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Abstract

In this paper, we propose a hew algorithm for proving the validity or
invalidity of a pre/postcondition pair for a program. The algorithm
is motivated by the success of the algorithms for probabilistic in-
ference developed in the machine learning community for reason-
ing in graphical models. The validity or invalidity proof consists
of providing an invariant at each program point that can be locally
verified. The algorithm works by iteratively randomly selecting a
program point and updating the current abstract state represent
tion to make it more locally consistent (with respect to the abstrac-
tions at the neighboring points). We show that this simple algorithm
has some interesting aspects: (a) It brings together the complemen
tary powers of forward and backward analyses; (b) The algorithm
has the ability to recover itself from excessive under-approximation
or over-approximation that it may make. (Because the algorithm
does not distinguish between the forward and backward informa-
tion, the information could get both under-approximated and over-
approximated at any step.) (c) The randomness in the algorithm
ensures that the correct choice of updates is eventually made a
there is no single deterministic strategy that would provably work
for any interesting class of programs. In our experiments we use
this algorithm to produce the proof of correctness of a small (but
non-trivial) example. In addition, we empirically illustrate several
important properties of the algorithm.
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1. Introduction

The program verification problem is to verify the Hoare triple,
(Ppre, P, dpost ), Where ¢pe and ¢pose are the precondition and
postcondition respectively of prograf. The Hoare triple is said
to be valid if for all program states satisfying.., whenever the
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programP terminates, it does so in a state that satisfigs:. A
proof of validity of the Hoare tripl€ ¢pre, P, ¢post) €an be in the
form of an invariant at each program point such that the invariants
can be easily verified locally. A proof of invalidity of the Hoare
triple (Ppre, P, ¢post) €an be in the form of the proof of validity of
the Hoare triple{¢py., P, “¢post) fOr somegy,, that is consistent
with ¢pre. (In this formalism for proof of invalidity, we assume
that the end of progran® is reached during all executions of the

aprogram.)

In this paper, we describe how probabilistic inference tech-
nigues, heavily studied in the machine learning community, can be
used to discover the invariants at each program point that constitute

either a proof of validity or a proof of invalidity of a given Hoare
triple. The algorithm works by running in parallel the search for
validity proof and invalidity proof of the Hoare triple. The proof
search routine starts by initializing the state abstractions (potential
invariants) at all program points to anything (e.d). It then it-
eratively chooses a random program paintvhose abstract state
epresentation is locally inconsistent, and updates it to make it less
ocally inconsistent. To be more precise, the state abstraction at
is chosen randomly from the abstract domain, with probability in-
versely proportional to its local inconsistency. The local inconsis-
tency of the state abstraction at a program point is a monotonic
measure of the set of program states that are not consistent with
the state abstraction at the neighboring program points. The proof
search routine stops when these abstractions are all locally con-
sistent in which case they constitute program invariants that prove
either validity or invalidity of the Hoare triple (depending on what
definition of consistency was used for the program’s entry and exit
points). This algorithm is described formally $ection 3

The above proof discovery algorithm, though simple, has some
interesting aspects to it.

¢ The algorithm combines the complementary powers of both for-
ward and backward analysis by bringing information from both
forward and backward directions at each program point. We de-
fine the local inconsistency of an abstract representation of pos-
sible program states at a program point as a measure of the set
of program states that are not consistent with the state abstrac-
tions atneighboringprogram points (as opposed to considering
only the immediatepredecessoprogram points, which would
constitute a forward analysis, or as opposed to considering only
the immediatesuccessoprogram points, which would result
in only a backward flow of information). Result of this is that
effectively, the forward analysis uses the information from the
backward analysis to guide its over-approximation, while the
backward analysis uses the information from the forward analy-
sis to guide its under-approximation.

¢ Even though bringing information from both forward and back-
ward directions yields a more refined choice of abstractions,
these abstractions may not be the right ones. However, our al-
gorithm places much less burden on the optimality of these



choices since it offers chances of recovery at each step. Thisis2. Notation

because it does not distinguish between the information brought o4 4 e some abstract domain, whose elements represent sets of
in lt;y ttr?e _fofrwardt_analysm ortttr)letgackward ana_lysE, S\nd asg re- program states. Let : A — 2% be the concretization function that
suft, the |nt0rdm_a lon catn geC Ot O\t’etL'.apprt%X'mta e()j_t_or ulnf €I relates the abstract domain and the concrete domain, i.e., for any
approximated (n any step. tontrast this with a traditional tor- elementy € A, v(¢) gives the set of all program states represented
ward analysis n which th? information at any program point by ¢. Let 1L and T represent the usual bottom and top elements in
gets weakened in successive updates. Hence, once the |m‘ormafhe abstract domain, i.ey(1) = 0 and~(T) = . We say that
tion comp_utedd at filqprogr_am point ogle_rﬁp[;]rommates :jhe_ mva;"l- an abstract eIememi,is stlronger thanp’ (denoted byp = ¢') if
ants required at that point to establish the postcondition, the ;
ostcor?dition cannot bpe establishéd P (@) € 9. We also say thab hOId-S at program pointr to
p : denote thaty(¢) is an over-approximation of the set of program
The inference procedure is based on smooth real-valued coststates that are possiblerat
functions, rather than binary costs (where invariants are either ~ We use the notatiomrenry and mexit to denote the program’s
considered to be in agreement or not). This could be thought of entry and exit point. For simplicity, we assume (without loss of
as giving the algorithm partial credit for its guesses, and thus any generality) that there are no self loops on any program node.
providing it with more information about which direction to  We use the notatiog; to denote the latest choice of the abstract
take in order to further improve the invariants. However, among element (made by our algorithm) at program paint
the possible choices that have approximately equal benefits, the  Given ¢; for all program pointsr;, and any program point;
algorithm chooses randomly. Thus, our algorithm falls into the other thanreny, let Post (i) denote the set of (strongest) abstract

category of sampling techniques studied extensivel2h [ elements such that for any elememte Post(m), we have the
following property: If for all immediate predecessorsof 7y, ¢;
The above aspects are discussed in more det&kirtion 5with holds atr;, theng holds atr. Similarly, giveng; for all program
examples of parts of the proof search that we saw in our experi- points;, and any program point;, other thanmey, let Pre(my)
ments. denote the set of (weakest) abstract elements such that for any

The algorithm we introduce here is a form of a Gibbs sampling elementy € Pre(my), we have the following property: kb holds
technique, which is one of the probabilistic inference techniques at 7, then for all immediate successors of 7, ¢; holds atr;.
used in machine learnin@(]. Many machine learning problems  For notational convenience, we say that:
are concerned with the discovery of hidden quantities at nodes of def def
a graph that satisfy given constraints, and so the machine learning Post(meny) = L and Pre(mei) = T
community has developeq a n.umber of such inferencg algorithms, gince there are no self-loops on any program node, any program
which can both be deterministic and randomized. In this paper, we it . is not its own immediate successor or predecessor. Hence,
define program verification in a way that allows most of these tech- 14 gefinitions oPost(m) andPre(m) are well-formed. We use
niques to be applied to this problem, as well. For this purpose, we 1o notatiorPost (m) = ¢ to denote that’ = ¢ for some¢’ €

introduce thg novel nption qf aincon;istency measufer any gb- Post (). Similarly, we sometimes use the notatior= Pre ()
stract domainA that is equipped with a partial ordes. An in- to denote thas = ¢’ for some¢’ € Pre(my).
consistency measuw#! for A is any function from ordered pairs An inconsistency measuren the abstract domaip! is any

(¢, ¢') of elements fromA to [0, 1] that is monotonically increas- — nction that maps ordered pairs of elements frento [0, 1] and

ing in its first argument, monotonically decreasing in its second has the following properties for any eleme ' & € A that
argumentg’, and0 iff ¢ = ¢'. We use this measure to define satisfy¢ = &' g prop Y aadls

thelocal inconsistencyf a program point’s set of reachable states

(which belongs taA) with respect to the sets of reachable states ¢ M(¢, ¢') = 0.

at neighboring program points. Given these local measures, we can Mo, ¢") < M(&,8").
pose the problem of program invariant inference as inference in ;, ~ ;,
probabilistic graphical models. The particular inference algorithm ~ ® M(¢",¢") < M(¢", ¢).

we use in this paper uses the inconsistency measure to give pref-opserve that an inconsistency measuve (which satisfies the

erence to those potential invariants that minimize the local incon- 4jyqve properties) provides a natural measure of how much incon-

sistency. A large class of new algorithms for program verification gistent is the relationship = ¢' for any ordered paife, ¢').

can benefit from a real-valued measure of incons_istency, as it can Given ¢; for all program pointsr;, and an inconsiétency mea-

be use_d as ameasure of the progress of the algorithm. . sure M, we define thdocal inconsistencyf ¢ at 7 to be the

We implemented our algorithm for programs that have linear as- following quantity:

signments and whose conditional predicates have the form of dif-

ference constraints. We chose the abstract domain for representing L(¢,m,) = Min {M(¢',¢) | ¢ € Post(m)} +

invariants to be the set of boolean formulas over difference con- Min {M(¢,¢') | ¢’ € Pre(m)}

straints. In the spirit of Occam’s razor principle, the formulas are

of bounded size, thus biasing the search towards simpler proofs. WeGiven ¢; for all program pointsr;, we say that is locally consis-

tested the algorithm on a small non-trivial example program with tentatm; when

pre/postcondition pair. We show that our tool can consistently solve

this problem in finite time, whereas the brute force search would be

infeasible. Observe that giver; for all program pointsr;, and for any in-
consistency measur®t, the following property holdsp is locally
consistent atry, iff L(¢, ) = 0.

Post(mx) = ¢ and ¢ = Pre(my)

1 Similarly, in a traditional backward analysis the information at any pro-

gram point gets strengthened in successive updates. Hence, once the obligg Algorithm

ation computed at a program point underapproximates the invariants that ] ) ) . ) )

are true at that program point under the precondition, the validity of the In this section, we describe the learning based semi-algorithm
pre/postcondition pair cannot be established. for producing a proof of validity or invalidity of the Hoare triple



FindProof (P, 3)
For all program points m;, initialize ¢; := L;
While penalty of any program point is non-zero:

Choose ¢ € A with probability proportional to
Update ¢ = ¢;
Output (¢ ‘Proof found.’’);

N o s WN PP

Decide((d)pre, P, ¢post>) =

Choose program point 7 € {m; | B(¢:,m:) # 0} uniformly at random.

e P(émx)

For all program points 7, output(‘‘Invariant at’’, mg, ‘‘is’’, ¢g);

1 Let Oy and (: be the penalty functions as defined in Section 3.1.
2 In parallel execute: [ FindProof(P,fy) || FindProof(P,[r) ];

Figure 1. The machine learning based semi-algorithm for producing a proof of validity or invalidity of the Hoare({fjple P, ¢post ) -

(¢pre, P, ¢post ). The proof of validity consists of providing an ab-
stract elemend; at each program point; such that:

Al. Qbentry = ¢pre-
A2. ¢exit = ¢post-
A3. ¢, is locally consistent at;.

The proof of invalidity consists of providing an abstract elemgnt
at each program point; such that:

B1. v(dentry) N Y(Ppre) # 0 (i.€., Penuy IS CcONsistent Withpyre).
B2. Qbexit = _‘¢post-
B3. ¢; is locally consistent at;.

Note that in the above formalism for proof of invalidity of the
Hoare triple, we make the assumption that the program pint
is reachable in all program executions. (Alternatively, the proof
of invalidity may consist of providing a concrete program state
such that the execution of the program in stateaches program
point ey, and in such a state that satisfieg,.s:. Such a counter-
example may be produced froganwy by selecting a concrete pro-
gram stater from ~(¢enry) @and checking whether program point
Texit IS reached when the program is executed .iff not, then the
process of finding a new € ~(enry), Or the initial process of
finding a new set of invariants at each program point that satisfy
PropertieB1-B3 is repeated.) Henceforth, we assume that our task

is to find a set of invariants at each program point such that either

propertiesA1-A3 are satisfied, or properti€sl-B3 are satisfied.

We assume that we are given an abstract doma(with v as
the concretization function that relates the abstract domain with
the concrete domain) such that all invariants in the proofs are
expressible in this abstract domait In particular, ¢, € A
and ¢post € A. Our algorithm is also parameterized by some
inconsistency measurkt (as defined irBection 2 associated with
A, which gives a numeric measure of how much is the partial order
relationship &) not satisfied between two given elementsbf

The pseudo-code for the learning algorithm is describdedgn
ure 3 The procedur®ecide({(Ppre; P, Ppost) runs the process of
finding the proof of validity of the Hoare tripl€ppre, P, dpost )
(FindProof(P, By)) in parallel with the process of finding the
proof of its invalidity FindProof (P, 81)). Each of these processes
use the same algorithmindProof, but invoked with different
penalty functions3y and ;. By enforces the constraints described
in propertiesA1-A3 on the invariants, whilgd; enforces the con-
straints described in propertiB4-B3 on the invariants.

TheFindProof algorithm works by initializing the abstract el-
ements at all program points to anything (elg), It then iteratively
chooses a random program poinit whose abstract elemed, is
locally inconsistent, and updates to make it less locally incon-

sistent. To be more precisg,, is chosen randomly with probability
inversely proportional to the exponent ofjitsnaltyat 7. Giveng;

for all program pointsr;, the penalty of an abstract elemehat a
program pointr, is a non-negative number, which measures unac-
ceptability of¢ atmy,. The penalty function is the only deterministic
part of the algorithm, and should be carefully designed to guide the
learning algorithm towards the solution.

3.1 Penalty Function
The penalty function should have the following properties.

Al. Soundness: When the penalty of abstract elements at all pro-

gram points has been reduced)tdhen the collection of invari-
ants at those program points constitutes a valid proof.

A2. Monotonicity: The penalty function should assign a greater

penalty to abstract elements that are more locally inconsistent.

Property Al is essential for correctness of the algorithm, while
propertyA2 is important for faster convergence of the algorithm.
Hence, for any inconsistency measuv¢ on .4, we can define a
valid penalty function (which satisfies properti&s andA2) for
proving the validity of the Hoare tripl&ppre, P, ¢post) as follows.

ﬁv(d% Wentry) 0, if d) = ¢pre
= oo, otherwise (2)

Bu(p, mexit) = 0,if ¢ = Ppost
= oo, otherwise (2)

Bv(d,m) = N X L(¢,m)

Note thatEquation landEquation 2enforce the constraint that the
abstract elements at the program poirdsy andmexit Must bepy:e
and¢p.st respectivelyN denotes a large constant. It is easy to see
that a bigger value aV increases likelihood of selection of abstract
elements that minimize penalty, and hence may result in faster con-
vergence. However, a smaller value/dfmay also result in faster
convergence in two ways: (a) by decreasing the time required to
get out of local minima (if the algorithm ever gets stuck there), (b)
by increasing the gradient of change. (This is equivalent of widen-
ing/narrowing in standard abstract interpretation terminol&jy [
Hence, the choice aV should ideally be determined by perform-
ing experiments. The functioh is the local inconsistency measure
(as defined irBection 2, which is a function of the inconsistency
measureM associated with the abstract domain



Similarly, we can define a valid penalty function (which satisfies
propertiesAl andA2) for proving the invalidity of the Hoare triple
(Ppre, P, dpost) (@ssuming that the end of this always reached)
as follows:

Bi(d, Tenty) = 00, if ¥(¢) N Y(¢pre) = 0 3)
= N X L(¢, Tenuy), Otherwise
/81 (¢7 7l'e><it) = 01 |f ¢ = _‘()bpost
oo, otherwise (4)
ﬁl (¢7 7Tk) = Nx L(¢7 7Tk)

Equation 3enforces the constraint that there is flexibility in choos-
ing the abstract element atny only if it is consistent withgp.,
i.e., the intersection of the set§¢) and y(¢pre) is NON-empty.
Equation 4enforces the constraint that the abstract elemeng,at
must be-@post .

4. Derivation and the properties of the algorithm
In this section, we derive the algorithm described above by first

¢ for different program points), and factorsf; whose product
defines a global function of these variables.

The algorithm of the previous section is using factfirsvhich
drop exponentially with the constraint violation penalty:

fi(®i) = e (" 7)

where a(®;) is defined to be sum of the inconsistencies of the
elements ofb,; multiplied by V.

For example, Figur@ shows how to visualize the structure of
such functions as a factor graphg] for the program shown in
Figure 3a). We have®s = {¢s, ¢7,¢s}, anda(Ps) = N X
(M(¢s, ¢8) + M(d7,¢s)). (This is becausds is a join node,
which enforces the constraint thgs = ¢s and¢r = ¢s.)

Given this function, we can formulate several interesting tasks
within the framework of inference in probabilistic graphical mod-
els. First, we can normalize the functigrby dividing it by a con-
stantZ (often called a partition function), so that the sum over all
possible combinations of expressiafys within the abstraction of
interest is equal to one, i.e.,

Z = Z¢0€A ZdnE.A "'Z¢KEA f(¢0,¢1, ...,d)K). This leads to

posing the program verification problem as a case of inference in a probability distribution function

probabilistic graphical models, and then turning to one of the sim-

plest probabilistic inference techniques — Gibbs sampling — to per-
form inference. Properties of this algorithm have been extensively

studied in the literature, e.g2().

p(¢07¢)17"’7¢K) %f(¢)0’¢17"'7¢K)7 (8)

whose sum over all possible combinations of expressianis in-

As discussed above, a program invariant we are searching fordeed equal to one, and whose maximum is still at the same optimal

is a set{d?k} which satisfies the constraints imposed by the pro-

set{¢«} (or a set of optima if there are more than one such set).

gram instructions. Inference of program invariants can therefore be e can think of (one or more) optimal expression combinations
viewed as optimization of the level to which these constraints are ¢o, ..., ¥ as very likely under this probability distribution.

satisfied. For example, if the abstraction is expressive enough, and

the program is correct (the precondition of the program indeed im-
plies the postcondition of the program), then all the constraints im-
posed by program instructions will be fully satisfied by the optimal

set{¢x }.

4.1 Discovery of program invariants through probabilistic
inference

Instead of a binary treatment of the constraint satisfaction (satisfied

or unsatisfied), we construct a real-valued funcff¢ao, ¢1, ..., ¢« )
which attains a maximum value at the program invariaht}, i.e.,

Clearly, one such function would assign zero to any combination

of expressions that does not satisfy the program constraints, and

one to true program invariants (of which there could be several,

depending on the abstraction). However, as was indicated in the
previous section, and as will be discussed further later, in many

optimization techniques, it is important that the combinatippis}
which onlypartially satisfy the constraints are assigned a non-zero
value corresponding to the level of constraint violation.

We can use the structure of the program to write the satisfac-

tion function f as a product of factorg; associated with different

program nodes. Each of these factors is a function of the appro-&hen the probability of not discovering one of these combinations

priate set of variables describing the abstract elements before an
after the program node. We will denote ¥y the set containing the
appropriate pre- and post-execution states forittrefactor, each
associated with the appropriate program node. Then, we define

F(90, 1,0 61) = [T fu(@0), ©)

and define each of the factors(®;) so that they reach their
maximum when the set of abstract element@inare consistent

In this paper we are especially interested in the case where some
of the program stateg,, are given while others are hidden. For
example, the given states could be program asserts, including the
program pre-condition and post-condition (entry and exit beliefs).
We will denote by® the given states and W the hidden states.
Some interesting questions that probabilistic inference techniques
can be employed to answer include:

e What is the most likely set of unobserved program states
®y if we are already given some statés;, e.g., ¢
{Gentry, Pexit }- In Other words, what iarg max p(® g |®c),
wherep(®|®c) denotes the conditional probability distrib-
ution over the abstract representations over program states in
Oy?

e What are the other likely combinations of expressionsdigr
given®¢, or in other words, can we draw several samples from
p(Pw|Pc)?

Note that answers to these two questions (as well as other
probabilistic inference goals) are related. For example, if we can
sample from the conditional djstribution, then we are likely to come
across the most likely stat€g), } sooner rather than later. Thus,

a search for the optimal state can be performed by sampling. In
fact, if all combinations of expressiod®y, } that fully satisfy the
constraints have the total probabilipy under the distributiomn,

when a single sample is drawn framis (1 — ps), and the chance
of missing it inn steps is(1 — ps)™. Therefore, the probability

2»Drawing a sample from a distribution” refers to any randomized algo-
rithm which can produce many samplg, ..., ¢%., so that the fraction of
times a certain combinatiap, ..., @ i is achieved is expected to be equal
0 (91, -, ), Ll imr oo 31y (8], -y O) = (01, 0K)]
p(¢1, ..., 0K ), with [] denoting and indicator function, which is equal to
one when the equality is satisfied and zero otherwise. Clearly such an algo-

with the node between them. The graph consists of a number of rithm is going to be more likely to produce samples with high probability
variables (in our case these variables describe abstract elementsnder the distributiop.



of missing the solution will drop exponentially as more and more the appropriate pre- and post-conditions of the neighboring instruc-
samples are taken, and the speed of the drop will depend on thetions, which only depend on the current belief about the state of the
level of the penalty for constraint violation, as this penalty controls small number of neighboring program points.
the probability of program invariants satisfying the constraints. One appealing property of Gibbs sampling is that, under the
Over the last couple of decades, the machine learning commu-assumption that the current samplg, ..., ¢% _; has been drawn
nity has been developing general techniques for probabilistic infer- from the desired distributiom(¢1, ..., dx—1|¢0, ¢k ), replacing
ence that use the structure of the graphical model to optimize the one of the expressionsﬁ by a sampleﬁ;.Jrl drawn from the con-
performance. These techniques include, for example, belief prop- ditional distributionp(¢;|¢1, ..., ¢j—1, Bj+1, ..., o + Will also re-
agation, variational techniques, and sampling techniques. Each ofsylt in the new updated sampjé, ..., P51, A Gii1r e D1
these techniques has interesting provable and empirically discov-grawn from the target distribution(é , ..., ¢Ij_1|¢07 oK)
ered properties, well documented in, among other places, some of  Thjs means that the desired distribution is a stationary distri-
the papers we refer to in this paper. Some of these algorithms areption of this process, i.e., if at any given time the process starts
meant to estimate (or maximize) probabilities and not draw sam- producing samples from the desired distribution, it will continue to
ples, and as such they are often deterministic, but may get stuck ingg so. In addition, it has been shown that as long as the distribu-
alocal minimum of the o_ptlmlzatlon c_rlterlon: For a comparison of  jon p is non-zero everywhere, this process will indeed reach this
several inference techniques on a simple visual example, see, forfiyeq distribution 0], regardless of how the states are initialized.
example 9)). After that point, and usually even earlier, the most likely configu-
ration of expressiongs, ..., ¢x—1 is likely to be reached, with the
probability of missing the solution dropping exponentially as more
The algorithm described in the previous section is a form of one of and more samples are taken. If the constraint violation penalties
the simplest probabilistic inference techniques, known as Gibbs are high, the probability of sampling a true program invariant will
sampling which, like many other probabilistic inference tech- be higher, and the speed of convergence faster. But, on the other
niques, has first been developed by physicists to compute the dis-hand, if many combinations of program states are highly penal-

4.2 Gibbs sampling

tribution over states of a physical system (see referenceX0ji [ ized, the sampling process may get trapped - the samples can get
We use this technique to draw samples from a distribution over isolated by zero probability regions around them, making it difficult
the program states at different program poip8, ..., ¢x), un- to sufficiently improve them to cross into the regions of the space

der the constraint that the boundary states at program asserts (opf the combinations of program states which satisfy the program
just the beginning and the end) are equal to the given expressionsconstraints even better.

in ®¢. In other words, we sample from the conditional distribu- Some of the properties of the Gibbs sampling algorithm studied
tion p(®x|P¢). We stop this process once we reach the program in the machine learning literature are rather intuitive. For instance,
invariant {¢x } which maximizes our satisfaction functigh As since the updates are incremental, it is beneficial to use smooth
discussed above, since the combinations of program sfates target functions { and p, which are equivalent in terms of their

with higher levels of constraint satisfactighare more likely than maxima as they differ only by a constant scaling factor). In addi-
the ones with less satisfaction (by constructiorppfthis process tion, in order to guarantee that the procedure can reach all possible
should generally attain the maximum pmuch sooner than a brute combinations of program states expressible in the abstraction do-
force search for a program invariant. main, we should not assign zero probability to any combination of
The Gibbs sampling algorithm consist of iteratively updating the expressions;. This is why the factorg; should be crafted so
each of the expressions, while keeping others fixed. To make thatf; € [e, 1]3, and so that the expressions that differ a little have
the discussion more concrete, and without lack of generality, we Similar values, with the ones better satisfying the constraint having
assume for the rest of this section that we are given the program’'shigher values, and the ones fully satisfying it having the highest
entry stat@pentr, and exit state@bx = dewit, and we need to find value of 1. Therefore, it is important to use penaltie® that are
the rest of the expressions, ..., i1 that satisfygo and ¢, smooth and finite to guarantee that the sampling process will in-
just as in the algorithm in Figure 1. The process is started from an deed traverse the space of possible program states fast enough and
arbitrary initialization of¢1, ..., ¢x_1. Then, a series of updates ~ avoid getting stuck far from the solution.
is performed. In each update, one of the current expressions
j €1{2,3,..., K — 1} is replaced by aamplefrom the conditional

distribution p(¢;|¢1, ..., j—1, dj+1, ..., ¢k . It is easily shown 5. Discussion

that, In this section, we discuss several interesting aspects of the sim-
1 ple learning based algorithm. For this purpose, we consider the

p(djld1, o, Pj—1, Pit1, -y PR} = 7 H fi(®y), 9) program shown irFigure 3with its pre/postcondition pair, as an
T ilp e, example. We first show why several existing techniques (with the

exception of a recently proposed technique) fail to work well on
this example program. We then discuss the interesting aspects of
our algorithm that enable it to reason about this example.

where Z; is a scaling constant that normalizes the product of
factors involving the expressiap;. Using the factors of the form
Equation 7we get:

(516 & é b} 1 o~ Tilojen, AP 5.1 Limitations of Other Techniques

j1PLy ey Pj—1, Pjt1y .00y PK = o ¢

! ! ’ Zj Reasoning about the validity of the programHigure 3requires
. iefg(%.,ﬂj) (10) discovering the following invariants at program poiit
= 7 ,

(x>50 Vy=50) A (<50 V z=y) A (z<100)
where( is the penalty function described in the previous section. ) . . )
Computing this function given the program states at neighboring A Simple forward abstract interpretatiod] pased analysis over

points is simple, and we can think of this step as satisfying with the polyhedron abstract domain will fail to validate the example
high probability the requirement that the belief about the state of
the program at a program point should be “sandwiched” between 2Equivalently, penalties and3 should be zero or positive, but finite




Recently, Jhala and McMillan have proposed a predicate refine-
ment approach based on interpolarit§]] wherein the search of
interpolants is restricted to a richer class of languages in succes-
sive stages of their algorithm. The choice of the langudgethat
they suggest involves all predicates that contain numeric constants
no larger in absolute value th@nfrom the constants that already
occur in the program. Since the predicates required to prove the
correctness of the example program belond.{¢ their technique
will be able to prove the correctness of the example program.

5.2 Interesting Aspects of the Algorithm

Note that predicate abstraction techniques, for a given set of pred-
icates, compute invariants that are arbitrary boolean combination
of the given set of predicates. However, an alternative thing to do
would be to restrict the size of the formulas as opposed to restrict-
ing the set of predicates. The issue that arises with such an alter-
native is how to choose between the huge number of solutions that
fit in the restricted size. We resolve this issue by performing both
forward and backward analysis at the point where the abstract ele-
ment is to be updated, instead of just performing a forward-only or
backward-only analysis. More formally, we compute both weak-
est preconditiorPre(w) and strongest postconditidost () at

the pointr to be updated. We then choose a random solutithrat
minimizes the inconsistency of the relationst®pst(7) = ¢ and

¢ = Pre(m) * (since there may not be one with same level of in-
consistency). This simple idea has several interesting aspects to it,
which enable it to discover the proof of validity of the example pro-
gram. We elaborate on these interesting aspects below, by taking as
examples parts of proof searches generated by an implementation
of our algorithm. In our examples, we consider the abstract domain
A to consist of all boolean formulas that involve at most 3 clauses

program since it only computes invariants that are conjunctions of (conjuncts), with each clause being a disjunction of at most 2 dif-
linear inequalitiesq). ference constraints.

based on caunierexample driven refinement or abstract interpreta. COMbINaton of Forvard and Backward AnalysesThe generic
tion that can compute disjunctive invariants like the ones required framework of our learning-based algorithm allows for combining
for the example programil]]. The key idea of their technique is the_ complementary POWers of fprward and ba(_:kward an_alyses_ in
to keep track of precision losses during forward fixed-point com- a simple manner to obtain a strictly more precise analysis. While

; - . updating ¢, our algorithm involves computing botPost ()
putation, and do a precise backward propagation from the error to andPre(my). Post(m:) represents the forward flow of information
either confirm the error as a true error, or to use refinement tech-

. X . ; : . . : from the immediate predecessorsmf, while Pre (i) represents
niques (in pa}rtlcular, replacing a widen operation b_y a dlsu_mctlpn) the backward flow of information from the immediate successors of
S0 as to avoid the false error. The key to discovering the invariant

. . . Aforward analysis would simply consider the Bett () and
x < 50 V x = y is to realize that when the false branch of the Tk L
if-condition is entered for the first time, then the valuexof 50. use some heuristic to choose some abstract elefentA sugh

L > : thatPost(m) = ¢. Our framework allows the forward analysis to

However, their refinement technique would only allow for discov- uide its chaice ofs by giving more preference to choicéssuch
ering that when the false branch of the if-condition is entered for g . : y gving preterence ¢ g
the first time then: > k, in thek*" stage of their refinement loop that the inconsistency af = Pre(m) is minimized. Similarly,
(for k < 50). HenceTtheirtechnique will take 50 refinement stages %:?gg;’;?édg3%2&5}%32:&2'{ i%ogjlrdff;?}(e%}fan also use
to discover the loop invariant < 50 V x = y, which is required to X .

o ) For example, consider the program showirigure 3 Suppose
prove the correctness (and if this consta were larger, it would ¢s is to be updated, and the abstract elements (which in this case
a take a proportionally larger number of refinement steps). How-

; ; ; 5
ever, interestingly enough, their approach is able to work well on are boolean formulas) at neighboring pointsrefare as follows.

Figure 2. Factor graph of the program shown in Figa(a).

a modification of this example, in which all constants are replaced o5 = (z>0)A(z<50)A (y=50)

by symbolic constants. _ 7 = (z>51)A(z < 100) A (z =)
Predicate abstractio )] techniques based on counter-example

driven refinement (like SLAM ], BLAST [15], or [2]) are also ¢2 = (z<100Vvy=100)

able to discover such disjunctive invariants like the ones required The above selection of abstract elements at program paints
for the example program. However, the success of these tools on ar,, and» would also arise if two rounds of forward analysis and
given problem is contingent on being able to find the right predi-

cates. For the example program, these tools would go into a pred-4 pore formally, the inconsistency dfost(rr) = ¢ means the minimum

icate refinement loop discovering unnecessary predicate_s 1, of the inconsistencies af’ = ¢ (i.e., M(¢’, ¢)) for any ¢ € Post(m).
z = 2,z = 3, and so on, one by one. The number of refinement Similarly, the inconsistency ob = Pre(w) means the minimum of the
steps required for this particular example would198, (and po- inconsistencies op = ¢’ (i.e., M(¢, ¢')) for any¢ € Post ().

tentially infinite, if these constants were larger or were symbolic 5 For a discussion on how the predicate x=y is discovered by our algorithm,
constants). see the discussion under the headR@ndom Choices on Page



¢pre: z=0 Program Invariant
Point
Tentry o z=0
y = 50; T (y =50) A (z =0)
! ) (y=50VvVa>50)A(y=zVaz<50)A(y=100Vz < 100)
3 (y=50va>50)A(y=xVze<50)A(y=99Va<99)
u (y =50) A (x < 50)
5 (y =50) A (z < 51)
6 (z>500A(y=xVz<50)A(y=99Vz<99)
T7 (x >50) A (y=a Ve <5l)A(y=100Vz < 100)
8 (y=50VvVa>50)A(y=zVaz<50)A(y=100Vz < 100)
) y = 100
(b) Proof of validity.
Program Invariant
Point
i) x > 100
T (x >100) A (y=50) A (y —x < —1)
) (x > 100) A (y —x > 1V y#100)
T3 false
Ty false
5 false
6 false
gd false
8 false
) y # 100

(a) Program

(c) Proof of invalidity when precondition,.. is changed tarue.

Figure 3. (a) shows an example program with pre and post conditions. (b) describes the proof of validity, which consists of invariants at

each program point such that the invariants can be locally verified. (c) describes the proof of invalidity when precggndiisorhanged to

true.

two rounds of backward analysis have been performed around thetwo clausesz < 100 and (x < 50 V & = y) are required

loop. Note thaPost(ms) andPre(ms) can be represented by the
following formulas:®

Post(7s) (x>0Az<50Ay=050)V
(x>51A2<100Az=y)
Pre(ms) (x < 100V y = 100)

Observe thatPost(ms) is equivalent to the following formula
in conjunctive normal form, where each of the clauses is non-
redundant’

(r <100) A (x<50Vz=y9y) A

(x>0) A (y=50Vz>51)
Note that we have fixed the abstract domdito consist of Boolean
formulas involving at most 3 clauses, with each clause being a
disjunction of at most 2 difference constraints. Dropping any one

of the above 4 clauses yields an optimal over-approximation to
Post(ms) that is an element ofd. However, note that the first

6 Technically,Post (7g) andPre(ms) are sets of abstract elements. Hence,
more formally, this means that any maximally strong formula that belongs
to the abstract domaisl and is implied by the formula corresponding to
Post(mg) belongs toPost(ms). Similarly, any minimally strong formula
that belongs to the abstract domainand implies the formula correspond-
ing toPre(ms) belongs tPre(ms).

7 The clausey = 50 V = = y is redundant since it it implied by the
conjunction of the gived clauses.

to provePre(7s). Hence, taking this guidance froRre(rs), the
forward analysis should include the first two clauses in its over-
approximation oPost(7s). This is what our algorithm also does.

No distinction between Forward and Backward Information
One way to combine forward and backward analyses is to maintain
the following two separate pieces of information at each program
point, and use them to guide each other.

e Forward information: Over-approximation of program states
that result when the program is executed under precondition.
This is computed by the forward analysis.

e Backward information: Under-approximation of program states
that ensure that the program will terminate in a state satisfying
the postcondition. This is computed by the backward analysis.

The over-approximation process may take guidance from the back-
ward information to ensure that the over-approximation at a pro-
gram point is not weaker than the under-approximation computed
at that point. (Similarly, the under-approximation process may take
guidance from the forward information to ensure that the under-
approximation computed at a program point is not stronger than
the over-approximation computed at that point.) If these constraints
cannot be met, they signal the presence of an excessive over-
approximation or excessive under-approximation at some program
point, which needs to be fixed. By excessive over-approximation,
we mean that the invariants computed are weaker than those that



are necessary to prove the postcondition. (Similarly, by excessive s = (x<99Vy=100)A (z #98Vy=99)

under-approximation, we mean that the_ o_bligations that need to bps=cdr=¢s = (x<100Vy=100)A (z#£99Vy=099)
be established are stronger than what is indeed true of the pro-
gram under precondition.) Unless the excessive nature of the over- Snapshot 1

approximation or under-approximation information is fixed, the
forward or backward analysis cannot prove the validity of the
pre/postcondition pair. The main issue however is to figure out the
program points where this happened. We can only design heuristic
for this purpose, which may work well for some examples and may
not work well for other examples.

Our technique addresses this issue in an interesting manner,
Observe that if there is no excessive over-approximation (with
respect to precondition) and no excessive under-approximation
(with respect to postcondition), then the under-approximation
information is a valid over-approximation (assuming that the
pre/postcondition pair is valid). Similarly, if there is no excessive
under-approximation, then the over-approximation information is a
valid under-approximation. To summarize, when no mistake occurs
(i.e., both the under-approximation and the over-approximation are
not excessive) the under-approximation is an over-approximation,
and the over-approximation is an under-approximation. Then, why
distinguish the two? Our technique thus maintains one piece of in-
formation at each program point, which is its guess for the correct

Observe that the above snapshot at program points;,ws,me,
and m; makes sense from a backward analysis point of view,
wherein, if the postconditiop = 100 is pushed backward through
Sthe loop two times, we get the above configuration. The above
value of ¢ is an under-approximation dfre(m.), which is
(x#99Vy =99 A(x #98Vy=98)A(x <100V y = 100).
However, it is an excessive under-approximation since: y is
not always true atra. Now, if this were a pure backward analy-
sis, then the validity of the program cannot be established after
Pre(m,) is under-approximated to the above valuegef On the
contrary, our algorithm is able to recover from such an excessive
under-approximation because the information at a program point
gets updated from both forward and backward directions (which
results in weakening and strengthening of the information respec-
tively). In this particular case, our algorithm chooses to update
os, ¢, d6, @3 (but notes andg,) which changes the above snap-
shot as follows (This can still be seen as backward propagation of
information fromes).

invariant (= unexcessive over-approximation = unexcessive under- ¢1 = (z=0)A(y=>50)

approximation) at that program point. Now, this guess may actually p2 = (z=y)A(x <100V y=100)

be the correct invariant (i.e., it is established by the precondition

and is enough to establish the postcondition), or it may be an exces- ¢s = (z2<50Va=y)A(z<99Vy=99)
sive over-approximation (i.e., weaker than the invariant required to s = (z<99Vy=100)A (z #98Vy=99)
establish the postcondition) or an excessive under-approximation ¢s = (x<100Vy=100)A (z#99Vy=99)
(i.e., it may be stronger than what is true when the precondition bs = (z=y)A(zx<99Vy=099)

holds). The challenge now is that we do not really know which of 6 y y

this is true. The only thing that we know is whether or not these ~ ¢7 = ¢ (z=y)A(z <100V y = 100)

guesses are consistent with the neighboring guesses. However, cor- Snapshot 2
rections automatically creep in as the algorithm makes progress B
trying to make the guesses more consistent with their neighbors, ~Observe thaPre(r;) now is (z > 100V < 50V z =
wherein the guesses can get strengthened as well as weakened/) A (z < 100 V y = 100). Now, the algorithm (randomly)
Contrast this with the above case where the forward and backwarddecides to update, and detects that it is inconsistent from the
information is kept separate. In that case, inconsistency is in the forward direction, but it can be made consistent in both directions
form of the over-approximation getting weaker than the under- by updating it to:
approximation (however, each of the two pieces of information are _ _ _
in%?vidually con(sistent with the correspor?ding information at the $2 = (2<50Vz=y)V(z<100Vy=100)
neighboring nodes). But when an inconsistency is detected, it hasNote that the discovery of invariant< 50V« = y atm is crucial
to be fixed before a proof can be discovered. in order to validate the program. There are two crucial things to

It is also interesting to contrast our technique (which maintains observe as to how the algorithm discovered< 50 V z = y at
one piece of information at each program point) with the backward- 7 in the above instance. Observe tigtand hencep, did not get
only technigue (which also maintain only one piece of information updated, and that the algorithm tried to weakgrto make it more
at each program point). Note that if in the backward analysis, the consistent in the forward direction, and was able to find something
under-approximation becomes excessive (i.e., stronger than what ishat made it fully consistent in both directions.
really true about the program at that point given the precondition),
validity of pre/postcondition pair cannot be established. Compara-
tively, if the information computed by our technique is an exces-
sive under-approximation, it will have a chance of recovery (i.e.,
it has the potential to get strengthened by forward flow of infor-
mation, which does not happen in a backward-only analysis). A
similar comparison holds with the forward-only technique.

As an example, we discuss below how the invariant 50 Vv
x = y gets discovered at program point after it is excessively
under-approximated to = y at some stage, in one of the proof
searches seen in our experiments. The following is a snapshot of
the formulas that were found at some step during the proof search.

Random choices An important aspect of the algorithm is that it
makes some random choices.

One of the random choices that the algorithm makes is to decide
which program point to update. Observe that in the above proof
search instance, b4 also got updated at the same time when
os, 7,06 and ¢s got updated between snapshiotand 2, the
algorithm might have chosen something elseffpbecause then it
would not have been possible to choose anythingfathat makes
it consistent in both directions. There is no clear strategy to decide
in which order to update the program points. Hence, randomness
plays an important role here.

However, the interesting thing is that the chances of such inci-
dents happening, though small, are not rare. For example, another

b1 = (z=0)A(y=50) sequence of updates that we saw in another proof search in pro-
ducing the invarianfx < 51 V 2 = y) at program pointr, after
¢ = (z=y)A(z<100Vy=100) snapshot is as follows. The formulag, and¢s get updated with

Pp3=¢s = (x<99Vy=99) A (z#98Vy=098) the forward information frongs. Then,¢s, ¢s and¢7 get updated
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(a) Program (b) Proof of validity

Figure 4. (a) shows an example program with pre and post conditions. (b) describes the proof of correctness, which consists of invariants at
each program point such that the invariants can be locally verified.

based on the forward information frogy. This results in the fol- Pre(m,) can be represented by the following formula:
lowing snapshot (£ <100Vy=100) A (z < 97Vz > 99V =y)
o1 (z = 0) A (y = 50) Note that we have fixed the abstract domdito consist of Boolean
¢p2 = (x=y)A(x <100V y=100) formulas involving at most 3 clauses, with each clause being a
s = (z<100)A(z=y) disjunction of at most 2 difference constraints. Hence, dropping
. 50 any one or more of the disjuncts from the clagse< 97 Vv = >
¢a = (2 <50) 99 vV z = y) would satisfy the size restriction. However, guidance
¢s = (¥ <5l) from Post(7,) suggests that < 97 must be included to minimize
d6 = (x>50)A(x<100)A (z =1v) the inconsistency. Thus, the following 3 are good choicegfor
o7 = (=25 A(z<10)A(z=1y) Choicel : (xz <100V y=100)A (z < 97)
Now, ¢s is updated to the following formula to minimize its local Choice2 : (z <100V y =100) A (z <97V x> 99)
inconsistency ats (which is a function ofps, ¢7, andgs): Choice3 : (z<100Vy=100)A (z <97V z =y)
(x<51lVae=y)A(z<101) Choice 3 is better than the other two choices since it yields the
. ) . important predicate: = y required later to discover the invariant
This is followed by, getting updated tgs to minimize the local z < 50 V = = y. Since there is no clear strategy what to choose,

inconsistency. The crucial point in the above sequence of updates;gnqomness plays a crucial role here.
is that¢s and ¢¢ get updated from choice af; before¢s gets
updated from choice af-. . St

The other random choice that the algorithm makes is in choos- 6. C_ase StUdy' BOOIe_an Combinations of
ing the abstract element at a given program peintlt is possible Difference Constraints

that there are several abstract elements that are locally consistentye implemented the learning algorithm for prografswhose
atﬂ'k, but some Of those Choices may be bettel’ than the Others. Forassignment statements and Conditionaj predicatep have the
example, consider the following snapshot that arose in one of the fo|lowing form:

proof searches in our experiments.

S : Tr=e€
¢ = (2=0)A(y=50) p + z=e|x#e|axz<e|z>el|z<e|z>e
3 = (<9I9VYy=99) A (z£98Vy=098)A e : c|uyte
(7 97V y =97) Herex andy refer to some integer program variables, whitefers
¢ps = (z<100Vy=100)A (z #99Vy=099)A to some integer constant. The predicates defined above are also
(

x#98Vy=98) calleddifference constraints



We chose the abstract domaihwhose elements are boolean

proof is shown inFigure 3b). The chart in Figuré shows the

combinations of difference constraints among program variables. average number of updates (per program point) required to discover
In particular, for computational reasons, we restricted the abstractthe proof of validity over 200 different runs of the algorithm. For

domain A to include boolean formulas with a specific template,

example, the first dark bin in Figufa) has 105 of the 200 tests

namely boolean formulas that when expressed in a conjunctive and is centered at 150 updates per program point, which means

normal form have at most. conjuncts, and each conjunct having

that around 50% of cases needed around 150 updates before the

at mostn disjuncts, each of which is a difference constraint (also program invariant is found, on the other hand 38 of the 200 tests

referred to asn x n). In our experiments that are described in
Section 6.1 we chosem € {3,4,5} andn € {2,3}. Such a

needed between 200 and 300 updates before convergence. The
graph shows that it is unlikely to have to run the tool for longer than

template choice is also justified by the fact that most programs are 500 updates per program point before discovering the invariant.

correct for simple reasons, and their proof of validity is expressible

using some appropriate small representation.

Incremental proof of validity At the end of each of the 200 runs

We used the following inconsistency measure on the above of the tool in the above case, we changed the program slightly (we

abstract domaind. The inconsistency oM (¢, ¢') is the sum of
the inconsistencies of(¢, C;) for each claus€’; in ¢', divided
by the total number of clauses .

1
;E x M(e,Cy)

M(¢, /\ ;) =

The inconsistencyM (¢, C;) is proportional to the number of
disjunctsD; in the disjunctive normal form of that do not imply
clauseC;.

k k
1
M(v Dj,Ci) = ZEXM(DJ’CZ)
j=1 j=1

The inconsistency aM (D;, C;) is defined to b® or 1 depend-
ing on whethetD; = C; or not respectively.
We implemented Linel in the FindProof procedure as fol-

replaced occurrences of the constant 5000 by 6000) and continued
the algorithm (with its current state of formulag at each program
pointry) to discover the proof of validity of the modified program.
Observe that the modified program requires a small change in the
proof of validity. The goal of this experiment was to illustrate that
the algorithm is smart enough to converge faster if starting from a
partially correct proof as opposed to starting from scratch. This is
indeed what we find experimentally: the gray histogram shows the
distribution of the number of additional updates the tool needed
to refine the invariant. On average, the 200 tests starting from
scratch required 235 updates per program point to discover the
invariant, but recovering from a small program change required on
average additional 195 updates. The trend is statistically significant
(p < 1073).

Effect of program constants One way to discover the proof of
validity is to run the program fully, i.e. to run through the program

lows. We considered the set of abstract elements that minimize thejgops until all the termination conditions are fulfilled and the end

penalty at program point; (given Post(mc) andPre(m)) and

of program is reached. However, our algorithm always finds true

chose an element randomly from it. However, in order to expe- jnvariants in a manner different than this. To show this, we rerun
dite the convergence process, we implemented a simple version ofthe tool 200 times using a smaller constants (this time using the
widening and narrowing, which can be regarded as choosing ab-constants50 and 100, as is the case in the program shown in

stract elements that do not minimize the penalty with a lesser prob- Figyre 3a)) as shown in loop termination conditions to see how

ability.

6.1 Experiments

We have built a prototype tool in C callethgic®. We describe
our preliminary experience with this tool on the two programs
shown inFigure 3andFigure 4 We do not know of any current
tool that can automatically generate the proof of validity of the
example inFigure 3 The program inFigure 4was chosen as a

this would affect the program. The distributions over the number of
updates did not differ significantly between the two cases. In fact,
under a randomized pairing, we found that the verification of the
program with the larger constant terminated faster than that of the
one with a smaller constant in 101 out of 200 tests. This agrees
with our visual inspection of the results which show qualitatively
the same invariants found in both cases (only the constants are
different), but it also indicates that the tool is highly unlikely to go

contrasting example - its structure resembles very closely to that through the entire loop before getting a clue about what an invariant

of the program inFigure 3 but it is easier to validate, and has

been used as a motivating example for some existing verification

techniques 19, 11]. Figure 5 contains histograms of the numbers

should be.

Changing template of boolean formulas Next, in Figures(b), we

of updates over different runs of our tool on these programs. For compare the number of updates per program point for the tools that
different algorithm parameters, we ran our tool 200 times and use different size of the abstract representatipmt each program
recorded average number of updates per program point needed td0int. The dark histogram is the same as in (b), while the gray his-
discover the invariant. The figures show histograms of the number togram corresponds to the tests with larger representatien3p
of updates over the 200 tests: the y-axis shows the number of runsand the white histogram corresponds to the smaller representation
that ended up in the average number of runs within the boundaries(3 x 2). The important conclusion is that using tight representa-

of the bin centered at the values on the x-axis.

Proof of validity of example in Figure3 We first ran our tool on
the program shown ifrigure 3a) with the constant50 and 100
replaced by the bigger constait300 and 10000 respectively. We

chose the size of boolean formulas over difference constraints as

tion (of exactly the right size), reduces the tool's ability to reach
all possible expression combinations. When the representation is
larger, then the extra room effectively smoothes the probability dis-
tribution by making it possible to express the invariant in multiple
redundant ways.

4 x 3 (i.e., at most 4 clauses, with each clause having at most Proof of validity of example in Figure4 To illustrate that the
3 disjuncts in the CNF representation). Our tool is successfully algorithm performance will depend on the difficulty of the program,
able to generate the proof of validity of this example. One such we also ran our algorithm on second verification problem, known

to be verifiable by other techniquesd 11]. Figure5(c) shows the

8Magic is an acronym for Machine-learning based Automatic Generation histogram of the number of updates for this problem. Even though

of Invariants in Code

the number of program points is the same, and the tool's settings
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Figure 5. The distribution over the number of updates in the Gibbs sampling algorithm before the program invariant is discovered. Dark
bins in (a) show the histogram over the runs that all used a slightly enlarged representation than neces8anst{dad of X2, which is

sufficient to represent invariants. This version converges the fastest among the ones we tried. The gray bins in (a) show how many updates are
typically necessary to change the found invariant into a new one that satisfy a slightly changed program. Since the invariant does not change
significantly, the number of updates per program point is lower than it is when the sampling is started from scratch. In (b) we illustrate the
effect of the limit on the size of the abstract representation to program convergence. Gray denotes lot of extrax@nblack denotes

some extra room (4« 3), and white denotes tight space x32). In (c) we show the update histogram for solving the second verification
problem, and in (d) the update histogram for solving the invalidity problem.

were the same, this problem is easier, and the algorithm discoversdriven nature of going backward by invoking the forward analysis
the invariant much faster. along infeasible error traces reported during a backward analysis
in the hope of generating stronger loop invariants to rule out those
traces [ 9). We have a different kind of forward and backward com-
bination in which we do not distinguish between the forward and

Proof of Invalidity of Example 1 Finally, in Figure 5(d), we
illustrate the performance on the invalidity proof of the program in

Figure 3when its precondition is changedteue. This is to show
that our tool works equally for discovering proofs of invalidity
as well proofs of validity (under the assumption that the program
terminates on all inputs). Figui&c) shows one of the proofs of
invalidity generated by our tool. In a different invalidity proof, the
tool even generated the weakest conditior 51 at mentry.

7. Related Work
The idea of applying machine learning techniques in programming

backward information, and information flows in both forward and
backward directions in each step of the algorithm.

Predicate abstraction with counter-example guided refinement
This technique involves using a model-checker to compute an over-
approximation of a set of reachable states of a program using
boolean formulas over a given set of predicates. If this set of reach-
able states intersects with the set of error states, the model-checker
provides a counter-example. A theorem prover is then used to

languages has been used recently, though for the different problemcheck the validity of that counter-example. If the counter-example

of discovering small programs given input-output paits][ In

is found to be invalid, the proof of invalidity provides additional

this paper, we use machine learning techniques for the problem ofpredicates that should be considered to avoid this counterexample

program verification.

Combination of Forward and Backward AnalysesCousot and

next time. The process is then repeated with these new set of pred-
icates.
There are some interesting differences between this technique

Cousot proposed a technique to combine forward and backwardof predicate abstraction with counter-example guided refinement

analyses by refining the over-approximation of the intersections
of precondition and negated postcondition by an iterative forward
and backward analysigl[5]. Dill and Wong Toi proposed a dif-

ferent kind of forward-backward combination that consists of com-
puting separate upper-approximation and lower-approximation of
precondition and postcondition respectiveB].[Leino and Lo-

gozzo also combine the forward inference procedure with the goal-

and our technique.

e Computation of reachable states can be regarded as a forward
analysis, while counter-example discovery and its feedback to
refine the set of predicates can be regarded as a backward
analysis. However, this forward analysis and backward analysis
happens in two different phases. Our forward and backward



analysis is more tightly integrated and happens in one phase,

thus providing an immediate feedback.

Predicate abstraction is limited to computing invariants using a
given set of predicates inside a fixed iteration. However, our
technique is not limited to considering a fixed set of predi-
cates during any step. The only restriction is that the invarian

at any program point should come from some language whose

elements can be represented finitely. For example, in our im-

plementation, we choose this language to consider all Boolean
formulas with bounded number of clauses, with each clause be-

ing a disjunction of bounded number of difference constraints.
Such a choice of language in our technique has the ability to

consider the space of all predicates (but boolean formulas of
bounded size) as opposed to predicate abstraction, which con-

siders a fixed set of predicates (but arbitrary boolean formulas
over them).

Interpolants Line 4in the procedur&indProof in our algorithm
involves choosing an abstract elemeite A at program point
m, such thaty’ is likely to be least inconsistent with and ¢”,

wherep = A ¢ andg” V ¢

¢. More formally, this
EPost () dePre(n)

means that we want to fingd’ such that the set of program states
that violateg = ¢’ or ¢’ = ¢” is minimal.® We refer to such a
process as theandwichstep.

The sandwich step in our algorithm can be viewed as a gener-

alization of the well-known interpolant procedure in theorem prov-
ing. Given a pair of formulaép1, ¢3) such thaty; = ¢s, an inter-
polant for (g1, ¢3) consists of a formulag- such thatp, = @2,
¢2 = ¢s3, andgz € L(¢1) N L(¢s). The Craig interpolation
lemma [7] states that an interpolant always exists wierand¢s
are formulas in first-order logic.

The sandwich step in our algorithm generalizes the interpolant

problem in several dimensions in the context of abstract computa-

tion over programs. Instead of enforcing thiate £(¢1) N L(¢3),
the sandwich step imposes the constraintghat A, for any given

languageA. Furthermore, the sandwich step does not insist that the

inputs¢; and¢s satisfyd: = ¢3. The immediate consequence of
(either of) these generalizations is that the existenge cluch that

¢1 = ¢2 andge = ¢s is no longer guaranteed, even whnand

¢s are formulas in first-order logic. However, the sandwich step in-
sists on finding a formula- that fits as best as possible between
¢1 andgs, i.e., the number of program states that violate= ¢3

or ¢3 = ¢2 is minimal.

Jhala and McMillan have recently proposed a predicate refine-
ment [L6] approach based on interpolants, wherein the search of
interpolants is restricted to a richer class of languages in successiv

stages of their algorithm. This is similar to one of the generaliza-
tions of the interpolant problem mentioned above, whetgiris
constrained to belong tad. However, the choice of the languages
suggested in Jhala and McMillan’s work is quite different from the
languageA that we use in our implementation. Their langudge

involves predicates that contain numeric constants no larger in ab-

solute value thark from the constants that already occur in the
program.

However, the choice of the language used in our implementa-
tion places restrictions on the size of the boolean formulas, which
is motivated by the fact that most programs are usually correct for
simple reasons that can be expressed using some small represe

tation. It would be interesting to consider the intersection of these
languages for faster convergence.

91n other words, the following set of program states is minimal:

(v(@) =(¢")) U (v(¢) —~(¢"))

e

Our choice of languages however raises the important issue

of how to choose between several solutiaiisthat are equally
consistent withp, and¢s (i.e, the number of program states that
violate 1 = ¢3 Or ¢3 = ¢2 is same for all of them) and fit
within the space restriction of the language The strategy that
t we use in our implementation is to choose solutigasthat are

more close top; (i.e, the number of program states that violate
¢2 = ¢1 is small) ores (i.e., the number of program states that

violate ¢3 = ¢2 is small). The former choice has the effect of a
forward analysis that is guided by the backward information, while
the latter choice has the effect of a backward analysis that is guided

by the forward information.
However, the biggest difference with Jhala and McMillan’s

work is that their work is an instance of predicate abstraction.

Their approach involves computing interpolants (which can also be
seen as combination of forward and backward analysis) only during
the predicate-refinement step, which happens in every alternative

phase after performing the standard reachability computation. On

the other hand, our algorithm performs the sandwiching procedure

(which is a combination of forward and backward analysis) at each
step.

Probabilistic Algorithms Gulwani and Necula developed a prob-
abilistic technique for program analysis (callexhdom interpre-

tation [12, 13, 14]) that combines the complementary strengths of

abstract interpretation and random testing. This technique involves
computing and manipulating program invariants efficiently by rep-
resenting them by a small random sample of the set of program
states that they represent (as opposed to manipulating program in-

variants symbolically). However, there are some differences worth-

mentioning with the probabilistic technique described in this paper:
(a) Random Interpretation terminates in a bounded time, but may
output incorrect program invariants with a (infinitesimally) small
probability. On the other hand, the technique described in this pa-
per always outputs the correct answer, but may take long to execute.
(b) Random Interpretation is a forward technique that is used to dis-
cover program properties. The technique described in this paper is
a combination of forward and backward analyses and is used to
discover the proof of correctness of a given pre/postcondition pair.

8. Conclusion and Future Work

In this paper, we have described a simple probabilistic inference
algorithm that searches for proofs of validity or invalidity of given
Hoare triples. The algorithm works by randomly choosing a pro-
gram point and randomly updating its guess for the invariant at that
point to make it less inconsistent with the neighboring guesses un-
til a valid proof is found. This simple algorithm combines forward
and backward analyses in a novel manner.

Furthermore, we pose the invariant inference problem as infer-
ence in probabilistic graphical models, which allows for a large
class of other probabilistic inference techniques to be applied to
program verification. To this end, we have introduced the notion of
an inconsistency measure for an abstract domain equipped with a
partial order. This measure can be used to create a probability dis-
tribution over the program states, described by a graphical model

r{;}menable to various probabilistic inference techniques (e.g., the

ones reviewed inZ0, 9]). It is important to note that, even though
the problem is re-formulated as an inference of hidden variables in
a probability model, many inference algorithms used in machine
learning aredeterministic and also new classes of deterministic
algorithms can be developed to leverage the real-valued inconsis-
tency measures to search for proofs of validity or invalidity. These
measures can be an effective measure of algorithm progress.



Our algorithm is based on one of the simplest sampling ap-
proaches, but a plethora of other related sampling algorithms is
reviewed in R0].

Possible extensions of this work include discovering invariants
that involve pointer variables, and performing an interprocedural
analysis by learning procedure summaries. It would also be inter-

[8] D. Dill and H. Wong-Toi. Verification of real-time systems by
successive over and under approximatioecture Notes in Computer
Science939, 1995.

[9] B. J. Frey and N. Jojic. A comparison of algorithms for inference
and learning in probabilistic graphical model&EE Trans. Pattern
Analysis and Machine Intelligenc27(9):1392-1416, 2005.

esting to experiment with the techniques described in this paper to [10] S. Graf and H. Saidi. Construction of abstract state graphs with PVS.

learn invariants in richer abstract domains such as first order logic
invariants, which would be useful to reason about programs with
arrays.
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