Automatic verification of textbook programs that use
comprehensions

K. Rustan M. Leind and Rosemary Monahan

O Microsoft Research, Redmond, WA, USA
| ei no@n crosoft.com
! National University of Ireland, Maynooth, Co.Kildare, lmad
Rosenmary. Monahan@ui mi e

Manuscript KRML 175, 30 June 2007.

Abstract. Textbooks on program verification make use of simple program

mathematical domains as illustrative examples. Mechaw@iication tools can

give students a quicker way to learn, because the feedbabtk cgn be reduced
from days (waiting for hand-proofs to be graded by the teaglsssistant) to
seconds or minutes (waiting for the tool's output). Howetee mathematical
domains that are so familiar to students (for example, sampcehensions) are
not directly supported by first-order SMT solvers.

This paper presents a technique for translating common mepsion expres-
sions um, count, product, min, and max) into verification conditions

that can be tackled by two first-order SMT solvers. The tegimihas been im-
plemented in the Spec# program verifier. The paper alsotepoithe experience
of using Spec# to verify several challenging programmirgneples drawn from
a textbook by Dijkstra and Feijen.

0 Motivation

Computer science students are often introduced to progsaification—thus learn-
ing about assertions, pre- and postconditions, and inviariain a class setting where
they conduct hand proofs of small programs. To let studetiss on specifications and
programming, the example programs often draw from the derffamiliar mathe-
matics; for example, computing factorials or summing tlesednts of arrays. Just like
parsers and type checkers are tools whose feedback help seatents about well-
formed and well-typed programs, the feedback from verificatools can help teach
students about preconditions and invariants, bridgingydpethat otherwise exists be-
tween hand proofs and programming practice. However, ugnification tools in a
class setting brings complications: the verification toajim be built on an interactive
theorem prover, which puts an additional burden on the siiLiddearn the commands
and tactics of the prover, or on an automatic prover, whoserthdomains might not
be rich enough to include the mathematics that is so fantdiine student (like multi-
plication and sum-comprehensions).

In this paper, we present a technique for translating comomonprehension ex-
pressions (likesum, count, product, min, andmax) into verification conditions
that can be tackled by a first-order Satisfiability Modulo dties (SMT) solver. We

public static int SegSum(int[] a, int ¢, int j)
requires 0 < ¢ && i < j && j < a.Length;
ensures result == sum{int & in (¢ : j); a[k]};

{
int s = 0;
for (int n = i; n < j; n++)

invariant i < n && n < j;

invariant s == sum{int & in (¢ : n); a[k]};
{
s += aln];
}
return s;
}
Fig. 0. Spec# method to sum the element], a[i + 1], ..., a[j — 1]. Here and throughout,

our examples assume use of the Spec# compiletis switch, which treats reference types as
non-null reference types by default.

have implemented the technique in the Spec# [1] progranfisef0]. Using a choice
of Simplify [5] or Z3 [4] as the underlying SMT solver, we arkla to verify the partial
correctness of several challenging programming exampbes the Dijkstra and Feijen
bookA Method of Programmin§g].

1 Some Textbook Examples: The Programmer’s Perspective

In this section, we write some textbook examples to intredihe Spec# notation, fo-
cusing especially on comprehension expressions. In Speety method has a specifi-
cation outlining a contract between its callers and its enpgntations. The programmer
writes each method and its specification together in a Spmais file before running
the verifier. The verifier is run like the compiler—eitherrmahe IDE or the command
line. In either case, this involves just pushing a buttonifing, and then getting a list
of compilation/verification error messages, if they exist.

A sample Spec# methodiegSum, which sums the elements in a segment of an
array, is presented in Fig. 0. Using the sum comprehension

sum{int k in (i : 7); a[k]} (0)

wherek in (i : j) expresses the range< k < j, SegSum’s postcondition expresses
the summation of the — i array elements starting with(s] .
The general form of a comprehension in Spec# is

Q{K kinE, F; T}

where Q is sum, count, product, min, or max (or forall, exists, or exists
unique, but these forms have counterparts in first-order logic, savwan’t cover them

in this paper),k is a bound variable of some typ€, E is an enumerable expression
that generates values of tygé, the boolean expressiadh is afilter that further restricts
the values oft under consideration (if omitted;’ defaults to¢rue), and the integer
(or for count, boolean) expressiofi’ is theterm of the comprehension. The bound
variablek can occur free inF" and T, but notin E.

The comprehension expression evaluates to the value ebthnapplying the op-
erator associated witQ (for example+ for sum) to the expression§’ that result for
each of the prescribed values bf To support the dynamic execution of comprehen-
sions, Spec# insists oA being executable; currently, static verification is supgadr
only for comprehensions wher& is int and E is a half-open intervalL : H),
which meansk satisfiesL < k& < H, and the closed (inclusive) interval .. H),
which meanst satisfiesL < k < H.

As an example of a filter expression, comprehension (0) canlzd expressed as:

sumf{int k in (0 : a.Length), i < k && k < j; a[k]} (1)

To verify the SegSum example, it suffices to know the following mathematical
properties about sum comprehensions:

empty range (Vlo, hi ® hi <lo = sumf{int k in (lo : hi); a[k]} =0)
induction (Vlo,hi e lo < hi =
sum{int k in (lo : hi +1); a[k]} = sum{int k in (lo : hi); a[k]} + a[hi])

As we explain in the next section, we have included these Hret properties as axioms
in the program verifier.

Another classical example used to introduce students tgrano verification is the
calculation of factorials. A method that calculatelscan be specified as:

requires 0 < n;
ensures result == product{int k in (1..n); k};

This specification lends itself to the obvious iterative lempentation.

2 Encoding Comprehensions as First-Order Expressions

The Spec# static program verifier, named Boogie, transtatepiled Spec# programs
into the intermediate verification language BoogiePL, faghich it then generates ver-
ification conditions for various SMT solvers [0]. The Booglelanguage includes func-
tions and axioms, and its expressions include logical diierstand arithmetic. Boo-
giePL does not include direct support for any other compusioss or binders, so the
translation from Spec# into BoogiePL must instead use saitalde encoding. Such
an encoding will necessarily be incomplete, but we hope hiege an encoding that is
good enough for use in practice.

The key idea in our translation is to introduce and axioneatise BoogiePL func-
tion for each differentomprehension templatecurring in the Spec# program. In our
explanation of what that means, we use #wSum example from the previous sec-
tion as a running example. The sum comprehension (0) hasdbeanmable & with

4

range(i : j), (implicit) filter true, and termalk]. The BoogiePL translations of these
expressions are, j, true, and

ArrayGet($Heapla, $elements], k)

respectively. (To understand this translation, think ofrgvarray as being an object
with one instance field$elements, whose value is a sequence of element values. The
sequence is retrieved from the heap, which is modelled asoadimensional array
indexed by object identities and field names, and the elewedoe is then retrieved
using the functiomArrayGet .)

2.0 Comprehension Functions

Comprehensions supported by the Spec# program verifiertheferm
Qfintkin (L: H), F; T}

We consider the most general parameterisation of the esiprest’ and 7', ex-
tracting what we call theemplateof the comprehension. The template is a triple whose
first component isQ and whose other two components are obtained by abstracting
over the (largest) subexpressions of the filter and termdbatot mention the bound
variable. For example, the template of comprehension (0) is

(sum, O, ArrayGet(O, k))

Each ‘00" indicates a place where we have abstracted over a subasipnesiere and

throughout this section, we assume the bound variable hrae sanonical name, and
we’ll simply use k. Note that the range expressiohsand H are not part of the tem-
plate. We write the general form of a template as

(Q, Filter[D...0, k], Term[O...0,k]) 2

with the understanding thakilter[O...0, k] and Term[O...0, k] stand for expres-
sions that can mentioh and some number dfl’s.

For each comprehension template, our translation intreglacfunction. We shall
refer to it as acomprehension functicand give it a name likeQ#n wheren is some
unique sequence number. For example, sum comprehensiam goygram SegSum
gives rise to the following comprehension function in oanslation into BoogiePL.:

function sum#0(lo: int, hi: int, a0: bool, al: Elements) returns (int);

The comprehension function takes as arguments the rangeeésed as the end points
of a half-open interval), as well as one argument for eache’h@l in the template.
Intuitively, for a comprehension template (2), the comprretion function has the fol-
lowing meaning:

Q#TL(ZO, hi, a’a’) = le(lo:hi) such thatriiter[aa, k] Term[[aa, k]]

where aa corresponds to as many arguments as theré&&sen the template.

For example, comprehension functiemmn+#0 above has the meaning:

sum#0(lo, hi, a0, al) = Z ArrayGet(al, k)
ke(lo:hi) sSuch thato

Using comprehension functiosum#0, the sum comprehension (0) translates into
BoogiePL as

sum#0(1, 7, true, $ Heap|a, $elements])

Notice how the filter and term of the template are part of theiiive meaning of
sum+#0, and how the subexpressions that were abstracted over ieitingate find
themselves as arguments in the translation of a particutarcomprehension.

As another example, the sum comprehension (1) with a filtertha following
template:

(sum, O <k A k<O, ArrayGet(O, k))

Thus, if both it and the comprehension in Fig. 0 were presenhé same program,
they would give rise to two different comprehension funetiglike sum#0 above and
sum#1:

function sum+#1(lo: int, hi: int, a0: int, al: int, a2: Elements) returns (int);
Functionsum+1 then has the intuitive meaning

sum#1(lo, hi, a0, al, a2) = Z ArrayGet(a2, k)
k€(lo:hi) SUCh thakogk A k<al

and comprehension (1) translates into BoogiePL as

sum#1(0, $ ArrayLength(a), i, 7, $ Heap|a, $elements])

2.1 Matching Triggers

For each comprehension function, our translation also rgéee a number of axioms.
To obtain the desired effect of these axioms in the Simplifg Z3 SMT solvers, it is
crucial to indicate appropriateatching triggerdor the quantifiers [5]. A matching trig-
ger of a universal quantifier is a set of expressions thatétes how the SMT solver
instantiates the quantifier. Logically, it is correct totangtiate a universal quantifier with
anything at all, but since most instantiations are irreh¢va the verification goal, one
can hope for a more fruitful search by limiting which insiatibns the SMT solver is
allowed to consider. When the SMT solver’s search heusistetermine that it is time
to look at quantifiers, the solver's ground terms (typicaitgred in ane-graphdata
structure that tracks equivalence classes of terms [8@rgared against the triggers
of the active quantifiers. Ground terms that match the trigigee used to instantiate the
quantifiers.

Note that a universal quantifier that appears in a negatisiipo in an axiom is re-
ally an existential quantifier. The SMT solver always Skdlesa existential quantifiers,
so we need not worry about triggers for them.

Let us give some simple examples that demonstrate how tsggre employed.
Using BoogiePL syntax, which encloses triggers in curlycbsathe quantifier

(Va:int,y:int ® {g(z,y)} f(z) <y = g(z,y) =100)

says that it is to be instantiated with termsand y that appear in the e-graph as argu-
ments to the functior . In order to be discriminating, a trigger must mention alibd
variables and cannot mention a bound variable by itself ekample,{f(z)} is not a
legal trigger for the quantifier above, because it doeamitlihe terms that can be used
to instantiatey , and likewise for{f(z), y}.

Typically, the terms mentioned in triggers also appear éltbdy of the quantifier,
but this is not a requirement. For examp{é,xz, y)} is a legal trigger for the quantifier
above.

Since matching is done in the e-graph in Simplify and Z3, tihreggcuence closure of
all known terms is taken into consideration. Stated difiélye matching is done within
the theory of uninterpreted function symbols and equality). But other theories are
not taken into consideration. For example,

(Va:int o {g(z+ 1)} h(z)=g(z+1))

would not match against either the teg(®2 + y — 1) or the termg(1 + y), because
the equalitiesoR + y — 1 andy + 1, and of1 + y andy + 1, are facts known to the
decision procedure for the theory of linear arithmetic baymever be propagated into
the e-graph. In this way, using interpreted functions Hkén a trigger makes the trigger
fragile. The interpreted functions of interest in this paper-&rand — . Simplify enters
given expressions that mention and — into the e-graph (as well as passing them onto
the arithmetic theory, which interprets the symbols), whiteans they are available in
matching, but with no regard to their interpretation. In &8 interpreted symbols-
and — are not entered into the e-graph, so triggers that menticand — will never
give rise to any matches.

Some triggers are not limiting enough. For example,

(Va:int o {h(x)} h(z) < h(k(z)))

matches any argument d@f, but when the quantifier is instantiated, the instantiation
produces a term with another argumentoHence, ifh(X') occursin the e-graph, then
this quantifier will be instantiated witkk', £(X), k(k(X)), ..., causing anatching
loop. A more limiting trigger for this quantifier i§h(k(z))}, which does not cause a
matching loop.

2.2 Axioms

Back to our comprehensions. We show our axioms for sum cdmepsgons; the others
are similar.

For every comprehension template, our encoding introdneesne, but two func-
tion symbols,sum#n and s#n. We axiomatize these to be synonyms of each other:

(Vlo:int, hi:int, aa: T e {sum+#n(lo, hi, aa)}
sumn(lo, hi, aa) = s#n(lo, hi, aa))

Each sum comprehension in the Spec# program turns into ahatrasessum#n, as
we showed earlier in this section. For all axioms below, we &£ n in all quantifier
bodies, but we sometimes usem#n instead ofs#n in quantifier triggers. The effect
of this encoding is that we can limit certain instantiatitmavoid matching loops: since
the bodies of axioms only mentios#n, instantiations will not give rise to any new
sum#tn terms. Note that theynonymaxiom above usesum#n in its trigger (shown
in curly braces), nok#n ; thus, for eachsum#n term in the input, the SMT solver
will generate an equivalent#n term, but not vice versa.

We provide aunit axiom, which we render as follows:

(Vlo:int, hi:int, aa: T e {s#n(lo, hi, aa)}
(Vk:int e lo <k Ak < hi = —Filter[aa, k])
= s#n(lo,hi,aa) =0)

where Filter[aa, k] (and Term[aa, k] below) stands for the filter (and term, respec-
tively) expression in the template for theim comprehension. Note that tieenpty
range property in the previous section is a special case ofitiie axiom. The trigger
says for the outer quantifier to be instantiated for everyugence ofs#n in the e-
graph. The inner quantifier appears in a negative positidhdraxiom, so we need not
worry about triggers for it.

It is important to be able to reason inductively about corhpresions, but induc-
tion axioms are susceptible to matching loops. To avoid matcloops, we limit each
sum#tn expression in the input to one instantiation of each inductixiom, which
we achieve by mentioningum#n, not s#n, in the triggers. We provide four in-
duction axioms altogether. ThHeduction below axioms relates#n(lo, hi, aa) and
s#n(lo+ 1, hi, aa):

(Vlo:int, hi:int, aa: T e {sum#n(lo, hi, aa)}
lo < hi A Filter[aa, lo]
= s#n(lo, hi, aa) = s#n(lo + 1, hi, aa) + Term[aa, lo])
(Vlo:int, hi:int, aa: T o {sum+#n(lo, hi, aa)}
lo < hi N\ —Filter[aa, lo]
= s#n(lo, hi,aa) = s#n(lo+ 1, hi, aa))

and thenduction aboveaxioms relates#n(lo, hi, aa) and s#n(lo, hi — 1, aa):

(Vlo:int, hi:int, aa: T o {sum+#n(lo, hi, aa)}

lo < hi A Filter[aa, hi — 1]

= s#n(lo, hi, aa) = s#n(lo, hi — 1, aa) + Term[aa, hi — 1])
(Vlio:int, hi:int, aa: T e {sum#n(lo, hi, aa)}

lo < hi A\ —Filter[aa, hi — 1]

= s#n(lo, hi, aa) = s#n(lo,hi — 1, aa))

Another way to avoid matching loops would be to usg#n(lo + 1, hi, aa)} as the
trigger for theinduction below axioms and{s#n(lo, hi — 1, aa)} as the trigger for
theinduction above axioms; however, these triggers are fragile, because thezyion
the interpreted symbols and —, so they are of limited use with Simplify and of no

use with Z3. Our synonym encoding, on the other hand, workis lath Simplify and
Z3.
The next axiom is theplit range axiom:

(Vlo:int, mid: int, hi:int, aa: T e
{sum#n(lo, mid, aa), sum#n(mid, hi, aa)}
{sum#n(lo, mid, aa), sum#n(lo, hi, aa)}
lo < mid N mid < hi
= s#n(lo, mid, aa) + s#n(mid, hi, aa) = s#n(lo, hi, aa))

Several remarks about the triggers are in order. First, g#&gder mentions two terms,
because there is no single term that covers all bound vasaBlecond, we give two
triggers; a match of either one gives rise to an instantiatiothe quantifier. From the
point of view of symmetry, the possible trigger

{sum#n(lo, hi, aa), sum#n(mid, hi, aa)}

is conspicuously absent. We omitted this trigger, becausad a dramatically adverse
impact on performance (for the larger examples we repom @&ection 4, including this
trigger slowed down the verifications by as much as a fact@5ofvith both Simplify
and Z3). Third, the triggers usasm+#n , despite the fact that using#n would not lead
to any matching loop here (repeated instantiations wilhévally lead to quiescence,
because the set of terms used among the first two argumem#sitas not increased).
However, usings#n had a bad impact on performance (by as much as a factor of 10
for our examples).

We also generatesame termsaxiom:

(Ylo:int, hi:int, aa: T, bb: T e {sum#n(lo, hi, aa), s#n(lo, hi, bb)}
(Vk:int e lo<k ANk <hi =
(Filter[aa, k] = Filter[bb, k]) A
(Filter[aa, k] = Term[aa, k] = Term[bb,k]))
= s#n(lo, ki, aa) = s#n(lo, hi, bb))

This axiom is the only one that relates two comprehensiaifan applications with
different arguments for the template “holes”. It says the function applications are
equal if the filters agree in the rang® : hi) and, whenever the filters hold foriain
that range, the terms fdr are equal. The inner quantifier appears in a negative positio
in the axiom, so we need not worry about a trigger for it. Fa dluter quantifier, we
could have chosen the trigger

{s#n(lo, hi, aa), s#n(lo, hi, bb)}

without running the risk of matching loops, since instatimig.the quantifier would not
give rise to anys#n terms that are not already required by this trigger. Howeter
trigger with two s#n terms gave rise to unacceptable performance, so we chose to u
sum#n in one of the terms. We also tried specifying both terms inttlgger with
sum4£n, but that was too restrictive for our example programs, Wisiemetimes need
this axiom to be applied to terms generated by the induckiaas.

Finally, exclusively formin and max comprehensions, we generate one more
axiom, thedistribution (of plus over min/max) axiom (here shown fomin, using
functionsmin#n and m#n):

(Vlo:int, hi:int, aa: T, bb: T, D:int e
{min#n(lo, hi, aa) + D, m#n(lo, hi, bb)}
(Vk:int e lo <k ANk <hi =
(Filter[aa, k] = Filter[bb, k]) A
(Filter[aa, k] = Term[aa,k] + D = Term[bb, k])) A
(Fk:int @ lo <k Ak < hi A Filter[aa, k] A
Term[aa, k] + D = Term[bb, k])
= m#n(lo, hi, aa) + D = m#n(lo, hi, bb))

Several remarks are in order. First, for nonempty rangés,akiom generalizes the
same termsaxiom (with O for D). Second, the nested universal quantifier appears in
a negative position, so we need not worry about a triggertfdnit the trigger for the
existential quantifier matters. What makes a good triggeit fltepends on the compre-
hension template. Therefore, we specify no trigger, whigts s at the mercy of the
SMT solver’s heuristics to select a trigger from the bodyhaf guantifier. Third, given
the nested universal quantifier, the conjunct

Term[aa, k] + D = Term[bb, k]

in the body of the existential quantifier follows from the etltonjuncts. However, we
include it to give the SMT solver’s heuristics a better clan€finding some trigger.
Fourth, in the case whergilter[aa, k] does not actually depend dn(which happens
in the common case where the comprehension uses no filtel),atval replace the
existential quantifier by

lo < hi A Filter[aa, k]

Fifth, the trigger of the outer quantifier is problematicméntions+ and is therefore
fragile. For our examples, this fragility does not cause @bfam for Simplify, but it
renders the axiom useless for Z3.

2.3 Adequacy of the Axiomatisation

We make a few remarks about the adequacy of our axiomatisatio

First, notice that all axioms concern just one comprehengiaction: there is no
axiom that relates two different comprehension functiéios.example, since sum com-
prehension (0) has a different template than sum compraie(l), they give rise to
different comprehension functions. Thus, if the sum corension in the loop invari-
ant in the SegSum method were changed to the form (1) that uses the filter, then t
verification would not be able to establish the postcondifiwhich is written in the
form (0)) after the loop. Although some verifications coukehbfit from axioms that
relate different comprehension functions, this was noessary for any of the textbook
examples that we looked at. This is because their loop iamtgiand postconditions are

10

written in the same style. We recommend that when studernits spgecifications, this
similarity between loop invariants and postconditions amtained.

Second, our use ofum#n instead ofs#n in some triggers limits the number of
guantifier instantiations. However, the instantiatiores adequate for the examples we
tried. Also, using Simplify as the SMT solver, we have noterkpnced any problems
with the fragile trigger of thalistribution axiom. The lack of thelistribution axiom
for Z3 means that it cannot verify examples like Minimal SegmSum.

Third, trigger issues aside, the collection of axioms weeharovided seems plau-
sibly adequate in that ranges of size 0 or 1 can be addresgbeé bgit andinduction
aboveaxioms, and all larger ranges can be addressed by decorgplesim into smaller
ranges with theplit range axiom. For example, it is not necessary to includetideic-
tion below axiom that enlarges the range at the lower end, as the effétabaxiom
can be achieved by first reasoning about the rarigesio + 1) and (lo + 1 : ki) and
then using thesplit range axiom.

However, triggers are an issue. Omitting thduction below axiom from our ax-
iomatisation prevents the verification of programs liken2 from Fig. 2. This program
could be verified using thimduction above andsplit range axioms as just described,
but the needed axiom applications are not triggered autoatigt In cases like this, it
is possible, as an advanced feature, to introduce expressidhe Spec# source code
that will trigger the instantiation of axioms. For exampaelding the assert statement
assert a[n] == sum{int £ in (n : n + 1); a[k]}; before modifyings would be
enough to makeSum?2 verify even without thenduction below axiom. Simply men-
tioning sum comprehension over the rarige: n+1) acts as a prover directive causing
the appropriate axiom to be instantiated. However, thistsarsolution that we recom-
mend, since adding such prover directives puts a much higlreien on the specifier.

3 Some More Difficult Examples

We now report on our experience of using Spec# to verify sormeerohallenging ex-
amples, including some programming problems describedtax#éook by Dijkstra
and Feijen [6]. We begin with an example that illustratesuke of alternative loop
invariants.

11

public static int SumO(int[] a)

ensures result == sum{int ¢ in (0 : a.Length); a[i]};
{
int s = 0;
for (int n = 0; n < a.Length; n++)
invariant n < a.Length && s ==sum{int i in (0 : n); a[i]};
{
s += aln];
}
return s;
}
public static int Sum1(int[] a)
ensures result == sum{int ¢ in (0 : a.Length); ali]};
{
int s = 0;

for (int n = 0; n < a.Length; n++)
invariant n < a.Length &&
s+ sum{int ¢ in (n : a.Length); a[i]} == sum{int ¢ in (0 : a.Length); ali]};
{

s += aln]

}

return s;

}

Fig. 1. Two programs that sum an array’s elements starting fromritsdlement. The programs
are identical, except that they use different loop invasawhereasSum0 uses a loop invariant
that focuses on what has been summed soSam1 uses a loop invariant that focuses on what
is yet to be summed. (The interval analysis performed by fhex® program verifier infers the
invariant 0 < n automatically.) Ourinduction above axiom allows the verification of both
programs.

3.0 \Variations of summing

There are two main ways that a loop can iterate over a numhiegrog to compute a
property expressed by a comprehension, namely forward ackinard. And for each
of these ways, there are two main ways to write the assoclatgdinvariant, either
describing what has been computed so far or what is yet toin@eted. Figure 1 and 2
show these four variations for summing the elements of ayarr

The verification of these four programs collectively make agboth thanduction
belowandinduction aboveaxioms, and trigger these with different terms. Our verifier
verifies all of these programs, in a fraction of a second, as $e the performance
figures in Fig. 7.

3.1 Coincidence count

The coincidence count of two given integer arrays, each d€hwis arranged in strict
increasing order, is the number of values occurring in bothys. This problem is

12

public static int Sum?2(int[] a)
ensures result == sum{int ¢ in (0 : a.Length); a[i]};
{
int s = 0;
for (int n = a.Length; 0 < ——n;)
invariant 0 < n && n < a.Length &&

s == sum{int i in (n : a.Length); alil};
{
s += aln];

}

return s;
}
public static int Sum3(int[] a)

ensures result == sum{int ¢ in (0 : a.Length); ali]};
{

int s = 0;

for (int n = a.Length; 0 < ——n;)
invariant 0 < n && n < a.Length &&
s+ sum{int ¢ in (0 : n); a[i]} == sum{int i in (0 : a.Length); a[t]};
{

s += aln];
}

return s;

}

Fig. 2. Two programs that sum an array’s elements starting fromagsdlement. The programs
are identical, except that they use different loop invasawhereasSum?2 uses a loop invariant
that focuses on what has been summed soSam3 uses a loop invariant that focuses on what
is yet to be summed. Oumduction below axiom allows the verification of both programs.

included in the book of Dijkstra and Feijen [6]. The spectiima of the problem uses a
sum comprehension nested inside two minimum comprehession

We show one solution to this problem in Fig. 3. Although thsoéution that some
students might write, it is not the nicest solution to thelpem. First, it iterates until
both arrays have been exhausted, despite the fact thatrdidences have been found
by the time that one array has been exhausted. Second, thimhetfect on the guards
of the if statement in the program, which need to considepdssibility of either array
having been exhausted. The program is correct, howeveit padses our verifier.

A nicer solution to the problem is shown in Fig. 4. This sadatis more efficient
as it stops iterating when either array has been exhausktesl. il turn, makes the if
statement guards less complicated. The main issue is tinggtae instantiation of the
split range axiom. The inclusion of the second trigger for it range axiom gets
used here, and the program is automatically verified.

The programs in Fig. 3 and 4 have different loop and if gudbdshave identical
loop invariants. The loop invariant about focuses on what has been computed so
far. The program in Fig. 4 can also be verified using an altermoop that focuses

13

public static int CoincidenceCountO(int[] f,int[] g)
requires forall{int 7 in (0 : f.Length), int j in (0 : f.Length), i < j; f[i] < fljl};
requires forall{int 7 in (0 : g.Length), int j in (0 : g.Length), © < j; g[i] < g[j]};
ensures result ==
count{int ¢ in (0 : f.Length), int j in (0 : g.Length); f[i] == g[j]};
{

int ct = 0; int m = 0; intn = 0;
while (m < f.Length || n < g.Length)
invariant m < f.Length && n < g.Length;
invariant ¢t == count{int ¢ in (0 : m), int j in (0: n); f[i] == g[jl};
invariant m == f.Length || forall{int j in (0 : n); g[j] < f[m]};
invariant n == g.Length || forall{int ¢ in (0: m); f[i] < g[n]};
{
if (n == g.Length || (m < f.Length && f[m] < g[n])) {
m+-+;
} else if (m == f.Length || (n < g.Length && g[n] < f[m])){
n++;
Yelse { // gln] == flm]
ct++; m++; nt++;
}
}

return ct;

}

Fig. 3. A first solution to the Coincidence Count problem. Giving tipié binders for a compre-
hension is a shorthand for nesting multiple comprehensifmns count comprehension with
multiple binders, the innermost comprehension remaios@nt whereas the enclosing ones are
sum comprehensions.

on what is left to compute, see Fig. 5. Dijkstra and Feijeng whnsider the derivation
of program from its specification, comment that this altéussinvariant “leads more
inevitably” [6] to this solution.

3.2 Minimal Segment Sum

The minimal segment sum of a given integer areays the minimum of all segment
sums, calculated for all segmenis$i], a[é + 1],...,a[j — 1] where0 < i < j <
a.Length . We present the problem’s specification, together withataton, in Fig. 6.
The main verification problems are due to the nesting of celmgmsions in the program
invariant. In particular, the verification of the invariamequires thénduction axioms
to be applied to both the inner and outer comprehensiongy astombination of th-
duction andsame termsaxioms. The verification also requires the fragiistribution
axiom, which means our verifier is unable to prove the proguamg Z3.

14

public static int CoincidenceCount1(int[] f,int[] g)
requires forall{int 7 in (0 : f.Length), int j in (0 : f.Length), i < j; f[i] < fljl};
requires forall{int 7 in (0 : g.Length), int j in (0 : g.Length), © < j; g[i] < g[j]};
ensures result ==
count{int ¢ in (0 : f.Length), int j in (0 : g.Length); f[i] == g[j]};
{

int ct = 0; int m = 0; intn = 0;

while (m < f.Length && n < g.Length)
invariant m < f.Length && n < g.Length;
invariant ¢t == count{int ¢ in (0 : m), int j in (0: n); f[i] == g[jl};
invariant m == f.Length || forall{int j in (0 : n); g[j] < f[m]};
invariant n == g.Length || forall{int ¢ in (0: m); f[i] < g[n]};

{
if (f[m] < g[n)) {
m++;
}elseif (g[n] < flm]) {
n+-+;
Yelse { //g[n] == f[m]
ct++; m++; n++;
}
}

return ct;

}

Fig. 4. A more efficient solution to the Coincidence Count problert tierminates the loop as
soon as one array is exhausted. The program and its loopgantsare identical to the one in
Fig. 3, except for the loop and if guards.

4 Evaluation

Many of the difficulties met during our program verificatiomsre in trying to diagnose
error messages. Error messages need to be made more desgoigtticularly for use
in a learning environment. Much of the confusion comes froroautainty about how
to proceed when an error is found; do we rewrite the spedificatorrect the program,
or assist the verifier by addingssert or assume statements?

Debugging by adding prover-directive assertions at theS el requires an un-
derstanding of the verification process and the methodatogyloyed by the program
verifier. Adding assertions merely to ensure that the coariom is triggered might
make the proof appear mysterious to the student. This shmubloided by carefully
guiding students to examples that the verifier can provenaatically.

The overall performance of the enhanced system programsyistgm is accept-
able. Table 7 shows the times required to verify a numberafm@ms using two first-
order SMT solvers, Simplify and Z3. As we would expect, thefgrenance decreases
as the number of comprehensions and the complexity of tlagianvts increase. In most
cases, the Z3 solver verifies the programs slightly fastem &implify. However, Sim-
plify succeeds in verifying all of our examples where Z3 dnes Factorial cannot be
verified by Z3 as multiplications by non-constants are, atrtftoment, essentially ig-

15

invariant m < f.Length && n < g.Length;

invariant
ct + count{int i in (m : f.Length), int j in (n : g.Length); f[i] == g[j]}
== count{int i in (0 : f.Length), int j in (0 : g.Length); f[t] == g[jl};

Fig. 5. The alternative invariant for the Coincidence Count probl@his invariant can be used
in lieu of the one in Fig. 4 to yield the progradioincidence Count2.

public static int MinSegmentSum (int[] a)
ensures result == min{int j in (0.. a.Length); min{int ¢ in (0.. j);
sum{int k£ in (i : j); alk] }}};
{

intzx = 0; int y = O;
for (int n = 0; n < a.Length; n++)
invariant n < a.Length;

invariant z == min{int j in (0.. n); min{int ¢ in (0..5);
sum{int k£ in (i : j); alk] }}};
invariant y == min{int ¢ in (0..n); sum{int k£ in (i : n); a[k] }};
{
y += an);
if (0<y){y= 0; }elseif (y <z){z=y;}
}
return z;
}

Fig. 6. Spec# specification and solution of the Minimal Segment Stohlpm.

nored. Simplify is willing to treat such multiplications asinterpreted functions and
hence it can verify the solution. Z3 cannot verif§inSegmentSum because the distri-
bution of + over themin comprehension is required, and @istribution axiom that
states this property uses a trigger that containg & Wwhich is not allowed in Z3.

We do not fully understand why Z3 cannot verityoincidenceCount1 in Fig. 4.
If we remove the first of the two triggers for tlsplit range axiom for the outekount
comprehension, then Z3 verifies the program in less thandghsisc The problem there-
fore seems related to the first of these triggers setting offaan of instantiations that
prevent Z3 from completing the verification.

5 Related Work

Paulson and Meng [7] present work on translating Isabe@4/If9] to first-order logic.
Their motivation is to improve the automation of interaetigrovers by integrating
them with automatic provers which are usually based on dirder logic. Much of
their work focuses on translating Isabelle’s axiomaticetyjasses to first-order logic

16

Program Simplify Z3
SumO 0.219 0.172
Suml 0.063 0.016
Sum2 0.047 0.016
Sum3 0.110 0.016
Factorial 0.172
MinSegmentSum 16.063
CoincidenceCount0 6.017 1.815
CoincidenceCountl 18.970
CoincidenceCount2 12.907 1.16

Fig. 7. Performance measurements (measured in seconds) of pregréditations.

predicates and Isabelle types to first-order logic term$abtype information present
in Isabelle/HOL is not lost during the translation.

Our work also translates higher-order functions to firgteorlogic but the com-
prehensions that we support do not require any type infoomab be carried in our
encoding. This is due to all comprehensions supported bgges# program verifier
having the same form:

Ofint kin (L: H), F; T}

Perfect Developer [3, 2], an automatic specification andfigation environment,
uses a custom theorem prover to provide support for compsities like the ones we
have considered here. In some ways, Perfect Developerda®wmore flexible support
(allowing programmers to define their own operators thatyajgpsequences, sets, and
multisets), whereas in other ways, we provide more flexibfgsrt (directly allowing
comprehensions to apply to arbitrary terms, not just thenetgs of sequences, and
supporting programs that use filtered subsequences angeesiammations). We hope
to learn how to combine the techniques of the two tools.

6 Conclusions and Future Work

We have implemented support for summation-like compreibessn the Spec# pro-
gram verifier, using the SMT solvers Simplify and Z3. This lempentation takes us
a step closer to providing tool support for students le@rpirogram verification. Our
axiomatisation is of a modest size, and we have found ouagprto work fairly well,
even on some challenging textbook examples. However, mork i8 needed, espe-
cially in the area of explaining error messages to users.

To further support students in verification, we would likedevelop a larger reper-
toire of verified textbook programs. We would like to incluigeit programs that use
common mathematical data structures like sets, multisetps, and sequences, as well
as common support for abstraction like model variables &straction invariants. Our
aim is to provide a learning environment that focuses onngrigood program specifi-
cations rather than burdening the user with seemingly fdavlie program verifications.

17

AcknowledgmentdVe thank the participants of the IFIP WG 2.3 meeting in Sydney
January 2007, for serving as a springboard for the initizhgld We also thank the anony-
mous referees, for their thoughtful and helpful comments.

References

0. Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bartols; and K. Rustan M. Leino.
Boogie: A modular reusable verifier for object-orientedgreons. In Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de&oeditorsFormal Methods
for Components and Objects: 4th International SymposiumiCP 2005 volume 4111 of
Lecture Notes in Computer Scienpages 364-387. Springer, September 2006.

1. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. Bypec# programming system:
An overview. In Gilles Barthe, Lilian Burdy, Marieke Huismalean-Louis Lanet, and Traian
Muntean, editorsCASSIS 2004, Construction and Analysis of Safe, Securenterdperable
Smart devicesvolume 3362 ol ecture Notes in Computer Scienpages 49-69. Springer,
2005.

2. Gareth Carter, Rosemary Monahan, and Joseph M. Morrigiw&e refinement with Per-
fect Developer. In Bernhard K. Aichernig and Bernhard Begkeditors, Third IEEE In-
ternational Conference on Software Engineering and Foriviethods (SEFM 2005pages
363-373. IEEE Computer Society, September 2005.

3. David Crocker and Judith Carlton. A high productivity tofor formally veri-
fied software development. Technical report, Escher Tdolies, September 2004.
http://www.eschertech.com/papers/pdpaper.pdf.

4. Leonardo de Moura and Nikolaj Bjorner. Efficient e-matgfor SMT solvers. IrProceed-
ings CADE 2007July 2007. To appear.

5. David Detlefs, Greg Nelson, and James B. Saxe. Simplifjiearem prover for program
checking.Journal of the ACM52(3):365-473, May 2005.

6. Edsger W. Dijkstra and W. H. J. FeijeA method of programmingAddison-Wesley, July
1988.

7. Jia Meng and Lawrence C. Paulson. Translating highesrqgnabblems to first-order clauses.
In Geoff Sutcliffe, Renate Schmidt, and Stephan SchulzpegJESCoR 2006: Empirically
Successful Computerized Reasonivmgume 192 ofCEUR Workshop Proceedingsages
70-80. http://ceur-ws.org, 2006.

8. Charles Gregory Nelson. Techniques for program verifinaffechnical Report CSL-81-10,
Xerox PARC, June 1981. The author’s PhD thesis.

9. Tobias Nipkow, Lawrence C. Paulson, and Markus Wergabelle/HOL: A Proof Assistant
for Higher-Order Logi¢ volume 2283 of_ecture Notes in Computer Scien&pringer, 2002.

