .. while (i < n) {
location [inside int j o= itl:
while (J < n) {
a program P. it (nondet(y) {
[: temp[n] := new CQ;
How often can [be j--; n—; }
.. .. J++: }
visited inside P? i++: ¥
}

Goal: A symbolic bound Bound(/) in terms of the
inputs of P.

Bound Computation and Termination

A bound for a loop implies the termination of the loop.

= Computing bounds is more difficult than proving
termination!

Can successfull techniques for termination analysis be
extended to bound analysis?

What about
e Size-change Abstraction (Ben-Amram, Lee, Jones, 2001)

e Transition Invariants (Podelski, Rybalchenko, 2004)?
Not so easy...

N

Outline

Introduction
Comparing SCA with Transition Invariants

SCA solves Technical Challanges
How to apply SCA on Imperative Programs

Ty
Size-change Abstraction (SCA)

void main (int n) {

[
Int x=n; Int y=n;
[while (x>0 A y>0) {
1T (nhondet())

X——, Ps
else
Yo p, =X>0ANy>0AX-1=x"ANy=y’

p, =X>0ANYy>0Ax=x"ANy1l=y’

Ty
Size-change Abstraction (SCA)

void main (int n) {

[
Int x=n; Int y=n;
[while (x>0 A y>0) {
1T (hondet())

X——7; a(p.)
else
Y- a(p,) =x>0Ay>0AX>X"ANy=y
1 a(p,) =x>0Ay>0Ax=x"Ay>y’

Predicate abstract domain consisting of
inequalities between integer variables (primed
and unprimed)

Ty
Size-change Abstraction (SCA)

void main (int n) {

[
Int x=n; Int y=n;
[while (x>0 A y>0) {
1T (hondet())

X——7; a(p.)
else
Y- a(p,) =x>0Ay>0AX>X"ANy=Yy
1 a(p,) =x>0Ay>0Ax=x"Ay>y’

Finite powerset abstract domain whose base
elements are conjuncts of inequalities between
integer variables (primed and unprimed)

Ty
Size-change Abstraction (SCA)

void main (int n) {

[
Int x=n; Int y=n;
[while (x>0 A y>0) {
1T (nhondet())

X==3 a(p,)
else
Y- 0 —z 0’ 0 i_ 0’
} a(p,) = é X — X" a(p,) = é X :_ x”
<Y—=Y <Yy

Control flow graph whose edges are labeled by
size-change graphs

T
SCA iIs a Success Story

e Termination is decidable in PSPACE
(Ben-Amram, Lee, Jones, 2001; Ben-Amram,2011)

e Complete method for extracting ranking functions
on terminating instances (possibly exponentially
large)

* SCA based termination analysis is implemented in
widely-used systems such as ACL2, Isabelle,
AProVE

 The industrial-strength tool ACL2 can automatically
prove the termination of 98% of the functions in its
database

Good Computational Properties

* Enjoys built-in disjunction.

* Transitive hulls can be computed without
overapproximation techniques such as
widening.

* Transitive hulls preserve termination.
e Abstraction can be done by SMT solver calls.

= Potential for automation

Transition Invariants

 Have been developed as adaption of SCA to
Imperative programs

 Experimentally proven useful on device drivers
in the Terminator tool; see Cook et al. 2006

* More general than SCA; for formal comparison
see Heizmann et al. 2011

Transition Invariants

void main (int n) {

[
Int x=n; Int y=n;
[while (x>0 A y>0) {
1T (nhondet())

X——, Ps
else

y—m: p, =X>0ANy>0AX-1=x"ANy=y’

1 p, =X>0ANYy>0Ax=x"ANy1l=y’

Termination proof: (p, Up,)* CT,UT,,

where T,=x>0AXx" =x-1
and T,=y>0Ay' =y-1

Transition Invariants

void main (int n) { [
Int x=n; Int y=n;
[while (x>0 A y>0) {
1T (nondet()) 9
X--, Ps
Well-founded p, =X>0ANy>0AXx-1=x"Ay=y’
relations p, EX>0ANYy>0Ax=x"ANy-1l=y

Terminat. 1 proof: (p, Up) CT,UT,,

where T, =x>0AXx" =x-1
and T,=y>0Ay' =y-1

Transition Invariants

void main (int n) { /
Int x=n; Int y=n;
[while (x>0 A y>0) {
1T (hondet())
X--3 -
X and y are
Well-founded p, =x>0Ay>C local ranking
relations p, =x>0Ay>C functions

Terminat. 1 proof: (p,Up.)* C ., UT,,

where T, =x>0AXx" =x-1
and T,=y>0Ay' =y-1

Transition Invariants

void main (int n) {]
Int x=n; 1nt"
I: while (x>0 A Transitive hull
if (nondet in the concrete

X-=;

x and y are
Well-founded p, =x J2Ay>C local ranking
relations p, =x>)IAy>C functions

Terminat. 1 proof: (p,Up.)* C ., UT,,

where T, =x>0AXx" =x-1
and T,=y>0Ay' =y-1

Transition Invariants

void main (int n) {

[
Int x=n; 1Int y=n;
[while (x>0 A y>0) {
1T (nhondet())

X——, Ps
else {

X = N,

y--: }+ }
Termination proof: (p, Up,)* CT,UT,,

where T,=x>0AXx" =x-1

and T,=y>0Ay' =y-1

p, =X>0ANYy>0AX-1=x"Ny=y’
p, =X>0ANy>0ANn=x"Ay-1l=y’

Transition Invariants

voild mgsn fEnt o 1 /
int We reset
[whil X to n! 9
I \ A e\/J
X, P
else |

p, =X>0ANYy>0AX-1=x"Ny=y’
p, =X>0ANy>0ANn=x"Ay-1l=y’

X = N,
y--: }+ }
Termination proof: (p, Up,)* CT,UT,,
where T,=x>0AXx" =x-1
and T,=y>0Ay' =y-1

Transition Invariants

Void ma;n £ a nt N\ r 7

int We reset Same termination
[z whil X to n! ' proof!
i \ A w\JJ -~
X, P-
else |

Y = n- C =X>0AYy>0AX-1=x"ANy=Y'
) ’ L =Xx>0Ay>0An=xAy1l=y
y--; } } P

Termination proof: (p, Up,)* CT,UT,,
where T,=x>0AXx" =x-1
and T,=y>0Ay' =y-1

Transition Invariants

Void ma;n £ a nt N\ r 7

int We reset Same termination
[z whill X to n! ' proof!
1. A e\ ~_
X, P-
else | . ‘
X I= n; pl ii:g/)y>0/\€ecj\se\ /?\//,
y--; }+ } © ‘QO\mp

Size-change Abstraction (SCA)

void main (int n) {

InNt x=n; Int y=n;
[while (x>0 A y>0) {

1T (nondet())

X--;
else
Y——,

}
a(p,) =x>0Ay>0

AX>X ANy=y

a(p,) =x>0Ay>0

AX=X"Ny>y’

void main (int n) {
Int x=n; Int y=n;
[while (x>0 A y>0) {
1T (nondet())
X——,
else {
X I= n;

y--: } }

a(p,)=x>0Ay>0
AX>XANy=y

a(p,) =x>0Ay>0
An=x"ANy>y’

Ty
Size-change Abstraction (SCA)

void main (int n) { void main (int n) {
InNt x=n; Int y=n; INt Xx=n; 1Int v—~
[- while (x>0 A y>0) { [while 7~ rnat \
- C
1T (nondet()) e a\os’ﬂa
- L
else . for ™ (%L
ore \© g * A\
\@e@Sm —\7 V‘ =N ’
SCh ENEAVE y-=3 } }
ASAe a(p,)=x>0Ay>0
Ao XANYy=Y AX>XAy=y
) =EX>0Ay>0 a(p,) =x>0Ay>0

AX=X"Ny>y An=x"ANy>y’

Ty
Bounds by SCA

a(p,)=x>0Ay>0 a(p,)=x>0Ay>0
AX>X ANy=y AX>X Ay=y’

a(p,) =x>0Ay>0 a(p,) =x>0Ay>0
AX=X"Ny>y’ An=x"Ay>y’

Our bound algorithm for SCA:
e uses only the abstracted transitions
e discovers x and y as norms by heuristics

x and y stay constant on the only x is increased on
respective other transition the other transition

Our tool computes the Our tool computes the
ranking function x+y, which ranking function (x,y), which

results in Bound(/) =2n results in Bound(l) = n?

= W

Outline

Introduction

Comparing SCA with Transition Invariants
SCA solves Technical Challanges

How to apply SCA on Imperative Programs

SCA solves Technical Challanges

We do not use SCA because we like the
formalism, but because we believe that

SCA is the right abstraction for the bound
analysis of imperative programs.

Technical Challenges

|. Bounds are often non-linear expressions

Il. Proving a bound often requires disjunctive
Invariants

Ill. Bounds cannot be predicted by templates

V. How to exploit program structure for bound
computation is unclear

Ty
Bounds by SCA

a(p,)=x>0Ay>0 a(p,)=x>0Ay>0
AX>X ANy=y AX>SX ANy=+*
a(p,) =x>0Ay>0 a(p,) =x>0" es
AX=X"Ny>y \
Our bound ale~" d by temp {02
. edicte neM
ounds € \oca™ 2
11l B AOF S _micreased on
E)Ct\‘ac O\“\d the other transition
\
%\0‘Oa .>>the Our tool computes the
.5 tunction x+y, which ranking function (x,y), which

results in Bound(/) =2n results in Bound(l) = n?

Ty
Bounds by SCA

a(p,)=x>0Ay>0 a(p,)=x>0Ay>0
AX>X ANy=y A X>x !
a(p,) =x>0Ay>0 a(p,) = e
AX=XNy>y eXpreSS‘O \,66
Our bor = ,\-nedr XS de(\
re Of e o d oV st
\ BOUnd d o\ ‘00\) Compute
| er POV Jariant> -u on
UpP \O‘Oa\ e _er transition

X[Our tool computes the
205 ~u X+y, which ranking function (x,y), which
~w>In Bound(l) =2n results in Bound(l) = n?

Ty
Bounds by SCA

a(p,)=x>0Ay>0 a(p,)=x>0Ay>0
AX>XNy=y’ AX>X Ay=v
a(p,) =x>0Ay>0 a(p,) =x>0 A _
AX=X"Ny>y’ . -unCtNe
s dis)

re
© o ound o

\O0
a0
PrO\“ atn €
1. armntS e o) .reased on
inv £ ana N e other transition
. . \NC

Our tool computes the

ra _ .unction x+y, which ranking function (x,y), which

results in Bound(/) =2n results in Bound(l) = n?

= W N

Outline

Introduction

Comparing SCA with Transition Invariants
SCA solves Technical Challanges

How to apply SCA on Imperative Programs

el How to apply SCA on Imperative
Programs

|. Transition System Generation by Pathwise
Analysis

Il. Heuristics for Extracting Norms

Ill. Dealing with Control Structure of Loops by
Contextualization

B4 Transition System Generation by
Pathwise Analysis

[y p, =i<nAi‘=i+1Aj =0
P Tpg Py po =J>0ATT=i-1
p, =<0
z

@ p, Ei<nAI'=i+1A[J=j+1

Py

Goal: Transition System for [,
ldea: Enumerating all paths from [, to [,

B4 Transition System Generation by
Pathwise Analysis

[y p, =i<nAi‘=i+1Aj=0
2 P>) Ps po =J>0ATT=i-1
py, =10
@ p, =i<nAi'=i+1Aj=j+1

We first summarize the inner loop.

el Transition System Generation by
Pathwise Analysis

ly p, =i<nAi‘=i+1Aj=0
P4 sz 103 Py EJ:>O/\il=i_1
py, =10
l

@ p, Ei<nAI'=i+1A[J=j+1

Py
We first summarize the inner loop.

Using this summary we compute a
transitition system for the outer loop.

Transition System of the Outer Loop

[y p, =i<nAi‘=i+1Aj=0

p, =j<0
l2 p4aEil=i/\jl=j
Summary[|2] = {1040/ 104a} Py = i<NAiI > /\jl > |

We obtain Summaryl(l,] by:

1. Recursively computing a transition system for the
inner loop and size-change abstracting it.

2. Computing the transitive hull using SCA.

Transition System of the Outer Loop

p, =i<nAi‘=i+1Aj=0
< > p, =i<0

Pa=1=1N] =]
Summary[lz] = {,04a,

We obtain a transition system for |, by enumerating all
paths using the different disjuncts of the summary:

{p10p4ao ’ plop4(lo’03’
P10 L1 © Lo P, 00,0 Pyt

el Transition System Generation by
Pathwise Analysis

[y p, =i<nAi‘=i+1Aj=0
P Tpg Ps po =J>0ATT=i-1
py, =10
l2 p4aEil=i/\jl=j
Summary[|2] = {1040/ 104a} Py = i<NAI>IA] >

We obtain a transition system for |, by enumerating all
paths using the different disjuncts of the summary:
{false, i<nAi'=i+1Aj=0,

i<nAiI">iNj">0, false}
={i<nAi'=i+1Aj=0,i<nAiI">iAN] >0}

Discussion of Pathwise Analysis

e Pathprecise reasoning: abstraction or
infeasibility analysis of complete paths

e Leverages the progress in SMT solver
technology to static analysis

e Generalization of classical SCA

e More precise than blockwise analysis

Discussion of Pathwise Analysis

* Pathprecise reasoning: abstr~-" e for
ructu!

el How to apply SCA on Imperative
Programs

|. Transition System Generation by Pathwise
Analysis

Il. Heuristics for Extracting Norms

Ill. Dealing with Control Structure of Loops by
Contextualization

Norms

Given some transition system, its set of norms is the
union of the norms of all its transitions.

Let p be the formula of some transition.

If the inequality e, > e, syntactically appears in p,
then e;-e, is a candidate for an arithmetic norm.

We check with an SMT solver for each candidate e:
If p = e[X’/X] < e-1, then e is a norm.

Example

This pattern-based technique readily extends to
non-arithmetic norms:

Proof rules for bitvectors and data-structures can be
n-i found in Gulwani, Zuleger, 2010.

I">i+1 A i<n

B4 How to apply SCA on Imperative
Programs

|. Transition System Generation by Pathwise
Analysis

Il. Heuristics for Extracting Norms

Ill. Dealing with Control Structure of Loops by
Contextualization

Contextualization

Computed

transition system:

The first step in bound
analysis is the construction of
a program such that

- every location stores the
information what transition is
executed next, and

- only feasible transitions are
added.

Construction is done by
SMT solver queries.

Contextualization

Contextualized The first step in bound
transition system: analysis is the construction of
ey P a program such that
2 3. P35 P, 4 1 :
Q Q - every location stores the
P3 Py information what transition is

P> Ps P1 executed next, and

'5© s - only feasible transitions are

Q & Q added.
P5 Pe

Construction is done by
SMT solver queries.

DAG of SCCs

The CFG can be decomposed into
its DAG of SCCs.

= Uncovers the control structure
of the loop.

Bounds are computed in two steps:

1. Bounds are computed for every
SCC in isolation

2. These bounds are composed to
an overall bound using the DAG
structure.

Loopus

Built over LLVM Compiler Framework, inputs C source code
Uses Yices solver as the logical reasoning engine.
Aliasing was handled using optimistic assumptions.

4090 of 4302 loops of the cBench benchmark handled in less than
1000 seconds (3923 loops in less than 4 seconds)

Success ratio of 75% for computing loop bounds.
Representative failure cases:

— Insufficient invariant analysis

— Memory updates and pointer arithmetic

— Irreducible CFGs not implemented

— Loops that are not meant to terminate

— Complex invariants would be needed

Conclusion

Size-change Abstraction is the right abstraction
for bound analyis of imperative programs:

 We have given the first algorithm for
computing bounds with SCA

 We have shown how to apply SCA to
Imperative programs

Questions?

	Bound Analysis of Imperative Programs with the�Size-change Abstraction
	Resource Bounds
	The Reachability-bound Problem�(Gulwani, Zuleger, PLDI 2010)
	Bound Computation and Termination
	Outline
	Size-change Abstraction (SCA)
	Size-change Abstraction (SCA)
	Size-change Abstraction (SCA)
	Size-change Abstraction (SCA)
	SCA is a Success Story
	Good Computational Properties
	Transition Invariants
	Transition Invariants
	Transition Invariants
	Transition Invariants
	Transition Invariants
	Transition Invariants
	Transition Invariants
	Transition Invariants
	Transition Invariants
	Size-change Abstraction (SCA)
	Size-change Abstraction (SCA)
	Bounds by SCA
	Outline
	SCA solves Technical Challanges
	Technical Challenges
	Bounds by SCA
	Bounds by SCA
	Bounds by SCA
	Outline
	How to apply SCA on Imperative Programs
	Transition System Generation by Pathwise Analysis
	Transition System Generation by Pathwise Analysis
	Transition System Generation by Pathwise Analysis
	Transition System of the Outer Loop
	Transition System of the Outer Loop
	Transition System Generation by Pathwise Analysis
	Discussion of Pathwise Analysis
	Discussion of Pathwise Analysis
	How to apply SCA on Imperative Programs
	Norms
	How to apply SCA on Imperative Programs
	Contextualization
	Contextualization
	DAG of SCCs
	Loopus
	Conclusion
	Slide Number 48

