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ABSTRACT 

This paper describes an algorithm for making short-term 
route predictions for vehicle drivers. It uses a simple 
Markov model to make probabilistic predictions by 
looking at a driver’s just-driven path. The model is 
trained from the driver’s long term trip history from GPS 
data. We envision applications including driver warnings, 
anticipatory information delivery, and various automatic 
vehicle behaviors. The algorithm is based on discrete 
road segments, whose average length is 237.5 meters. 
In one instantiation, the algorithm can predict the next 
road segment with 90% accuracy. We explore variations 
of the algorithm and find one that is both simple and 
accurate. 

INTRODUCTION 

Predicting a driver’s near-term future path could be 
useful for giving the driver warnings about upcoming 
road situations, delivering anticipatory information, and 
allowing the vehicle to automatically adapt to expected 
operating conditions. This paper presents a prediction 
algorithm trained from a driver’s past history. 
Specifically, we train an n

th
-order Markov model to 

probabilistically predict future road segments based on a 
short sequence of just-driven road segments, usually 1-
10. A sketch of this basic approach appears in Figure 1. 
We show that the resulting accuracy is much better than 
random guessing; for instance, looking at the 10 most 
recent road segments, we can predict the next road 
segment with about 90% accuracy. The algorithm is 
simple enough to be trained and executed on an in-
vehicle navigation computer, and it needs no off-board 
network connection. We tested the accuracy of our 
predictions on GPS data from 100 drivers. 

Our predictions are relatively short into the future, 
varying from a single upcoming road segment (about 
237.5 meters ahead) to 10 segments. The predictions 
include merges and turns at intersections, which are the 
most likely to spur interesting applications. We envision 
applications like: 

 Anticipatory driver warnings 
o Hazardous road conditions 
o Unusually slow traffic 

o Change in speed limit 
o Curve speed warning 
o Change in traffic patterns (e.g. due to 

construction) 
o Lane keeping assistance 
o Lane change prediction and warning 

 Driver information 
o Points of interest 
o Advertising 

 Automatic vehicle behaviors 
o Automatic turn signals 
o Headlight pointing 
o Wireless base station handoff 
o Gradual windshield darkening for expected 

glare 
o Engine load anticipation (e.g. cylinder 

deactivation) 
o Emergency preparation (e.g. pre-braking, 

seat belt tension, head rests) 
 
This paper next describes our experimental GPS data 
and the road representation we used. It continues with a 
description of our prediction algorithm and accuracy 
results. In the results section, we explore how prediction 
accuracy is affected by various alternative training 
options in order to find an instance of the algorithm that 
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Figure 1: Our prediction algorithm looks at a recent 
sequence of road segments to probabilistically predict 
the next segments. 
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is both simple and accurate. 

Previous work in route prediction includes Patterson et 
al. [6] who applied machine learning to GPS data to find 
a person’s frequently visited locations and then inferred 
which one the person was traveling to. In [2], Karbassi 
and Barth predict routes taken by car-sharing vehicles 
going between pre-established stations. Torkkola et al. 
[9] learn frequent destinations and the regularly traveled 
sequence of GPS points between them to predict routes 
for giving traffic advisories. In work by Froehlich and 
Krumm ([1], under submission to SAE Congress), the 
goal is to find a driver’s regular routes and predict which 
one he or she is currently driving. The work in the 
current paper differs from this previous work in that we 
are not concerned with destinations nor with beginning-
to-end routes. Instead, our predictions are free-floating in 
that they are not necessarily dependent on repeated 
routes or destinations. Our Markov model can make a 
prediction based on only a single previous observation of 
a few road segments. 

We also note that the work in this paper is different from 
our previous work on destination prediction [3, 4]. In the 
previous work, our goal was to predict the location of the 
driver’s destination, but not anything about the future 
route. The work in this paper is aimed at predicting 
which roads the driver will drive on next. 

The work most closely related to our work is from 
Simmons et al. [8]. They train a hidden Markov model 
(which is different from our simpler Markov model) to 
predict a driver’s future road segments while 
simultaneously predicting the driver’s destination. We 
will explain the distinctions between their work and ours 
scattered over the remainder of this paper. 

EXPERIMENTAL GPS DATA 

Our prediction algorithm is based on observations of 
where drivers drive measured from GPS receivers. We 
have been gathering GPS data from volunteer drivers in 
our Microsoft Multiperson Location Survey (MSMLS) 
starting in March of 2004. Volunteer drivers are loaned 
one of our 55 Garmin Geko 201 GPS receivers, capable 
of recording 10,000 time-stamped latitude and longitude 
measurements. We instruct drivers to leave the GPS on 
their vehicle’s dashboard, plugged into the cigarette 
lighter for power. On some vehicles, power to the 
cigarette lighter is cut when the vehicle’s key is removed. 
For this reason, we inserted a small wedge holding down 
the GPS receiver’s “on” button to ensure that it always 
turns on when it receives power. Otherwise it would 
remain off without attention from the driver. The GPS 
receivers are set to an adaptive recording mode that 
records more points when the vehicle is moving and 
accelerating. The median interval between recorded 
points is 6 seconds and 62 meters. Although we have 
data from 252 subjects, we chose a subset of 100 
subjects for this study to reduce the computation time 
required for our experiments. 

ROAD REPRESENTATION 

We use a Markov model to predict a vehicle’s near term 
future route. More specifically, we use a discrete Markov 
chain representation (see [7]), which is explained in the 
next section. Applied to our problem, this scheme 
represents the state of the vehicle as being located on 
one of a discrete set of road segments, as shown in 
Figure 2. Road segments come from our digital map 
representation of the road network. Segments terminate 
at intersections, dead ends, and changes in the name of 
the road. For the road segments covered in our study, 
the median length was 237.5 meters (0.15 miles). Our 
100 drivers covered a total of 43,893 distinct road 
segments while under observation. 

We do not attempt to predict where on the road segment 
a vehicle will be, nor do we attempt to predict when it will 
arrive at a road segment. Our goal is predict the chain of 
road segments that a vehicle will next encounter. In this 
way, our predictions show the vehicle’s future path, 
elevation, and turns. 

As described above, our experimental data is a set of 
time-stamped latitude and longitude pairs. In order to 
make predictions about road segments, we need to 
convert this data into sequences of road segments. We 
begin by segmenting the GPS data into discrete trips, 
splitting the sequence at any point with more than five 
minutes between adjacent points in time. This 
sometimes leads to tiny garbage trips due to short bursts 
of GPS data from a parked vehicle. Thus, we filter out 
any trips less than one kilometer (0.62 miles) and any 
trip with less than ten GPS points. We also eliminate any 
trip whose maximum speed is below 25 mph to help 
eliminate walking and biking trips. 

To get road segments from our GPS data, we submit 
each trip to a map matching algorithm we developed [5]. 
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Figure 2: Roads are represented as discrete segments. 
In this example, the ends of the segments are shown 
as dots which mark intersections, name changes, or 
dead ends. 



The basic map matching process is illustrated in Figure 
3. This algorithm matches each GPS point to a road 
segment, taking into account which roads are nearby as 
well as constraints imposed by the connectivity and 
speed limits of the road network. Adhering to these 
constraints significantly reduces nonsense matches that 
come from the inevitable inaccuracies in GPS data. For 
instance, matching to the nearest road without 
constraints sometimes results in a path that jumps 
between parallel, opposing lanes of traffic. Our map 
matching program minimizes these errors. 

After map matching, we process the road segments to 
first eliminate any adjacent repeated road segments. 
These come from having more than one GPS sample on 
the same road segment. We also fill in gaps so the road 
segments for each trip are contiguous. With this 
processing, each trip is represented by a connected 
sequence of road segments with no adjacent repeats. 

One difference between this work and some previous 
work is that we use discrete road segments as the basis 
for our predictions, as was also done in [2]. By using a 
symbol-based description of routes, rather than 2D 
points in terms of latitude and longitude, we are able to 
use a symbol-based predictive method like the Markov 
model, described next. 

MARKOV MODEL 

Our prediction of a vehicle’s near term future route is 
based on its near term past route. We model the 

sequence of traversed road segments as 𝑋 𝑖 , with 𝑖 
representing a discrete time variable and 𝑋 ∙  
representing a road segment (e.g. an integer unique 
among all the road segments). Whenever we want to 
make a prediction, we denote the vehicle’s road 

segments as  … , 𝑋 −2 , 𝑋 −1 , 𝑋 0 , 𝑋 1 , 𝑋 2 , …  , 
where 𝑋 0  is the current road segment, 𝑋 −1 , 𝑋 −2 , 
… are the immediately preceding road segments, and 

𝑋 1 , 𝑋 2 , … are the unknown future road segments 
that we are trying to predict. The road segments are not 
necessarily encountered at even time intervals. The 

discrete time variable 𝑖 serves as an index over the 
segments in the order they are encountered. When the 
vehicle moves to a new road segment, that segment 

becomes the new 𝑋 0 . At any time, we know the 

current road segment 𝑋 0  and the past road segments 

 … , 𝑋 −3  𝑋 −2 , 𝑋 −1   back to the beginning of the 
trip. The unknowns are the future road segments that we 

are trying to predict,  𝑋 1 , 𝑋 2 , 𝑋 3 , …  . 

At any point along a trip, the driver can choose which 
road segment to drive on next. In light of this choice, our 

predictions are probabilistic. For instance, 𝑃 𝑋 1   
represents a discrete probability distribution over all the 
road segments giving which road segment will be 

encountered after the current one, 𝑋 0 . 𝑃 𝑋 2   is the 

distribution for which road segment will be encountered 

after 𝑋 1 , and so on. 

The Markov model gives a probabilistic prediction over 
future road segments based on past road segments. The 
standard, first order Markov model says that the 

probability distribution 𝑃 𝑋 1   for the next road 

segment is independent of all but 𝑋 0 , the current road 

segment: 

𝑃 𝑋 1 |𝑋 0 , 𝑋 −1 , 𝑋 −2 , …  = 𝑃 𝑋 1 |𝑋 0   ( 1 ) 

For a given driver, we can build 𝑃 𝑋 1 |𝑋 0   easily. 

For each road segment 𝑋 0 , we build a histogram of 
which road segments were encountered immediately 
after, and then normalize to get a discrete probability 
distribution. There is a separate probability distribution 
for each road segment that a driver has ever driven on. 

A second order Markov model is sensitive to the two 

most recent road segments, i.e. 𝑃 𝑋 1 |𝑋 −1 , 𝑋 0  . 
We build this model in a similar way, except we create a 
histogram over all two-element, ordered sequences 

 𝑋 −1 , 𝑋 0  . In our results, we check to see if using 

higher order models helps prediction accuracy, which it 
does. In particular, looking at the two most recent road 
segments gives a sense of the direction of travel along a 
road, which helps significantly. For a first order model, 
the direction of travel is not encoded by observing only 
the current road segment. 

The Markov model can be used to predict beyond just 
the next road segment. We can clearly build 

𝑃 𝑋(2)|𝑋 0  , which is the distribution over the road 

segments after the next one, given the current one. We 
can also user higher order models to make these farther 

out predictions, e.g. 𝑃 𝑋 2 |𝑋 −1 , 𝑋 0  . In general, 

we can build an 𝑛𝑡ℎ  order Markov model (𝑛 ≥ 1) to 
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Figure 3: Map matching converts from noisy GPS 
coordinates to road segments (from [5]). 



predict the 𝑚𝑡ℎ  next encountered segment (𝑚 ≥ 1). We 

denote our general 𝑛𝑡ℎ  order model as 

𝑃𝑛  𝑋 𝑚  = 𝑃 𝑋 𝑚 |𝑋 −𝑛 + 1 , 𝑋 −𝑛 + 2 , … , 𝑋 0   ( 2 ) 

In our results, we look at how prediction accuracy 

changes as we increase 𝑛, the number of segments we 
look at into the past (better). We also look at how 

prediction accuracy changes as we increase 𝑚, the 

number of segments we predict into the future (worse). 

We note that the Markov model does not explicitly 
constrain a vehicle to adhere to the connectedness of 
the road network. A trained model could conceivably 
predict that a driver will jump over several road 
segments. However, since the model is trained from real 
data, where such jumps do not occur, the Markov model 
implicitly prevents such nonsense predictions. 

One advantage of probabilistic predictions is that the 
algorithm has a measure of its own uncertainty that can 
be usefully reported to in-vehicle applications. For 
instance, automatically engaging a turn signal might 
depend on near 100% prediction certainty, while 
presenting a point of interest would not require the same 
level of confidence. 

RESULTS 

We tested our prediction algorithm on data from 100 
drivers in our MSMLS study. On average, we observed 
each of the 100 drivers for a total of 12.21 days. In 

testing a given set of parameters, e.g. 𝑚 and 𝑛, we used 
leave-one-out testing, where we trained the Markov 
model with all but one trip and tested it on the remaining 
trip. Doing this once for each trip gives an average 
accuracy figure over all the trips. Leave-one-out testing 
comes very close to predicting how the algorithm would 
work in a real application where all the previous trips 
would be used for training. 

An example result is shown in Figure 4. This shows the 
accuracy of predicting one road segment ahead, two 
ahead, and up to ten segments ahead based on the last 
ten observed road segments. The predicted road 
segment for our experiments is the one with the highest 
probability form the Markov model. In this case, the 
Markov model predicts the next road segment with 
slightly over 90% accuracy. As expected, the prediction 
accuracy drops the farther it looks into the future. Since 
the road segments average 237.5 meters long, a one-
ahead prediction corresponds to predicting over the next 
237.5 meters (0.15 miles). At 10 segments ahead (2375 
meters or 1.5 miles), our prediction accuracy is 50%. 

Figure 4 also shows the accuracy of prediction using 
random guessing as a way to assess the relative 
accuracy of the Markov model. Random guessing would 
involve randomly predicting the next road segment at 
each choice point. For instance, on a road segment that 
connects two four-way intersections (Figure 5), the 
random algorithm would assign a probability of 1/6 to 
each of the six possible next road segments and 
randomly pick one for the next segment. (We discount 
the possibility of a U-turn in our analysis of random 
guessing, which makes it appear somewhat more 
accurate.) Predicting two segments into the future would 
involve making two of these random choices. In fact, the 
road segment choices are conveniently represented as a 
tree, as shown in Figure 6. The branching factor for this 
tree is two, given that each node splits into two as the 

tree gets deeper. If the branching factor is 𝑏, and if we 

are predicting 𝑚 segments into the future, the number of 

possible choices at that future point is 𝑏𝑚 . Of course the 
branching factor changes from segment to segment, but 

 
Figure 4: Prediction accuracy drops as predictions go 
farther into the future. These experimental results are 
based on looking at the last 10 road segments. The 
two lower curves show how accurate prediction would 
be with random guessing. It quickly drops to near 
zero. 
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Figure 5: From the current road segment in this 
example, there are six choices for the next road 
segment if U-turns are disallowed and if the direction 
of travel is unknown. If the direction is known, then 
there are only three choices. 
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Figure 6: The choice for future road segments can be 
represented as a tree. In this example, the branching 
factor is two. 



the average branching factor for the roads encountered 
in our study was 4.04. 

For a given prediction depth 𝑚 and branching factor 𝑏, 

the probability of randomly guessing the right segment is 

1 𝑏𝑚 . If we know the direction of travel, then the 
branching factor is halved, because we know which end 
of the current segment is next. In this case, the 
probability of making the correct prediction by random 

guessing is 1 (0.5𝑏)𝑚 . These two curves are shown in 

Figure 4, demonstrating that our predictions are 
significantly better than random guessing, as they should 
be. 

Simmons et al. [8] achieved a next-segment prediction 
accuracy of up to 99% in a test on a driver with 46 trips 
using a hidden Markov model that accounts for road 
segments and a destination prediction. They note the 
issue of random guessing as well. In their road network 
representation, 95% of the road segment end points 
were connected to only one other road segment, 
presenting the prediction algorithm with a single forced 
choice that was guaranteed to be correct. In contrast, 
only about 28% of our segment end points have such a 
forced choice.  

SENSITIVITY TO NUMBER OF PAST SEGMENTS 

We showed above how accurate our predictions are 
based on a 10

th
 order Markov model, i.e. one that looks 

at the previous ten road segments in order to predict the 
future (Figure 4). Sometimes, there are fewer past road 
segments to examine, either because the trip just started 
or because there isn’t a long enough match sequence in 
the driver’s recorded history of road segments. 

Figure 7 shows how prediction accuracy varies with the 
number of past road segments observed. The prediction 
here is just the next, single road segment. Prediction 
accuracy increases as the number of observed 
segments increases, meaning that a longer sequence of 
road segments is more indicative of the future. There is 
a significant jump in prediction accuracy between one 
and two observed segments. This is because observing 

only one segment is not indicative of a driver’s direction, 
meaning that the vehicle could be heading toward either 
end of the current segment. Observing two or more past 
segments indicates the driver’s direction and reduces 
the possibilities for future segments. 

This plot also shows how often we found matches in the 
driver’s history for past sequences of a given length. 
While accuracy goes up with a longer match sequence, 
it is generally harder to find these longer sequences in 
the driver’s history. Based on the accuracy results in 
Figure 7, an optimal prediction algorithm would look for 
the longest match available to make a prediction. 

SENSITIVTY TO TIME OF DAY 

It may be that the time of day can help predict a driver’s 
future road segments. Some regular trips might begin by 
traversing the same set of road segments, only to 
diverge at a certain intersection depending on a regularly 
scheduled commitment. We explored this possibility by 
building a series of Markov models whose training data 
were limited to a certain time interval centered around 
the test trip. 

The results of this test are shown in Figure 8. In this 
case, we tested a 2

nd
-order Markov model, i.e. one that 

looks at the past two road segments, and we predicted 
the next, single road segment. We tested Markov 
models whose training data was limited to 1 hour around 
the test trip, 2 hours around the test trip, and up to 24 
hours around the test trip. The time tolerance ignores the 
date of the trip, instead looking at just the time of day. 
The plot shows that prediction accuracy is not very 
sensitive to the time of day, so this is not an important 
factor to consider when making turn predictions. We 
found a similar lack of sensitivity for Markov models up 
to order 10. Simmons et al. [8] found a similar lack of 
sensitivity to both time of day and day of week, although 
they found that speed is a significant factor in increasing 
prediction accuracy. 

 
Figure 7: Accuracy for predicting the next segment 
rises with the number of past segments matched, but 
longer past sequences are harder to find. 
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Figure 8: Considering the time of day had a negligible 
effect on our prediction accuracy. This shows results 
of a 2nd order Markov model predicting the next road 
segment. 
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SENSITIVITY TO OTHERS’ TRAINING DATA 

Until now, we have trained each driver’s Markov models 
using only that driver’s data. We can also make Markov 
models using data from all the drivers in our study. The 
clear advantage of this is that we can usually find more 
training data for a given observed sequence. We can 
also can find more long sequences, which, according to 
Figure 7, gives more accurate predictions. The 
disadvantage is that using other peoples’ driving data 
makes the models less specific to a given driver’s 
behavior. 

We explored these questions by creating Markov models 
using only the test driver’s data (as we have been doing 
all along), and using all drivers’ data. The results are 
shown in Figure 9 and Figure 10. Figure 9 shows that, 
as expected, we are able to find more matches to past 
sequences using all drivers’ data. Figure 10 shows that 
prediction accuracy drops slightly when using all drivers’ 
data, at least on the task of predicting the next, single 
road segment. This drop in accuracy is small, but 
consistent. It is small likely because there are not too 
many overlapping road segments from our sample of 
100 drivers. But, even with small overlaps, adding 
other’s data dilutes a driver’s turn probabilities enough to 
consistently reduce prediction accuracy. 

CONCLUSION 

Our goal was to find a simple and accurate prediction 
algorithm. Based on GPS data from 100 drivers, we 
have shown that a Markov model is a simple, effective 
way to predict near-term, future road segments. Looking 
at the most recent 10 segments into the past, we can 
predict the next segment with about 90% accuracy. By 
comparison, random guessing with a known direction of 
travel would give about 50% accuracy. Since our mean 
road segment length is 237.5 meters (0.15 miles), 
predicting the next segment translates to predicted travel 
over the next 237.5 meters. We can predict ahead three 
segments with approximately 76% accuracy, which 
translates to 3×237.5 = 712.5 meters (0.44 miles). 

Our experiments show that a fairly simple model works 
best. Prediction accuracy increases by considering a 

longer sequence of just-driven road segments. Thus, a 

practical algorithm would maintain a set of 𝑛𝑡ℎ  order 

Markov models, with, say, 1 ≤ 𝑛 ≤ 10. We also show 

that time of day is a negligible factor in the prediction 
accuracy and that using other drivers’ data for 
predictions reduces prediction accuracy. Thus the model 
should ignore the complexity of considering time of day, 
and it should be trained only from the driver’s vehicle. 

We envision that predictions of this type could be used 
to warn drivers of upcoming traffic disruptions, provide 
anticipatory information, and trigger automatic vehicle 
behaviors. 

Future work along the direction outlined in this paper 
could include experiments that show how prediction 
accuracy changes with the number of days that a driver 
is observed. We expect prediction accuracy to generally 
rise with observation time, eventually reaching a plateau. 
However, sometimes drivers change their habits, so an 
algorithm based on long term data should be able to 
recognize sudden changes and respond quickly to new 
habits. 
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Figure 9: Using other drivers' data to create the 
Markov models gives a better chance of finding a 
matching sequence in the training data. 
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Figure 10: Prediction accuracy for one-ahead 
prediction drops slightly when using all drivers' data 
over data from just the driver in question. 
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