
Program Verification as Probabilistic Inference

Sumit Gulwani
Microsoft Research, Redmond

sumitg@microsoft.com

Nebojsa Jojic
Microsoft Research, Redmond

jojic@microsoft.com

Abstract
In this paper, we propose a new algorithm for proving the validity or
invalidity of a pre/postcondition pair for a program. The algorithm
is motivated by the success of the algorithms for probabilistic in-
ference developed in the machine learning community for reason-
ing in graphical models. The validity or invalidity proof consists
of providing an invariant at each program point that can be locally
verified. The algorithm works by iteratively randomly selecting a
program point and updating the current abstract state representa-
tion to make it more locally consistent (with respect to the abstrac-
tions at the neighboring points). We show that this simple algorithm
has some interesting aspects: (a) It brings together the complemen-
tary powers of forward and backward analyses; (b) The algorithm
has the ability to recover itself from excessive under-approximation
or over-approximation that it may make. (Because the algorithm
does not distinguish between the forward and backward informa-
tion, the information could get both under-approximated and over-
approximated at any step.) (c) The randomness in the algorithm
ensures that the correct choice of updates is eventually made as
there is no single deterministic strategy that would provably work
for any interesting class of programs. In our experiments we use
this algorithm to produce the proof of correctness of a small (but
non-trivial) example. In addition, we empirically illustrate several
important properties of the algorithm.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; G.3 [Mathematics of Computing]: Probability and Statis-
tics; I.2.6 [Computing Methodologies]: Artificial Intelligence

General Terms Algorithms, Theory, Verification

Keywords Program Verification, Forward and Backward Analy-
sis, Over and Under Approximation, Automated Recovery, Ma-
chine Learning, Belief Networks, Factor Graphs, Probabilistic In-
ference, Markov Chain Monte Carlo, Gibbs Sampling

1. Introduction
The program verification problem is to verify the Hoare triple,
〈φpre, P, φpost〉, whereφpre and φpost are the precondition and
postcondition respectively of programP . The Hoare triple is said
to be valid if for all program states satisfyingφpre, whenever the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’07 January 17–19, 2007, Nice, France.
Copyright c© 2007 ACM 1-59593-575-4/07/0001. . . $5.00.

programP terminates, it does so in a state that satisfiesφpost. A
proof of validity of the Hoare triple〈φpre, P, φpost〉 can be in the
form of an invariant at each program point such that the invariants
can be easily verified locally. A proof of invalidity of the Hoare
triple 〈φpre, P, φpost〉 can be in the form of the proof of validity of
the Hoare triple〈φ′pre, P,¬φpost〉 for someφ′pre that is consistent
with φpre. (In this formalism for proof of invalidity, we assume
that the end of programP is reached during all executions of the
program.)

In this paper, we describe how probabilistic inference tech-
niques, heavily studied in the machine learning community, can be
used to discover the invariants at each program point that constitute
either a proof of validity or a proof of invalidity of a given Hoare
triple. The algorithm works by running in parallel the search for
validity proof and invalidity proof of the Hoare triple. The proof
search routine starts by initializing the state abstractions (potential
invariants) at all program points to anything (e.g.,⊥). It then it-
eratively chooses a random program pointπ whose abstract state
representation is locally inconsistent, and updates it to make it less
locally inconsistent. To be more precise, the state abstraction atπ
is chosen randomly from the abstract domain, with probability in-
versely proportional to its local inconsistency. The local inconsis-
tency of the state abstraction at a program point is a monotonic
measure of the set of program states that are not consistent with
the state abstraction at the neighboring program points. The proof
search routine stops when these abstractions are all locally con-
sistent in which case they constitute program invariants that prove
either validity or invalidity of the Hoare triple (depending on what
definition of consistency was used for the program’s entry and exit
points). This algorithm is described formally inSection 3.

The above proof discovery algorithm, though simple, has some
interesting aspects to it.

• The algorithm combines the complementary powers of both for-
ward and backward analysis by bringing information from both
forward and backward directions at each program point. We de-
fine the local inconsistency of an abstract representation of pos-
sible program states at a program point as a measure of the set
of program states that are not consistent with the state abstrac-
tions atneighboringprogram points (as opposed to considering
only the immediatepredecessorprogram points, which would
constitute a forward analysis, or as opposed to considering only
the immediatesuccessorprogram points, which would result
in only a backward flow of information). Result of this is that
effectively, the forward analysis uses the information from the
backward analysis to guide its over-approximation, while the
backward analysis uses the information from the forward analy-
sis to guide its under-approximation.

• Even though bringing information from both forward and back-
ward directions yields a more refined choice of abstractions,
these abstractions may not be the right ones. However, our al-
gorithm places much less burden on the optimality of these

choices since it offers chances of recovery at each step. This is
because it does not distinguish between the information brought
in by the forward analysis or the backward analysis, and as a re-
sult, the information can get both over-approximated or under-
approximated in any step. Contrast this with a traditional for-
ward analysis in which the information at any program point
gets weakened in successive updates. Hence, once the informa-
tion computed at a program point overapproximates the invari-
ants required at that point to establish the postcondition, the
postcondition cannot be established.1

• The inference procedure is based on smooth real-valued cost
functions, rather than binary costs (where invariants are either
considered to be in agreement or not). This could be thought of
as giving the algorithm partial credit for its guesses, and thus
providing it with more information about which direction to
take in order to further improve the invariants. However, among
the possible choices that have approximately equal benefits, the
algorithm chooses randomly. Thus, our algorithm falls into the
category of sampling techniques studied extensively in [20].

The above aspects are discussed in more detail inSection 5with
examples of parts of the proof search that we saw in our experi-
ments.

The algorithm we introduce here is a form of a Gibbs sampling
technique, which is one of the probabilistic inference techniques
used in machine learning [20]. Many machine learning problems
are concerned with the discovery of hidden quantities at nodes of
a graph that satisfy given constraints, and so the machine learning
community has developed a number of such inference algorithms,
which can both be deterministic and randomized. In this paper, we
define program verification in a way that allows most of these tech-
niques to be applied to this problem, as well. For this purpose, we
introduce the novel notion of aninconsistency measurefor any ab-
stract domainA that is equipped with a partial order⇒. An in-
consistency measureM for A is any function from ordered pairs
(φ, φ′) of elements fromA to [0, 1] that is monotonically increas-
ing in its first argumentφ, monotonically decreasing in its second
argumentφ′, and0 iff φ ⇒ φ′. We use this measure to define
the local inconsistencyof a program point’s set of reachable states
(which belongs toA) with respect to the sets of reachable states
at neighboring program points. Given these local measures, we can
pose the problem of program invariant inference as inference in
probabilistic graphical models. The particular inference algorithm
we use in this paper uses the inconsistency measure to give pref-
erence to those potential invariants that minimize the local incon-
sistency. A large class of new algorithms for program verification
can benefit from a real-valued measure of inconsistency, as it can
be used as a measure of the progress of the algorithm.

We implemented our algorithm for programs that have linear as-
signments and whose conditional predicates have the form of dif-
ference constraints. We chose the abstract domain for representing
invariants to be the set of boolean formulas over difference con-
straints. In the spirit of Occam’s razor principle, the formulas are
of bounded size, thus biasing the search towards simpler proofs. We
tested the algorithm on a small non-trivial example program with
pre/postcondition pair. We show that our tool can consistently solve
this problem in finite time, whereas the brute force search would be
infeasible.

1 Similarly, in a traditional backward analysis the information at any pro-
gram point gets strengthened in successive updates. Hence, once the oblig-
ation computed at a program point underapproximates the invariants that
are true at that program point under the precondition, the validity of the
pre/postcondition pair cannot be established.

2. Notation
LetA be some abstract domain, whose elements represent sets of
program states. Letγ : A → 2Σ be the concretization function that
relates the abstract domain and the concrete domain, i.e., for any
elementφ ∈ A, γ(φ) gives the set of all program states represented
by φ. Let⊥ and> represent the usual bottom and top elements in
the abstract domain, i.e.,γ(⊥) = ∅ andγ(>) = Σ. We say that
an abstract elementφ is stronger thanφ′ (denoted byφ ⇒ φ′) if
γ(φ) ⊆ γ(φ′). We also say thatφ holds at program pointπ to
denote thatγ(φ) is an over-approximation of the set of program
states that are possible atπ.

We use the notationπentry and πexit to denote the program’s
entry and exit point. For simplicity, we assume (without loss of
any generality) that there are no self loops on any program node.
We use the notationφi to denote the latest choice of the abstract
element (made by our algorithm) at program pointπi.

Givenφi for all program pointsπi, and any program pointπk

other thanπentry, let Post(πk) denote the set of (strongest) abstract
elements such that for any elementφ ∈ Post(πk), we have the
following property: If for all immediate predecessorsπj of πk, φj

holds atπj , thenφ holds atπk. Similarly, givenφi for all program
pointsπi, and any program pointπk other thanπexit, let Pre(πk)
denote the set of (weakest) abstract elements such that for any
elementφ ∈ Pre(πk), we have the following property: Ifφ holds
at πk, then for all immediate successorsπj of πk, φj holds atπj .
For notational convenience, we say that:

Post(πentry)
def
= ⊥ and Pre(πexit)

def
= >

Since there are no self-loops on any program node, any program
pointπk is not its own immediate successor or predecessor. Hence,
the definitions ofPost(πk) andPre(πk) are well-formed. We use
the notationPost(πk) ⇒ φ to denote thatφ′ ⇒ φ for someφ′ ∈
Post(πk). Similarly, we sometimes use the notationφ ⇒ Pre(πk)
to denote thatφ ⇒ φ′ for someφ′ ∈ Pre(πk).

An inconsistency measureon the abstract domainA is any
function that maps ordered pairs of elements fromA to [0, 1] and
has the following properties for any elementsφ, φ′, φ′′ ∈ A that
satisfyφ ⇒ φ′.

• M(φ, φ′) = 0.

• M(φ, φ′′) ≤M(φ′, φ′′).

• M(φ′′, φ′) ≤M(φ′′, φ).

Observe that an inconsistency measureM (which satisfies the
above properties) provides a natural measure of how much incon-
sistent is the relationshipφ ⇒ φ′ for any ordered pair(φ, φ′).

Givenφi for all program pointsπi, and an inconsistency mea-
sureM, we define thelocal inconsistencyof φ at πk to be the
following quantity:

L(φ, πk) = Min {M(φ′, φ) | φ′ ∈ Post(πk)}+

Min {M(φ, φ′) | φ′ ∈ Pre(πk)}

Givenφi for all program pointsπi, we say thatφ is locally consis-
tentatπk when

Post(πk) ⇒ φ and φ ⇒ Pre(πk)

Observe that givenφi for all program pointsπi, and for any in-
consistency measureM, the following property holds:φ is locally
consistent atπk iff L(φ, πk) = 0.

3. Algorithm
In this section, we describe the learning based semi-algorithm
for producing a proof of validity or invalidity of the Hoare triple

FindProof(P, β) =
1 For all program points πi, initialize φi := ⊥;
2 While penalty of any program point is non-zero:
3 Choose program point πk ∈ {πi | β(φi, πi) 6= 0} uniformly at random.

4 Choose φ ∈ A with probability proportional to e−β(φ,πk).
5 Update φk := φ;
6 Output(‘‘Proof found.’’);
7 For all program points πk, output(‘‘Invariant at’’, πk, ‘‘is’’, φk);

Decide(〈φpre, P, φpost〉) =
1 Let βV and βI be the penalty functions as defined in Section 3.1.
2 In parallel execute: [FindProof(P, βV) ‖ FindProof(P, βI)];

Figure 1. The machine learning based semi-algorithm for producing a proof of validity or invalidity of the Hoare triple〈φpre, P, φpost〉.

〈φpre, P, φpost〉. The proof of validity consists of providing an ab-
stract elementφi at each program pointπi such that:

A1. φentry = φpre.

A2. φexit = φpost.

A3. φi is locally consistent atπi.

The proof of invalidity consists of providing an abstract elementφi

at each program pointπi such that:

B1. γ(φentry) ∩ γ(φpre) 6= ∅ (i.e.,φentry is consistent withφpre).

B2. φexit = ¬φpost.

B3. φi is locally consistent atπi.

Note that in the above formalism for proof of invalidity of the
Hoare triple, we make the assumption that the program pointπexit

is reachable in all program executions. (Alternatively, the proof
of invalidity may consist of providing a concrete program stateσ
such that the execution of the program in stateσ reaches program
pointπexit, and in such a state that satisfies¬φpost. Such a counter-
example may be produced fromφentry by selecting a concrete pro-
gram stateσ from γ(φentry) and checking whether program point
πexit is reached when the program is executed inσ. If not, then the
process of finding a newσ ∈ γ(φentry), or the initial process of
finding a new set of invariants at each program point that satisfy
PropertiesB1-B3 is repeated.) Henceforth, we assume that our task
is to find a set of invariants at each program point such that either
propertiesA1-A3 are satisfied, or propertiesB1-B3 are satisfied.

We assume that we are given an abstract domainA (with γ as
the concretization function that relates the abstract domain with
the concrete domain) such that all invariants in the proofs are
expressible in this abstract domainA. In particular,φpre ∈ A
and φpost ∈ A. Our algorithm is also parameterized by some
inconsistency measureM (as defined inSection 2) associated with
A, which gives a numeric measure of how much is the partial order
relationship (⇒) not satisfied between two given elements ofA.

The pseudo-code for the learning algorithm is described inFig-
ure 3. The procedureDecide(〈φpre, P, φpost) runs the process of
finding the proof of validity of the Hoare triple〈φpre, P, φpost〉
(FindProof(P, βV)) in parallel with the process of finding the
proof of its invalidity (FindProof(P, βI)). Each of these processes
use the same algorithmFindProof, but invoked with different
penalty functionsβV andβI. βV enforces the constraints described
in propertiesA1-A3 on the invariants, whileβI enforces the con-
straints described in propertiesB1-B3 on the invariants.

TheFindProof algorithm works by initializing the abstract el-
ements at all program points to anything (e.g.,⊥). It then iteratively
chooses a random program pointπk whose abstract elementφk is
locally inconsistent, and updatesφk to make it less locally incon-

sistent. To be more precise,φk is chosen randomly with probability
inversely proportional to the exponent of itspenaltyatπk. Givenφi

for all program pointsπi, the penalty of an abstract elementφ at a
program pointπk is a non-negative number, which measures unac-
ceptability ofφ atπk. The penalty function is the only deterministic
part of the algorithm, and should be carefully designed to guide the
learning algorithm towards the solution.

3.1 Penalty Function

The penalty function should have the following properties.

A1. Soundness: When the penalty of abstract elements at all pro-
gram points has been reduced to0, then the collection of invari-
ants at those program points constitutes a valid proof.

A2. Monotonicity: The penalty function should assign a greater
penalty to abstract elements that are more locally inconsistent.

PropertyA1 is essential for correctness of the algorithm, while
propertyA2 is important for faster convergence of the algorithm.
Hence, for any inconsistency measureM onA, we can define a
valid penalty function (which satisfies propertiesA1 andA2) for
proving the validity of the Hoare triple〈φpre, P, φpost〉 as follows.

βV(φ, πentry) = 0, if φ = φpre

= ∞, otherwise (1)

βV(φ, πexit) = 0, if φ = φpost

= ∞, otherwise (2)

βV(φ, πk) = N × L(φ, πk)

Note thatEquation 1andEquation 2enforce the constraint that the
abstract elements at the program pointsπentry andπexit must beφpre

andφpost respectively.N denotes a large constant. It is easy to see
that a bigger value ofN increases likelihood of selection of abstract
elements that minimize penalty, and hence may result in faster con-
vergence. However, a smaller value ofN may also result in faster
convergence in two ways: (a) by decreasing the time required to
get out of local minima (if the algorithm ever gets stuck there), (b)
by increasing the gradient of change. (This is equivalent of widen-
ing/narrowing in standard abstract interpretation terminology [3].)
Hence, the choice ofN should ideally be determined by perform-
ing experiments. The functionL is the local inconsistency measure
(as defined inSection 2), which is a function of the inconsistency
measureM associated with the abstract domainA.

Similarly, we can define a valid penalty function (which satisfies
propertiesA1 andA2) for proving the invalidity of the Hoare triple
〈φpre, P, φpost〉 (assuming that the end of theP is always reached)
as follows:

βI(φ, πentry) = ∞, if γ(φ) ∩ γ(φpre) = ∅ (3)

= N × L(φ, πentry), otherwise

βI(φ, πexit) = 0, if φ = ¬φpost

= ∞, otherwise (4)

βI(φ, πk) = N × L(φ, πk)

Equation 3enforces the constraint that there is flexibility in choos-
ing the abstract element atπentry only if it is consistent withφpre,
i.e., the intersection of the setsγ(φ) and γ(φpre) is non-empty.
Equation 4enforces the constraint that the abstract element atπexit

must be¬φpost.

4. Derivation and the properties of the algorithm
In this section, we derive the algorithm described above by first
posing the program verification problem as a case of inference in
probabilistic graphical models, and then turning to one of the sim-
plest probabilistic inference techniques – Gibbs sampling – to per-
form inference. Properties of this algorithm have been extensively
studied in the literature, e.g., [20].

As discussed above, a program invariant we are searching for
is a set{φ̂k} which satisfies the constraints imposed by the pro-
gram instructions. Inference of program invariants can therefore be
viewed as optimization of the level to which these constraints are
satisfied. For example, if the abstraction is expressive enough, and
the program is correct (the precondition of the program indeed im-
plies the postcondition of the program), then all the constraints im-
posed by program instructions will be fully satisfied by the optimal
set{φ̂k}.

4.1 Discovery of program invariants through probabilistic
inference

Instead of a binary treatment of the constraint satisfaction (satisfied
or unsatisfied), we construct a real-valued functionf(φ0, φ1, ..., φK)

which attains a maximum value at the program invariant{φ̂k}, i.e.,

f(φ̂0, φ̂1, ..., φ̂K) = max f(φ0, φ1, ..., φK). (5)

Clearly, one such function would assign zero to any combination
of expressions that does not satisfy the program constraints, and
one to true program invariants (of which there could be several,
depending on the abstraction). However, as was indicated in the
previous section, and as will be discussed further later, in many
optimization techniques, it is important that the combinations{φk}
which onlypartially satisfy the constraints are assigned a non-zero
value corresponding to the level of constraint violation.

We can use the structure of the program to write the satisfac-
tion functionf as a product of factorsfi associated with different
program nodes. Each of these factors is a function of the appro-
priate set of variables describing the abstract elements before and
after the program node. We will denote byΦi the set containing the
appropriate pre- and post-execution states for thei-th factor, each
associated with the appropriate program node. Then, we define

f(φ0, φ1, ..., φK) =
Y

i

fi(Φi), (6)

and define each of the factorsfi(Φi) so that they reach their
maximum when the set of abstract elements inΦi are consistent
with the node between them. The graph consists of a number of
variables (in our case these variables describe abstract elements

φk for different program pointsπk), and factorsfi whose product
defines a global function of these variables.

The algorithm of the previous section is using factorsfi which
drop exponentially with the constraint violation penalty:

fi(Φi) = e−α(Φi) (7)

whereα(Φi) is defined to be sum of the inconsistencies of the
elements ofΦi multiplied byN .

For example, Figure2 shows how to visualize the structure of
such functions as a factor graph [18] for the program shown in
Figure 3(a). We haveΦ8 = {φ5, φ7, φ8}, andα(Φ8) = N ×
(M(φ5, φ8) + M(φ7, φ8)). (This is becausef8 is a join node,
which enforces the constraint thatφ5 ⇒ φ8 andφ7 ⇒ φ8.)

Given this function, we can formulate several interesting tasks
within the framework of inference in probabilistic graphical mod-
els. First, we can normalize the functionf by dividing it by a con-
stantZ (often called a partition function), so that the sum over all
possible combinations of expressionsφk within the abstraction of
interest is equal to one, i.e.,
Z =
P

φ0∈A
P

φ1∈A ...
P

φK∈A
f(φ0, φ1, ..., φK). This leads to

a probability distribution function

p(φ0, φ1, ..., φK) =
1

Z
f(φ0, φ1, ..., φK), (8)

whose sum over all possible combinations of expressionsφk is in-
deed equal to one, and whose maximum is still at the same optimal
set{φ̂k} (or a set of optima if there are more than one such set).
We can think of (one or more) optimal expression combinations
φ̂0, ..., φ̂K as very likely under this probability distribution.

In this paper we are especially interested in the case where some
of the program statesφk are given while others are hidden. For
example, the given states could be program asserts, including the
program pre-condition and post-condition (entry and exit beliefs).
We will denote byΦG the given states and byΦH the hidden states.
Some interesting questions that probabilistic inference techniques
can be employed to answer include:

• What is the most likely set of unobserved program states
ΦH if we are already given some statesΦG, e.g., ΦG =
{φentry, φexit}. In other words, what isarg max p(ΦH |ΦG),
wherep(ΦH |ΦG) denotes the conditional probability distrib-
ution over the abstract representations over program states in
ΦH?

• What are the other likely combinations of expressions forΦH

givenΦG, or in other words, can we draw several samples from
p(ΦH |ΦG)?2

Note that answers to these two questions (as well as other
probabilistic inference goals) are related. For example, if we can
sample from the conditional distribution, then we are likely to come
across the most likely states{φ̂k} sooner rather than later. Thus,
a search for the optimal state can be performed by sampling. In
fact, if all combinations of expressions{φk} that fully satisfy the
constraints have the total probabilityps under the distributionp,
then the probability of not discovering one of these combinations
when a single sample is drawn fromp is (1 − ps), and the chance
of missing it in n steps is(1 − ps)

n. Therefore, the probability

2 ”Drawing a sample from a distribution” refers to any randomized algo-
rithm which can produce many samplesφt

1, ..., φt
K , so that the fraction of

times a certain combinationφ1, ..., φK is achieved is expected to be equal
to p(φ1, ..., φK), i.e., limT→∞

PT
t=1[(φt

1, ..., φt
K) = (φ1, ..., φK)] =

p(φ1, ..., φK), with [] denoting and indicator function, which is equal to
one when the equality is satisfied and zero otherwise. Clearly such an algo-
rithm is going to be more likely to produce samples with high probability
under the distributionp.

of missing the solution will drop exponentially as more and more
samples are taken, and the speed of the drop will depend on the
level of the penalty for constraint violation, as this penalty controls
the probability of program invariants satisfying the constraints.

Over the last couple of decades, the machine learning commu-
nity has been developing general techniques for probabilistic infer-
ence that use the structure of the graphical model to optimize the
performance. These techniques include, for example, belief prop-
agation, variational techniques, and sampling techniques. Each of
these techniques has interesting provable and empirically discov-
ered properties, well documented in, among other places, some of
the papers we refer to in this paper. Some of these algorithms are
meant to estimate (or maximize) probabilities and not draw sam-
ples, and as such they are often deterministic, but may get stuck in
a local minimum of the optimization criterion. For a comparison of
several inference techniques on a simple visual example, see, for
example [9]).

4.2 Gibbs sampling

The algorithm described in the previous section is a form of one of
the simplest probabilistic inference techniques, known as Gibbs
sampling which, like many other probabilistic inference tech-
niques, has first been developed by physicists to compute the dis-
tribution over states of a physical system (see references in [20]).
We use this technique to draw samples from a distribution over
the program states at different program pointsp(φ1, ..., φk), un-
der the constraint that the boundary states at program asserts (or
just the beginning and the end) are equal to the given expressions
in ΦG. In other words, we sample from the conditional distribu-
tion p(ΦH |ΦG). We stop this process once we reach the program
invariant {φ̂k} which maximizes our satisfaction functionf . As
discussed above, since the combinations of program states{φk}
with higher levels of constraint satisfactionf are more likely than
the ones with less satisfaction (by construction ofp), this process
should generally attain the maximum off much sooner than a brute
force search for a program invariant.

The Gibbs sampling algorithm consist of iteratively updating
each of the expressionsφk while keeping others fixed. To make
the discussion more concrete, and without lack of generality, we
assume for the rest of this section that we are given the program’s
entry stateφentry and exit stateφK = φexit, and we need to find
the rest of the expressionsφ1, ..., φK−1 that satisfyφ0 andφK ,
just as in the algorithm in Figure 1. The process is started from an
arbitrary initialization ofφ1, ..., φK−1. Then, a series of updates
is performed. In each update, one of the current expressionsφj ,
j ∈ {2, 3, ..., K − 1} is replaced by asamplefrom the conditional
distribution p(φj |φ1, ..., φj−1, φj+1, ..., φK}. It is easily shown
that,

p(φj |φ1, ..., φj−1, φj+1, ..., φK} =
1

Zj

Y

i|φj∈Φi

fi(Φi), (9)

where Zj is a scaling constant that normalizes the product of
factors involving the expressionφj . Using the factors of the form
Equation 7, we get:

p(φj |φ1, ..., φj−1, φj+1, ..., φK} =
1

Zj
e
−
P

i|φj∈Φi
α(Φi)

=
1

Zj
e−β(φj ,πj), (10)

whereβ is the penalty function described in the previous section.
Computing this function given the program states at neighboring
points is simple, and we can think of this step as satisfying with
high probability the requirement that the belief about the state of
the program at a program point should be “sandwiched” between

the appropriate pre- and post-conditions of the neighboring instruc-
tions, which only depend on the current belief about the state of the
small number of neighboring program points.

One appealing property of Gibbs sampling is that, under the
assumption that the current sampleφt

1, ..., φ
t
K−1 has been drawn

from the desired distributionp(φ1, ..., φK−1|φ0, φK), replacing
one of the expressionsφt

j by a sampleφt+1
j drawn from the con-

ditional distributionp(φj |φ1, ..., φj−1, φj+1, ..., φK} will also re-
sult in the new updated sampleφt

1, ..., φ
t
j−1, φ

t+1
j , φt

j+1, ..., φ
t
K−1

drawn from the target distributionp(φ1, ..., φK−1|φ0, φK).
This means that the desired distribution is a stationary distri-

bution of this process, i.e., if at any given time the process starts
producing samples from the desired distribution, it will continue to
do so. In addition, it has been shown that as long as the distribu-
tion p is non-zero everywhere, this process will indeed reach this
fixed distribution [20], regardless of how the states are initialized.
After that point, and usually even earlier, the most likely configu-
ration of expressionŝφ2, ..., φ̂K−1 is likely to be reached, with the
probability of missing the solution dropping exponentially as more
and more samples are taken. If the constraint violation penalties
are high, the probability of sampling a true program invariant will
be higher, and the speed of convergence faster. But, on the other
hand, if many combinations of program states are highly penal-
ized, the sampling process may get trapped - the samples can get
isolated by zero probability regions around them, making it difficult
to sufficiently improve them to cross into the regions of the space
of the combinations of program states which satisfy the program
constraints even better.

Some of the properties of the Gibbs sampling algorithm studied
in the machine learning literature are rather intuitive. For instance,
since the updates are incremental, it is beneficial to use smooth
target functions (f andp, which are equivalent in terms of their
maxima as they differ only by a constant scaling factor). In addi-
tion, in order to guarantee that the procedure can reach all possible
combinations of program states expressible in the abstraction do-
main, we should not assign zero probability to any combination of
the expressionsφk. This is why the factorsfi should be crafted so
thatfi ∈ [ε, 1]3, and so that the expressions that differ a little have
similar values, with the ones better satisfying the constraint having
higher values, and the ones fully satisfying it having the highest
value of 1. Therefore, it is important to use penaltiesα, β that are
smooth and finite to guarantee that the sampling process will in-
deed traverse the space of possible program states fast enough and
avoid getting stuck far from the solution.

5. Discussion
In this section, we discuss several interesting aspects of the sim-
ple learning based algorithm. For this purpose, we consider the
program shown inFigure 3with its pre/postcondition pair, as an
example. We first show why several existing techniques (with the
exception of a recently proposed technique) fail to work well on
this example program. We then discuss the interesting aspects of
our algorithm that enable it to reason about this example.

5.1 Limitations of Other Techniques

Reasoning about the validity of the program inFigure 3requires
discovering the following invariants at program pointπ2:

(x ≥ 50 ∨ y = 50) ∧ (x < 50 ∨ x = y) ∧ (x ≤ 100)

A simple forward abstract interpretation [3] based analysis over
the polyhedron abstract domain will fail to validate the example

3 Equivalently, penaltiesα andβ should be zero or positive, but finite

φexit
= φ9

φ1

φ2

φ3

φ4 φ6

φ5 φ7

φ8

φentry
= φ0

f1

f2

f3

f5 f7

f8

f9

f4 f6

Figure 2. Factor graph of the program shown in Figure3(a).

program since it only computes invariants that are conjunctions of
linear inequalities [6].

Recently, Gulavani and Rajamani have proposed a technique [11]
based on counterexample driven refinement for abstract interpreta-
tion that can compute disjunctive invariants like the ones required
for the example program [11]. The key idea of their technique is
to keep track of precision losses during forward fixed-point com-
putation, and do a precise backward propagation from the error to
either confirm the error as a true error, or to use refinement tech-
niques (in particular, replacing a widen operation by a disjunction)
so as to avoid the false error. The key to discovering the invariant
x < 50 ∨ x = y is to realize that when the false branch of the
if-condition is entered for the first time, then the value ofx is 50.
However, their refinement technique would only allow for discov-
ering that when the false branch of the if-condition is entered for
the first time thenx ≥ k, in thekth stage of their refinement loop
(for k ≤ 50). Hence, their technique will take 50 refinement stages
to discover the loop invariantx ≤ 50∨x = y, which is required to
prove the correctness (and if this constant50 were larger, it would
a take a proportionally larger number of refinement steps). How-
ever, interestingly enough, their approach is able to work well on
a modification of this example, in which all constants are replaced
by symbolic constants.

Predicate abstraction [10] techniques based on counter-example
driven refinement (like SLAM [1], BLAST [15], or [2]) are also
able to discover such disjunctive invariants like the ones required
for the example program. However, the success of these tools on a
given problem is contingent on being able to find the right predi-
cates. For the example program, these tools would go into a pred-
icate refinement loop discovering unnecessary predicatesx = 1,
x = 2, x = 3, and so on, one by one. The number of refinement
steps required for this particular example would be100, (and po-
tentially infinite, if these constants were larger or were symbolic
constants).

Recently, Jhala and McMillan have proposed a predicate refine-
ment approach based on interpolants [16], wherein the search of
interpolants is restricted to a richer class of languages in succes-
sive stages of their algorithm. The choice of the languagesLk that
they suggest involves all predicates that contain numeric constants
no larger in absolute value thank from the constants that already
occur in the program. Since the predicates required to prove the
correctness of the example program belong toL1, their technique
will be able to prove the correctness of the example program.

5.2 Interesting Aspects of the Algorithm

Note that predicate abstraction techniques, for a given set of pred-
icates, compute invariants that are arbitrary boolean combination
of the given set of predicates. However, an alternative thing to do
would be to restrict the size of the formulas as opposed to restrict-
ing the set of predicates. The issue that arises with such an alter-
native is how to choose between the huge number of solutions that
fit in the restricted size. We resolve this issue by performing both
forward and backward analysis at the point where the abstract ele-
ment is to be updated, instead of just performing a forward-only or
backward-only analysis. More formally, we compute both weak-
est preconditionPre(π) and strongest postconditionPost(π) at
the pointπ to be updated. We then choose a random solutionφ that
minimizes the inconsistency of the relationshipsPost(π) ⇒ φ and
φ ⇒ Pre(π) 4 (since there may not be one with same level of in-
consistency). This simple idea has several interesting aspects to it,
which enable it to discover the proof of validity of the example pro-
gram. We elaborate on these interesting aspects below, by taking as
examples parts of proof searches generated by an implementation
of our algorithm. In our examples, we consider the abstract domain
A to consist of all boolean formulas that involve at most 3 clauses
(conjuncts), with each clause being a disjunction of at most 2 dif-
ference constraints.

Combination of Forward and Backward AnalysesThe generic
framework of our learning-based algorithm allows for combining
the complementary powers of forward and backward analyses in
a simple manner to obtain a strictly more precise analysis. While
updatingφk, our algorithm involves computing bothPost(πk)
andPre(πk). Post(πk) represents the forward flow of information
from the immediate predecessors ofπk, while Pre(πk) represents
the backward flow of information from the immediate successors of
πk. A forward analysis would simply consider the setPost(πk) and
use some heuristic to choose some abstract elementφ ∈ A such
thatPost(πk) ⇒ φ. Our framework allows the forward analysis to
guide its choice ofφ by giving more preference to choicesφ such
that the inconsistency ofφ ⇒ Pre(πk) is minimized. Similarly,
a backward analysis, which only considersPre(πk), can also use
immediate guidance fromPost(πk) in our framework.

For example, consider the program shown inFigure 3. Suppose
φ8 is to be updated, and the abstract elements (which in this case
are boolean formulas) at neighboring points ofπ8 are as follows:5

φ5 = (x ≥ 0) ∧ (x ≤ 50) ∧ (y = 50)

φ7 = (x ≥ 51) ∧ (x ≤ 100) ∧ (x = y)

φ2 = (x < 100 ∨ y = 100)

The above selection of abstract elements at program pointsπ5,
π7, andπ2 would also arise if two rounds of forward analysis and

4 More formally, the inconsistency ofPost(π) ⇒ φ means the minimum
of the inconsistencies ofφ′ ⇒ φ (i.e.,M(φ′, φ)) for anyφ ∈ Post(π).
Similarly, the inconsistency ofφ ⇒ Pre(π) means the minimum of the
inconsistencies ofφ ⇒ φ′ (i.e.,M(φ, φ′)) for anyφ ∈ Post(π).
5 For a discussion on how the predicate x=y is discovered by our algorithm,
see the discussion under the headingRandom Choices on Page8.

φpre: x = 0

πentry

y := 50;

False

π1

φpost: y = 100

x := x +1;
y := y +1;

x := x +1;

x < 50

x < 100

True

True False

π2

π3

π4
π6

π5 π7

πexit

π8

(a) Program

Program Invariant
Point
π0 x = 0
π1 (y = 50) ∧ (x = 0)
π2 (y = 50 ∨ x ≥ 50) ∧ (y = x ∨ x < 50) ∧ (y = 100 ∨ x < 100)
π3 (y = 50 ∨ x ≥ 50) ∧ (y = x ∨ x < 50) ∧ (y = 99 ∨ x < 99)
π4 (y = 50) ∧ (x < 50)
π5 (y = 50) ∧ (x < 51)
π6 (x ≥ 50) ∧ (y = x ∨ x < 50) ∧ (y = 99 ∨ x < 99)
π7 (x > 50) ∧ (y = x ∨ x < 51) ∧ (y = 100 ∨ x < 100)
π8 (y = 50 ∨ x ≥ 50) ∧ (y = x ∨ x < 50) ∧ (y = 100 ∨ x < 100)
π9 y = 100

(b) Proof of validity.

Program Invariant
Point
π0 x ≥ 100
π1 (x ≥ 100) ∧ (y = 50) ∧ (y − x ≤ −1)
π2 (x ≥ 100) ∧ (y − x ≥ 1 ∨ y 6= 100)
π3 false
π4 false
π5 false
π6 false
π7 false
π8 false
π9 y 6= 100

(c) Proof of invalidity when preconditionφpre is changed totrue.

Figure 3. (a) shows an example program with pre and post conditions. (b) describes the proof of validity, which consists of invariants at
each program point such that the invariants can be locally verified. (c) describes the proof of invalidity when preconditionφpre is changed to
true.

two rounds of backward analysis have been performed around the
loop. Note thatPost(π8) andPre(π8) can be represented by the
following formulas:6

Post(π8) : (x ≥ 0 ∧ x ≤ 50 ∧ y = 50) ∨
(x ≥ 51 ∧ x ≤ 100 ∧ x = y)

Pre(π8) : (x < 100 ∨ y = 100)

Observe thatPost(π8) is equivalent to the following formula
in conjunctive normal form, where each of the clauses is non-
redundant.7

(x ≤ 100) ∧ (x ≤ 50 ∨ x = y) ∧
(x ≥ 0) ∧ (y = 50 ∨ x ≥ 51)

Note that we have fixed the abstract domainA to consist of Boolean
formulas involving at most 3 clauses, with each clause being a
disjunction of at most 2 difference constraints. Dropping any one
of the above 4 clauses yields an optimal over-approximation to
Post(π8) that is an element ofA. However, note that the first

6 Technically,Post(π8) andPre(π8) are sets of abstract elements. Hence,
more formally, this means that any maximally strong formula that belongs
to the abstract domainA and is implied by the formula corresponding to
Post(π8) belongs toPost(π8). Similarly, any minimally strong formula
that belongs to the abstract domainA and implies the formula correspond-
ing toPre(π8) belongs toPre(π8).
7 The clausey = 50 ∨ x = y is redundant since it it implied by the
conjunction of the given4 clauses.

two clausesx ≤ 100 and (x ≤ 50 ∨ x = y) are required
to provePre(π8). Hence, taking this guidance fromPre(π8), the
forward analysis should include the first two clauses in its over-
approximation ofPost(π8). This is what our algorithm also does.

No distinction between Forward and Backward Information
One way to combine forward and backward analyses is to maintain
the following two separate pieces of information at each program
point, and use them to guide each other.

• Forward information: Over-approximation of program states
that result when the program is executed under precondition.
This is computed by the forward analysis.

• Backward information: Under-approximation of program states
that ensure that the program will terminate in a state satisfying
the postcondition. This is computed by the backward analysis.

The over-approximation process may take guidance from the back-
ward information to ensure that the over-approximation at a pro-
gram point is not weaker than the under-approximation computed
at that point. (Similarly, the under-approximation process may take
guidance from the forward information to ensure that the under-
approximation computed at a program point is not stronger than
the over-approximation computed at that point.) If these constraints
cannot be met, they signal the presence of an excessive over-
approximation or excessive under-approximation at some program
point, which needs to be fixed. By excessive over-approximation,
we mean that the invariants computed are weaker than those that

are necessary to prove the postcondition. (Similarly, by excessive
under-approximation, we mean that the obligations that need to
be established are stronger than what is indeed true of the pro-
gram under precondition.) Unless the excessive nature of the over-
approximation or under-approximation information is fixed, the
forward or backward analysis cannot prove the validity of the
pre/postcondition pair. The main issue however is to figure out the
program points where this happened. We can only design heuristics
for this purpose, which may work well for some examples and may
not work well for other examples.

Our technique addresses this issue in an interesting manner.
Observe that if there is no excessive over-approximation (with
respect to precondition) and no excessive under-approximation
(with respect to postcondition), then the under-approximation
information is a valid over-approximation (assuming that the
pre/postcondition pair is valid). Similarly, if there is no excessive
under-approximation, then the over-approximation information is a
valid under-approximation. To summarize, when no mistake occurs
(i.e., both the under-approximation and the over-approximation are
not excessive) the under-approximation is an over-approximation,
and the over-approximation is an under-approximation. Then, why
distinguish the two? Our technique thus maintains one piece of in-
formation at each program point, which is its guess for the correct
invariant (= unexcessive over-approximation = unexcessive under-
approximation) at that program point. Now, this guess may actually
be the correct invariant (i.e., it is established by the precondition
and is enough to establish the postcondition), or it may be an exces-
sive over-approximation (i.e., weaker than the invariant required to
establish the postcondition) or an excessive under-approximation
(i.e., it may be stronger than what is true when the precondition
holds). The challenge now is that we do not really know which of
this is true. The only thing that we know is whether or not these
guesses are consistent with the neighboring guesses. However, cor-
rections automatically creep in as the algorithm makes progress
trying to make the guesses more consistent with their neighbors,
wherein the guesses can get strengthened as well as weakened.
Contrast this with the above case where the forward and backward
information is kept separate. In that case, inconsistency is in the
form of the over-approximation getting weaker than the under-
approximation (however, each of the two pieces of information are
individually consistent with the corresponding information at the
neighboring nodes). But when an inconsistency is detected, it has
to be fixed before a proof can be discovered.

It is also interesting to contrast our technique (which maintains
one piece of information at each program point) with the backward-
only technique (which also maintain only one piece of information
at each program point). Note that if in the backward analysis, the
under-approximation becomes excessive (i.e., stronger than what is
really true about the program at that point given the precondition),
validity of pre/postcondition pair cannot be established. Compara-
tively, if the information computed by our technique is an exces-
sive under-approximation, it will have a chance of recovery (i.e.,
it has the potential to get strengthened by forward flow of infor-
mation, which does not happen in a backward-only analysis). A
similar comparison holds with the forward-only technique.

As an example, we discuss below how the invariantx < 50 ∨
x = y gets discovered at program pointπ2 after it is excessively
under-approximated tox = y at some stage, in one of the proof
searches seen in our experiments. The following is a snapshot of
the formulas that were found at some step during the proof search.

φ1 = (x = 0) ∧ (y = 50)

φ2 = (x = y) ∧ (x < 100 ∨ y = 100)

φ3 = φ6 = (x < 99 ∨ y = 99) ∧ (x 6= 98 ∨ y = 98)

φ4 = (x < 99 ∨ y = 100) ∧ (x 6= 98 ∨ y = 99)

φ5 = φ7 = φ8 = (x < 100 ∨ y = 100) ∧ (x 6= 99 ∨ y = 99)

Snapshot 1

Observe that the above snapshot at program pointsπ3,π4,π5,π6,
and π7 makes sense from a backward analysis point of view,
wherein, if the postconditiony = 100 is pushed backward through
the loop two times, we get the above configuration. The above
value of φ2 is an under-approximation ofPre(π2), which is
(x 6= 99∨ y = 99)∧ (x 6= 98∨ y = 98)∧ (x < 100∨ y = 100).
However, it is an excessive under-approximation sincex = y is
not always true atπ2. Now, if this were a pure backward analy-
sis, then the validity of the program cannot be established after
Pre(π2) is under-approximated to the above value ofφ2. On the
contrary, our algorithm is able to recover from such an excessive
under-approximation because the information at a program point
gets updated from both forward and backward directions (which
results in weakening and strengthening of the information respec-
tively). In this particular case, our algorithm chooses to update
φ8, φ7, φ6, φ3 (but notφ5 andφ4) which changes the above snap-
shot as follows (This can still be seen as backward propagation of
information fromφ2).

φ1 = (x = 0) ∧ (y = 50)

φ2 = (x = y) ∧ (x < 100 ∨ y = 100)

φ3 = (x < 50 ∨ x = y) ∧ (x < 99 ∨ y = 99)

φ4 = (x < 99 ∨ y = 100) ∧ (x 6= 98 ∨ y = 99)

φ5 = (x < 100 ∨ y = 100) ∧ (x 6= 99 ∨ y = 99)

φ6 = (x = y) ∧ (x < 99 ∨ y = 99)

φ7 = φ8 = (x = y) ∧ (x < 100 ∨ y = 100)

Snapshot 2

Observe thatPre(π2) now is (x ≥ 100 ∨ x < 50 ∨ x =
y) ∧ (x < 100 ∨ y = 100). Now, the algorithm (randomly)
decides to updateφ2 and detects that it is inconsistent from the
forward direction, but it can be made consistent in both directions
by updating it to:

φ2 = (x < 50 ∨ x = y) ∨ (x < 100 ∨ y = 100)

Note that the discovery of invariantx < 50∨x = y atπ2 is crucial
in order to validate the program. There are two crucial things to
observe as to how the algorithm discoveredx < 50 ∨ x = y at
π2 in the above instance. Observe thatφ5 and henceφ4 did not get
updated, and that the algorithm tried to weakenφ2 to make it more
consistent in the forward direction, and was able to find something
that made it fully consistent in both directions.

Random choices An important aspect of the algorithm is that it
makes some random choices.

One of the random choices that the algorithm makes is to decide
which program point to update. Observe that in the above proof
search instance, ifφ4 also got updated at the same time when
φ8, φ7, φ6 and φ3 got updated between snapshot1 and 2, the
algorithm might have chosen something else forφ2 because then it
would not have been possible to choose anything forφ2 that makes
it consistent in both directions. There is no clear strategy to decide
in which order to update the program points. Hence, randomness
plays an important role here.

However, the interesting thing is that the chances of such inci-
dents happening, though small, are not rare. For example, another
sequence of updates that we saw in another proof search in pro-
ducing the invariant(x < 51 ∨ x = y) at program pointπ2 after
snapshot1 is as follows. The formulasφ4 andφ5 get updated with
the forward information fromφ3. Then,φ3, φ6 andφ7 get updated

φpre: true

πentry

x := 0; m := 0;

False

π1

φpost: (m≥0 ∨ n· 0) ∧
(m<n ∨ n·0)

m := x;

x := x +1;

*

x < n

True

π2

π3

π4

π6

π5

π7

πexit

π8

Program Invariant
Point
π0 true
π1 (x = 0) ∧ (m = 0)
π2 (x ≥ 0 ∨ n ≤ 0) ∧ (m ≥ 0 ∨ n ≤ 0) ∧ (m < n ∨ n ≤ 0)
π3 (x ≥ 0 ∨ n ≤ 0) ∧ (m ≥ 0 ∨ n ≤ 0) ∧ (m < n ∨ n ≤ 0)
π4 (x ≥ 0 ∨ n ≤ 0) ∧ (m < n ∨ n ≤ 0)
π5 (x ≥ −1 ∨ n ≤ 0) ∧ (m ≥ 0 ∨ n ≤ 0) ∧ (m < n ∨ n ≤ 0)
π6 (x ≥ −1 ∨ n ≤ 0) ∧ (m ≥ 0 ∨ n ≤ 0) ∧ (m < n ∨ n ≤ 0)
π7 (x ≥ −1 ∨ n ≤ 0) ∧ (m ≥ 0 ∨ n ≤ 0) ∧ (m < n ∨ n ≤ 0)
π8 (x ≥ 0 ∨ n ≤ 0) ∧ (m ≥ 0 ∨ n ≤ 0) ∧ (m < n ∨ n ≤ 0)
π9 (m ≥ 0 ∨ n ≤ 0) ∧ (m < n ∨ n ≤ 0)

(a) Program (b) Proof of validity

Figure 4. (a) shows an example program with pre and post conditions. (b) describes the proof of correctness, which consists of invariants at
each program point such that the invariants can be locally verified.

based on the forward information fromφ2. This results in the fol-
lowing snapshot:

φ1 = (x = 0) ∧ (y = 50)

φ2 = (x = y) ∧ (x < 100 ∨ y = 100)

φ3 = (x < 100) ∧ (x = y)

φ4 = (x < 50)

φ5 = (x < 51)

φ6 = (x ≥ 50) ∧ (x < 100) ∧ (x = y)

φ7 = (x ≥ 51) ∧ (x < 101) ∧ (x = y)

Now, φ8 is updated to the following formula to minimize its local
inconsistency atπ8 (which is a function ofφ5, φ7, andφ2):

(x < 51 ∨ x = y) ∧ (x < 101)

This is followed byφ2 getting updated toφ8 to minimize the local
inconsistency. The crucial point in the above sequence of updates
is thatφ4 andφ6 get updated from choice ofφ3 beforeφ3 gets
updated from choice ofφ2.

The other random choice that the algorithm makes is in choos-
ing the abstract element at a given program pointπk. It is possible
that there are several abstract elements that are locally consistent
atπk, but some of those choices may be better than the others. For
example, consider the following snapshot that arose in one of the
proof searches in our experiments.

φ1 = (x = 0) ∧ (y = 50)

φ3 = (x < 99 ∨ y = 99) ∧ (x 6= 98 ∨ y = 98) ∧
(x 6= 97 ∨ y = 97)

φ8 = (x < 100 ∨ y = 100) ∧ (x 6= 99 ∨ y = 99) ∧
(x 6= 98 ∨ y = 98)

Pre(π2) can be represented by the following formula:

(x < 100 ∨ y = 100) ∧ (x < 97 ∨ x > 99 ∨ x = y)

Note that we have fixed the abstract domainA to consist of Boolean
formulas involving at most 3 clauses, with each clause being a
disjunction of at most 2 difference constraints. Hence, dropping
any one or more of the disjuncts from the clause(x < 97 ∨ x >
99 ∨ x = y) would satisfy the size restriction. However, guidance
from Post(π2) suggests thatx < 97 must be included to minimize
the inconsistency. Thus, the following 3 are good choices forφ2.

Choice 1 : (x < 100 ∨ y = 100) ∧ (x < 97)

Choice 2 : (x < 100 ∨ y = 100) ∧ (x < 97 ∨ x > 99)

Choice 3 : (x < 100 ∨ y = 100) ∧ (x < 97 ∨ x = y)

Choice 3 is better than the other two choices since it yields the
important predicatex = y required later to discover the invariant
x < 50 ∨ x = y. Since there is no clear strategy what to choose,
randomness plays a crucial role here.

6. Case Study: Boolean Combinations of
Difference Constraints

We implemented the learning algorithm for programsP whose
assignment statementss and conditional predicatesp have the
following form:

s : x := e

p : x = e | x 6= e | x < e | x > e | x ≤ e | x ≥ e

e : c | y + c

Herex andy refer to some integer program variables, whilec refers
to some integer constant. The predicatesp as defined above are also
calleddifference constraints.

We chose the abstract domainA whose elements are boolean
combinations of difference constraints among program variables.
In particular, for computational reasons, we restricted the abstract
domainA to include boolean formulas with a specific template,
namely boolean formulas that when expressed in a conjunctive
normal form have at mostm conjuncts, and each conjunct having
at mostn disjuncts, each of which is a difference constraint (also
referred to asm × n). In our experiments that are described in
Section 6.1, we chosem ∈ {3, 4, 5} and n ∈ {2, 3}. Such a
template choice is also justified by the fact that most programs are
correct for simple reasons, and their proof of validity is expressible
using some appropriate small representation.

We used the following inconsistency measure on the above
abstract domainA. The inconsistency ofM(φ, φ′) is the sum of
the inconsistencies ofM(φ, Ci) for each clauseCi in φ′, divided
by the total number of clauses inφ′.

M(φ,

m̂

i=1

Ci) =

mX

i=1

1

m
×M(φ, Ci)

The inconsistencyM(φ, Ci) is proportional to the number of
disjunctsDj in the disjunctive normal form ofφ that do not imply
clauseCi.

M(

k_

j=1

Dj , Ci) =

kX

j=1

1

k
×M(Dj , Ci)

The inconsistency ofM(Dj , Ci) is defined to be0 or1 depend-
ing on whetherDj ⇒ Ci or not respectively.

We implemented Line4 in the FindProof procedure as fol-
lows. We considered the set of abstract elements that minimize the
penalty at program pointπk (given Post(πk) and Pre(πk)) and
chose an element randomly from it. However, in order to expe-
dite the convergence process, we implemented a simple version of
widening and narrowing, which can be regarded as choosing ab-
stract elements that do not minimize the penalty with a lesser prob-
ability.

6.1 Experiments

We have built a prototype tool in C calledMagic8. We describe
our preliminary experience with this tool on the two programs
shown inFigure 3andFigure 4. We do not know of any current
tool that can automatically generate the proof of validity of the
example inFigure 3. The program inFigure 4was chosen as a
contrasting example - its structure resembles very closely to that
of the program inFigure 3, but it is easier to validate, and has
been used as a motivating example for some existing verification
techniques [19, 11]. Figure 5 contains histograms of the numbers
of updates over different runs of our tool on these programs. For
different algorithm parameters, we ran our tool 200 times and
recorded average number of updates per program point needed to
discover the invariant. The figures show histograms of the number
of updates over the 200 tests: the y-axis shows the number of runs
that ended up in the average number of runs within the boundaries
of the bin centered at the values on the x-axis.

Proof of validity of example in Figure3 We first ran our tool on
the program shown inFigure 3(a) with the constants50 and100
replaced by the bigger constants5000 and10000 respectively. We
chose the size of boolean formulas over difference constraints as
4 × 3 (i.e., at most 4 clauses, with each clause having at most
3 disjuncts in the CNF representation). Our tool is successfully
able to generate the proof of validity of this example. One such

8Magic is an acronym for Machine-learning based Automatic Generation
of Invariants in Code

proof is shown inFigure 3(b). The chart in Figure5 shows the
average number of updates (per program point) required to discover
the proof of validity over 200 different runs of the algorithm. For
example, the first dark bin in Figure5(a) has 105 of the 200 tests
and is centered at 150 updates per program point, which means
that around 50% of cases needed around 150 updates before the
program invariant is found, on the other hand 38 of the 200 tests
needed between 200 and 300 updates before convergence. The
graph shows that it is unlikely to have to run the tool for longer than
500 updates per program point before discovering the invariant.

Incremental proof of validity At the end of each of the 200 runs
of the tool in the above case, we changed the program slightly (we
replaced occurrences of the constant 5000 by 6000) and continued
the algorithm (with its current state of formulasφk at each program
pointπk) to discover the proof of validity of the modified program.
Observe that the modified program requires a small change in the
proof of validity. The goal of this experiment was to illustrate that
the algorithm is smart enough to converge faster if starting from a
partially correct proof as opposed to starting from scratch. This is
indeed what we find experimentally: the gray histogram shows the
distribution of the number of additional updates the tool needed
to refine the invariant. On average, the 200 tests starting from
scratch required 235 updates per program point to discover the
invariant, but recovering from a small program change required on
average additional 195 updates. The trend is statistically significant
(p < 10−3).

Effect of program constants One way to discover the proof of
validity is to run the program fully, i.e. to run through the program
loops until all the termination conditions are fulfilled and the end
of program is reached. However, our algorithm always finds true
invariants in a manner different than this. To show this, we rerun
the tool 200 times using a smaller constants (this time using the
constants50 and 100, as is the case in the program shown in
Figure 3(a)) as shown in loop termination conditions to see how
this would affect the program. The distributions over the number of
updates did not differ significantly between the two cases. In fact,
under a randomized pairing, we found that the verification of the
program with the larger constant terminated faster than that of the
one with a smaller constant in 101 out of 200 tests. This agrees
with our visual inspection of the results which show qualitatively
the same invariants found in both cases (only the constants are
different), but it also indicates that the tool is highly unlikely to go
through the entire loop before getting a clue about what an invariant
should be.

Changing template of boolean formulasNext, in Figure5(b), we
compare the number of updates per program point for the tools that
use different size of the abstract representationφk at each program
point. The dark histogram is the same as in (b), while the gray his-
togram corresponds to the tests with larger representation (5× 3),
and the white histogram corresponds to the smaller representation
(3 × 2). The important conclusion is that using tight representa-
tion (of exactly the right size), reduces the tool’s ability to reach
all possible expression combinations. When the representation is
larger, then the extra room effectively smoothes the probability dis-
tribution by making it possible to express the invariant in multiple
redundant ways.

Proof of validity of example in Figure4 To illustrate that the
algorithm performance will depend on the difficulty of the program,
we also ran our algorithm on second verification problem, known
to be verifiable by other techniques [19,11]. Figure5(c) shows the
histogram of the number of updates for this problem. Even though
the number of program points is the same, and the tool’s settings

150 250 350 450 550 650 750 850 950
0

20

40

60

80

100

120

140

updates per program point

te

st
s

150 250 350 450 550 650 750 850 950
0

50

100

150

200

updates per program point

te

st
s

(a): Proof/Incremental Proof of Validity of program inFigure 3 (b): Different sizes of boolean formulas

10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

updates per program point

te

st
s

100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

#updates per program point

te

st
s

(c) Validity proof of program inFigure 3 (d) Invalidity proof of program inFigure 4

Figure 5. The distribution over the number of updates in the Gibbs sampling algorithm before the program invariant is discovered. Dark
bins in (a) show the histogram over the runs that all used a slightly enlarged representation than necessary (4× 3 instead of 3×2, which is
sufficient to represent invariants. This version converges the fastest among the ones we tried. The gray bins in (a) show how many updates are
typically necessary to change the found invariant into a new one that satisfy a slightly changed program. Since the invariant does not change
significantly, the number of updates per program point is lower than it is when the sampling is started from scratch. In (b) we illustrate the
effect of the limit on the size of the abstract representation to program convergence. Gray denotes lot of extra room (5× 3), black denotes
some extra room (4× 3), and white denotes tight space (3× 2). In (c) we show the update histogram for solving the second verification
problem, and in (d) the update histogram for solving the invalidity problem.

were the same, this problem is easier, and the algorithm discovers
the invariant much faster.

Proof of Invalidity of Example 1 Finally, in Figure 5(d), we
illustrate the performance on the invalidity proof of the program in
Figure 3when its precondition is changed totrue. This is to show
that our tool works equally for discovering proofs of invalidity
as well proofs of validity (under the assumption that the program
terminates on all inputs). Figure3(c) shows one of the proofs of
invalidity generated by our tool. In a different invalidity proof, the
tool even generated the weakest conditionx ≥ 51 atπentry.

7. Related Work
The idea of applying machine learning techniques in programming
languages has been used recently, though for the different problem
of discovering small programs given input-output pairs [17]. In
this paper, we use machine learning techniques for the problem of
program verification.

Combination of Forward and Backward AnalysesCousot and
Cousot proposed a technique to combine forward and backward
analyses by refining the over-approximation of the intersections
of precondition and negated postcondition by an iterative forward
and backward analysis [4, 5]. Dill and Wong Toi proposed a dif-
ferent kind of forward-backward combination that consists of com-
puting separate upper-approximation and lower-approximation of
precondition and postcondition respectively [8]. Leino and Lo-
gozzo also combine the forward inference procedure with the goal-

driven nature of going backward by invoking the forward analysis
along infeasible error traces reported during a backward analysis
in the hope of generating stronger loop invariants to rule out those
traces [19]. We have a different kind of forward and backward com-
bination in which we do not distinguish between the forward and
backward information, and information flows in both forward and
backward directions in each step of the algorithm.

Predicate abstraction with counter-example guided refinement
This technique involves using a model-checker to compute an over-
approximation of a set of reachable states of a program using
boolean formulas over a given set of predicates. If this set of reach-
able states intersects with the set of error states, the model-checker
provides a counter-example. A theorem prover is then used to
check the validity of that counter-example. If the counter-example
is found to be invalid, the proof of invalidity provides additional
predicates that should be considered to avoid this counterexample
next time. The process is then repeated with these new set of pred-
icates.

There are some interesting differences between this technique
of predicate abstraction with counter-example guided refinement
and our technique.

• Computation of reachable states can be regarded as a forward
analysis, while counter-example discovery and its feedback to
refine the set of predicates can be regarded as a backward
analysis. However, this forward analysis and backward analysis
happens in two different phases. Our forward and backward

analysis is more tightly integrated and happens in one phase,
thus providing an immediate feedback.

• Predicate abstraction is limited to computing invariants using a
given set of predicates inside a fixed iteration. However, our
technique is not limited to considering a fixed set of predi-
cates during any step. The only restriction is that the invariant
at any program point should come from some language whose
elements can be represented finitely. For example, in our im-
plementation, we choose this language to consider all Boolean
formulas with bounded number of clauses, with each clause be-
ing a disjunction of bounded number of difference constraints.
Such a choice of language in our technique has the ability to
consider the space of all predicates (but boolean formulas of
bounded size) as opposed to predicate abstraction, which con-
siders a fixed set of predicates (but arbitrary boolean formulas
over them).

Interpolants Line4 in the procedureFindProof in our algorithm
involves choosing an abstract elementφ′ ∈ A at program point
π, such thatφ′ is likely to be least inconsistent withφ and φ′′,
whereφ =

V

φ̃∈Post(π)

φ̃ andφ′′ =
W

φ̃∈Pre(π)

φ̃. More formally, this

means that we want to findφ′ such that the set of program states
that violateφ ⇒ φ′ or φ′ ⇒ φ′′ is minimal.9 We refer to such a
process as thesandwichstep.

The sandwich step in our algorithm can be viewed as a gener-
alization of the well-known interpolant procedure in theorem prov-
ing. Given a pair of formulas〈φ1, φ3〉 such thatφ1 ⇒ φ3, an inter-
polant for〈φ1, φ3〉 consists of a formulaφ2 such thatφ1 ⇒ φ2,
φ2 ⇒ φ3, and φ2 ∈ L(φ1) ∩ L(φ3). The Craig interpolation
lemma [7] states that an interpolant always exists whenφ1 andφ3

are formulas in first-order logic.
The sandwich step in our algorithm generalizes the interpolant

problem in several dimensions in the context of abstract computa-
tion over programs. Instead of enforcing thatφ2 ∈ L(φ1)∩L(φ3),
the sandwich step imposes the constraint thatφ2 ∈ A, for any given
languageA. Furthermore, the sandwich step does not insist that the
inputsφ1 andφ3 satisfyφ1 ⇒ φ3. The immediate consequence of
(either of) these generalizations is that the existence ofφ2 such that
φ1 ⇒ φ2 andφ2 ⇒ φ3 is no longer guaranteed, even whenφ1 and
φ3 are formulas in first-order logic. However, the sandwich step in-
sists on finding a formulaφ2 that fits as best as possible between
φ1 andφ3, i.e., the number of program states that violateφ1 ⇒ φ3

or φ3 ⇒ φ2 is minimal.
Jhala and McMillan have recently proposed a predicate refine-

ment [16] approach based on interpolants, wherein the search of
interpolants is restricted to a richer class of languages in successive
stages of their algorithm. This is similar to one of the generaliza-
tions of the interpolant problem mentioned above, whereinφ2 is
constrained to belong toA. However, the choice of the languages
suggested in Jhala and McMillan’s work is quite different from the
languageA that we use in our implementation. Their languageLk

involves predicates that contain numeric constants no larger in ab-
solute value thank from the constants that already occur in the
program.

However, the choice of the language used in our implementa-
tion places restrictions on the size of the boolean formulas, which
is motivated by the fact that most programs are usually correct for
simple reasons that can be expressed using some small represen-
tation. It would be interesting to consider the intersection of these
languages for faster convergence.

9 In other words, the following set of program states is minimal:

(γ(φ)− γ(φ′)) ∪ (γ(φ′)− γ(φ′′))

Our choice of languages however raises the important issue
of how to choose between several solutionsφ2 that are equally
consistent withφ1 andφ3 (i.e, the number of program states that
violate φ1 ⇒ φ3 or φ3 ⇒ φ2 is same for all of them) and fit
within the space restriction of the languageA. The strategy that
we use in our implementation is to choose solutionsφ2 that are
more close toφ1 (i.e, the number of program states that violate
φ2 ⇒ φ1 is small) orφ3 (i.e., the number of program states that
violate φ3 ⇒ φ2 is small). The former choice has the effect of a
forward analysis that is guided by the backward information, while
the latter choice has the effect of a backward analysis that is guided
by the forward information.

However, the biggest difference with Jhala and McMillan’s
work is that their work is an instance of predicate abstraction.
Their approach involves computing interpolants (which can also be
seen as combination of forward and backward analysis) only during
the predicate-refinement step, which happens in every alternative
phase after performing the standard reachability computation. On
the other hand, our algorithm performs the sandwiching procedure
(which is a combination of forward and backward analysis) at each
step.

Probabilistic Algorithms Gulwani and Necula developed a prob-
abilistic technique for program analysis (calledrandom interpre-
tation [12, 13, 14]) that combines the complementary strengths of
abstract interpretation and random testing. This technique involves
computing and manipulating program invariants efficiently by rep-
resenting them by a small random sample of the set of program
states that they represent (as opposed to manipulating program in-
variants symbolically). However, there are some differences worth-
mentioning with the probabilistic technique described in this paper:
(a) Random Interpretation terminates in a bounded time, but may
output incorrect program invariants with a (infinitesimally) small
probability. On the other hand, the technique described in this pa-
per always outputs the correct answer, but may take long to execute.
(b) Random Interpretation is a forward technique that is used to dis-
cover program properties. The technique described in this paper is
a combination of forward and backward analyses and is used to
discover the proof of correctness of a given pre/postcondition pair.

8. Conclusion and Future Work
In this paper, we have described a simple probabilistic inference
algorithm that searches for proofs of validity or invalidity of given
Hoare triples. The algorithm works by randomly choosing a pro-
gram point and randomly updating its guess for the invariant at that
point to make it less inconsistent with the neighboring guesses un-
til a valid proof is found. This simple algorithm combines forward
and backward analyses in a novel manner.

Furthermore, we pose the invariant inference problem as infer-
ence in probabilistic graphical models, which allows for a large
class of other probabilistic inference techniques to be applied to
program verification. To this end, we have introduced the notion of
an inconsistency measure for an abstract domain equipped with a
partial order. This measure can be used to create a probability dis-
tribution over the program states, described by a graphical model
amenable to various probabilistic inference techniques (e.g., the
ones reviewed in [20,9]). It is important to note that, even though
the problem is re-formulated as an inference of hidden variables in
a probability model, many inference algorithms used in machine
learning aredeterministic, and also new classes of deterministic
algorithms can be developed to leverage the real-valued inconsis-
tency measures to search for proofs of validity or invalidity. These
measures can be an effective measure of algorithm progress.

Our algorithm is based on one of the simplest sampling ap-
proaches, but a plethora of other related sampling algorithms is
reviewed in [20].

Possible extensions of this work include discovering invariants
that involve pointer variables, and performing an interprocedural
analysis by learning procedure summaries. It would also be inter-
esting to experiment with the techniques described in this paper to
learn invariants in richer abstract domains such as first order logic
invariants, which would be useful to reason about programs with
arrays.

9. Acknowledgments
We thank Vladimir Jojic for general discussions on applying ma-
chine learning techniques to reason about programs.

References
[1] T. Ball and S. K. Rajamani. The slam project: debugging system

software via static analysis. InPOPL, pages 1–3, 2002.

[2] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular
verification of software components in C. InICSE, pages 385–395.
IEEE Computer Society, May 2003.

[3] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In4th ACM Symposium on POPL,
pages 234–252, 1977.

[4] P. Cousot and R. Cousot. Abstract interpretation and application to
logic programs.Journal of Logic Programming, 13(2–3):103–179,
July 1992.

[5] P. Cousot and R. Cousot. Refining model checking by abstract
interpretation.Automated Software Engineering: An International
Journal, 6(1):69–95, Jan. 1999.

[6] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In5th ACM Symposium on POPL,
pages 84–97, 1978.

[7] W. Craig. Three uses of the Herbrand-Genzen theorem in relating
model theory and proof theory.Journal of Symbolic Logic, 22:269–
285, 1957.

[8] D. Dill and H. Wong-Toi. Verification of real-time systems by
successive over and under approximation.Lecture Notes in Computer
Science, 939, 1995.

[9] B. J. Frey and N. Jojic. A comparison of algorithms for inference
and learning in probabilistic graphical models.IEEE Trans. Pattern
Analysis and Machine Intelligence, 27(9):1392–1416, 2005.

[10] S. Graf and H. Saidi. Construction of abstract state graphs with PVS.
In CAV, pages 72–83, 1997.

[11] B. Gulavani and S. Rajamani. Counterexample driven refinement
for abstract interpretaion. InTACAS, volume 3920 ofLNCS, pages
474–488. Springer, Mar. 2006.

[12] S. Gulwani and G. C. Necula. Discovering affine equalities using
random interpretation. In30th ACM Symposium on POPL, pages
74–84. ACM, Jan. 2003.

[13] S. Gulwani and G. C. Necula. Global value numbering using random
interpretation. In31st ACM Symposium on POPL, pages 342–352,
Jan. 2004.

[14] S. Gulwani and G. C. Necula. Precise interprocedural analysis using
random interpretation. In32nd ACM Symposium on POPL, pages
324–337, Jan. 2005.

[15] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. InPOPL, pages 58–70, 2002.

[16] R. Jhala and K. L. McMillan. A practical and complete approach
to predicate refinement. In H. Hermanns and J. Palsberg, editors,
TACAS, volume 3920, pages 459–473. Springer, 2006.

[17] V. Jojic, S. Gulwani, and N. Jojic. Probabilistic inference of programs
from input/output examples. (MSR-TR-2006-103), July 2006.

[18] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs
and the sum-product algorithm.IEEE Trans. Information Theory,
47(2):7–47, 2001.

[19] K. R. M. Leino and F. Logozzo. Loop invariants on demand. In
APLAS, volume 3780 ofLecture Notes in Computer Science, pages
119–134. Springer, 2005.

[20] R. Neal. Probabilistic inference using markov chain monte carlo
methods. Technical Report CRG-TR-93-1, University of Toronto,
Sept. 1993.

	Introduction
	Notation
	Algorithm
	Penalty Function

	Derivation and the properties of the algorithm
	Discovery of program invariants through probabilistic inference
	Gibbs sampling

	Discussion
	Limitations of Other Techniques
	Interesting Aspects of the Algorithm

	Case Study: Boolean Combinations of Difference Constraints
	Experiments

	Related Work
	Conclusion and Future Work
	Acknowledgments

