Published in the Proceedings of tRanciples of Programming LanguagéBOPL), 2004, pages 342-352

Global Value Numbering using Random Interpretation

Sumit Gulwani George C. Necula
gulwani@cs.berkeley.edu necula@cs.berkeley.edu

Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720-1776

Abstract General Terms

We present a polynomial time randomized algorithm for global Algorithms, Theory, Verification
value numbering. Our algorithm is complete when conditionals are
treated as nqn-deterministic and all operators are treated as uni,nterKeyWOI’dS
preted functions. We are not aware of any complete polynomial-
time deterministic algorithm for the same problem. The algorithm
does not require symbolic manipulations and hence is simpler to
implement than the deterministic symbolic algorithms. The price
for these benefits is that there is a probability that the algorithm can .
report a false equality. We prove that this probability can be made 1 Introduction
arbitrarily small by controlling various parameters of the algorithm. ) ) ) ) ) )
Detecting equivalence of expressions in a program is a prerequi-
Our algorithm is based on the idea of random interpretation, which Sit¢ for many important optimizations like constant and copy prop-
relies on executing a program on a number of random inputs and 29ation L], common sub-expression elimination, invariant code
discovering relationships from the computed values. The computa-Motion [3, 13], induction variable elimination, branch elimination,
tions are done by giving random linear interpretations to the opera- Pranch fusion, and loop jamming{j. It is also important for dis-
tors in the program. Both branches of a conditional are executed. At COvering equivalent computations in different programs, for exam-
join points, the program states are combined using a random affineP!€, plagiarism detection and translation validatiag [L1], where
combination. We discuss ways in which this algorithm can be made & Program is compared with the optimized version in order to check
more precise by using more accurate interpretations for the linear the correctness of the optimizer. Since the equivalence problem is
arithmetic operators and other language constructs. undecidable, compilers typically implement algorithms that solve a.
restricted problem, where expressions are considered equivalent if
and only if they are computed using the same operator applied on
. . . equivalent operands. This form of equivalence, where the operators
Categones and SUbJeCt Descrlptors are treated as uninterpreted functions, is caledbrand equiva-

) ) o lence Such analyses, which include global value numberkig [
D.2.4 [Software Engineering: Software/Program Verification; are widely used in optimizing compilers.

F.3.1 LLogics and Meanings of Program§ Specifying and Veri-

Global Value Numbering, Herbrand Equivalences, Random Inter-
pretation, Randomized Algorithm, Uninterpreted Functions

fying and Reasoning about Programs; F.3.@dics and Meanings Existing algorithms for global value numbering are either too ex-
of Programs]: Semantics of Programming LanguageBregram pensive or imprecise. The precise algorithms are based on an early
analysis algorithm by Kildall 9], where equivalences are discovered us-

ing an abstract interpretatiod][on the lattice of Herbrand equiva-
This research was supported in part by the National Science Founda lences. Kildall's algorithm discovers all Herbrand equivalences in a
tion Career Grant No. CCR-9875171, and ITR Grants No. CCR-0085949 'unction body but has exponential costl. On the other extreme,
and No. CCR-0081588, and gifts from Microsoft Research. The informa- tNere are several polynomial time algorithms that are complete for
tion presented here does not necessarily reflect the position or the policy of 0@sic blocks, but are imprecise in the presence of joins and loops
the Government and no official endorsement should be inferred. in a program. An example of a program that causes difficulties is
given inFigure 1

The popular partition refinement algorithm proposed by Alpern,
Wegman, and Zadeck (AWZ)] is particularly efficient, however
at the price of being significantly less precise than the Kildall's
algorithm. The novel idea in the AWZ algorithm is to represent
Permission to make digital or hard copies of all or part of this work for personal or the values of variables after a join using a fresh selection func-
classroom use is granted without fee provided that copies are not made or distributed tion @y, Similar to the functions used in the static single assignment
for profit or commercial advantage and that copies bear this notice and the full citation form [5], and to treat they, function as another uninterpreted func-
on the first page. To copy otherwise, to republish, to post on servers or to redistribute i The values of andx after the join in our example can both be
to lists, requires prior specific permission and/or a fee. - . .
POPL’04, January 14-16, 2004, Venice, ltaly. written asgm(a, b). The AWZ algorithm then treats thgfunctions
Copyright 2004 ACM 1-58113-729-X/04/0001 ...$5.00 as additional uninterpreted operators in the language and is able to



X:=a; z:=a, x:=b; z:=x;
y = F(@@); y = F(b); a=-4,b=5c=*d=*
T F
c=b-ad:=1-2b; ‘ ‘c;:2a+b;d::b—2; ‘

assert (z = x);
assert (y = F(x)); a=-4,b=5c=9,d=-9

a=-4,b=5c¢c=-3,d=3

Figure 1. Example of non-trivial assertions a=-4b=50c=-39,d=39

assert (c +d =0); assert (c=a + 1)

detect thak andz are equivalent. The AWZ algorithm rewrites the Figure 2. A code fragment with four paths. Of the two equa-

second assertion an(F (a),F (b)) = F(@n(a b)), which cannot  qng asserted at the end the first one holds on all paths but the

be verified if thep functions are uninterpreted. second one holds only on three paths. The numbers shown next
to each edge represent values of variables in the random inter-

In an attempt to remedy this problem{ifRing, Knoop and Stef- pretation scheme.

fen have proposed a polynomial time algorithm that alternately ap-
plies the AWZ algorithm and some rewrite rules for normalization
of terms involvingg functions, until the congruence classes reach a ] )
fixpoint [15]. Their algorithm discovers more equivalences than the the value of the operands) are either unsound or incomplete, when
AWZ algorithm (including the second assertion in our example). It taken along with the affine interpretation @functions. Our solu-
is complete for acyclic control-flow graphs, but is incomplete in the  tion is surprising because it requires several parallel simulations of
presence of loops. Recently, Karthik Gargi has proposed a set Ofthe program. The result of an expression in a given Slml.:”atlon is not
balanced algorithms that are efficient, but also incomplgte [ only based on its top-level operator and the values of its operands
in that simulation, but also on the values of its operands in other
In this paper, we describe a randomized algorithm that discovers Simulations. We give a proof of probabilistic soundness and com-
as many Herbrand equivalences as the abstract interpretation algopPleteness of this scheme. We also give an analytical formula de-
rithm of Kildall, while retaining polynomial time complexity. Our ~ scribing the number of parallel simulations required to achieve a
algorithm works by simulating the execution of a function on a desired probability of error. Furthermore, we show that it is possi-
small number of random values for the input variables. It executes Ple to combine, in the same algorithm, the natural interpretation of
both branches of a conditional, and combines the values of vari- linear arithmetic operators with our random interpretation of non-
ables at join points using functions. The key idea is that each arithmetic operators.
operator and each impliagi function at a join point in the program ) ) ) ) ) )
is given a random interpretation. These interpretations are care-In Section 2we review the random interpretation technique for dis-
fully chosen such that they obey all the semantic propertieg of ~covering linear relationships. Then, $ection 3 we describe the
functions (i.e. our algorithm does not regapdunctions as unin-  Proposed scheme for interpreting operators, and prove its sound-
terpreted unlike the AWZ algorithm). This means that the values Ness. InSection 4 we assemble the main ideas to construct the
of variables computed in one pass through the program reflect all fandom interpreter for discovering Herbrand equivalenceSeir
of the Herbrand equivalences that are common to all paths throughtion 5, we extend this scheme to discover more equivalences by us-
the program. The algorithm is also simpler to implement than the ing more accurate interpretations for the linear arithmetic operators
deterministic symbolic algorithms, primarily because it resembles and other language constructs.
an interpreter that uses a simple mapping of variables to values as
its main data structure. The price for the completeness and simplic-
ity of the algorithm is that, in rare situations, the algorithm might 2 BaCkground
report an apparent Herbrand equivalence that is actually false. We

prove that the probability of this happening is very small. We illustrate the random interpretation scheme for discovering lin-

ear relationships among variables in a progréin py means of

an example. We also show a new proof of probabilistic soundness
The idea of giving random affine interpretationsgéunctions has that gives insight into how this algorithm could be extended beyond
been used earlier in the context of a randomized algorithm for dis- linear arithmetic.

covering linear equalities among variables in a progr@m That

algorithm, however, is limited to programs in which all computa- Consider the program shown figure 2(ignoring for the moment
tions consist of linear arithmetic. The biggest obstacle we had to the annotations shown on the side). Of the two assertions at the end
overcome in trying to extend the linear arithmetic approach to ar- of the program, the first is true on all four paths, and the second is
bitrary operators was to find a suitable class of random interpreta- true on three of them (it is false when the first conditional is false
tions for the non-arithmetic operators. We show later in this paper and the second is true). Regular testing would have to exercise that
that all straightforward interpretations (i.e., as some functions of precise path to avoid inferring that the second equality holds. In-



stead, we use a non-standard interpretation model. At conditionals,wy + 3w, —2) = 0 and 3viwy —wq —3wo +2 = (1—wj )+ 1. Note

we proceed on both true and false branches. At joins, we choose athat the first equality of polynomials is a tautology, while the second
random weightv and use it to combine the valugs andv, of a is not. We can prove that an assertion that is true on all paths (i.e.,
variable on the two sides of a join as follows: on all Boolean values fawy andws) will correspond to an equal-

ity between two equivalent polynomials. The opposite is true for

Pv1,V2) =W vy +(1-W) x vp assertions that are false on at least one path. Note that when fully

We call this operation aaffine joinof v; andv, with weightw, expanded, these polynomials are exponential in size; however, this
written asvy Gw Vo. In essence, we are interpreting théunctions is not a problem since our interpreter can evaluate them in linear
as affine combinations with random weights. time.

In the example, all variables are dead on entry; so the random val- The significance of reducing the problem to that of detecting poly-
ues with which we start the interpretation are irrelevant (we show nomial equivalence lies in the following classic theorem due to
them asx in the figure). We use the random weights= 5 for the Schwartz [6].
first join point andw, = —3 for the second join point. We perform
the computations, maintaining at each step only a value for eachTHEOREM1 (RANDOMIZED POLYNOMIAL TESTING.). Let
variable. We can then verify easily that the resulting state at the Q1(x1,..,%n) and Q(xq,..,%n) be two non-equivalemhultivariate
end of the program satisfies the first assertion but does not satisfypolynomials of degree at most d, in variableg .x,x, over a
the second. Thus, in one run of the program we have noticed thatfield £. Fix any finite setl C £, and let a,..,a, be chosen
one of the exponentially many paths breaks the invariant. Note thatindependently and uniformly at random frdm The probability
choosingw to be either O or 1 at a join point corresponds to execut- that this choice is such that @ay,..,an) = Qx(ay,..,an) is at
ing either the true branch or the false branch of its corresponding 05t 9 .
conditional; this is what naive random testing accomplishes. How- IL|
ever, by choosingv (randomly) from a set that also contains non- ] )
Boolean values, we are able to capture the effect of both branchesSchwartz’s theorem says that if a random evaluation of two polyno-
of a conditional in just one interpretation of the program. mials returns the same result then it is very likely that the polyno-

mials are equivalent. The theorem suggests that we can reduce the
The completeness argument of this interpretation scheme relies orfffor probability in the random interpretation scheme by increas-
the observation that by performing an affine join of two sets of val- iNg the size of the set from which the random values are chosen.
ues (all with the same weight), the resulting values satisfyrar Addltlonally, the error probablllty decreases exponentially with the
relationships that are satisfied bygthinitial sets of values. Forthe ~ number of independent trials. Random testing can be thought of as
purpose of this paper, it is also important to note that (unfortunately) @n instance pf this r.andom interpretation scheme wherein the choice
the affine join operation does not preserve non-linear relationships. of weightsw is restricted to the small s¢0, 1} (this corresponds to
For example, in the program Figure 1it is true thata x b= 0, but executing either the true branch or the false branch ofqgondltlonal);
this non-linear relationship is not implied by the program state after but this gives a useless boundayf2 for the error probability.
the first join point.

The lack of a known polynomial time deterministic algorithm for
The probabilistic soundness argument given7hig complicated ~ checking the equivalence of polynomials suggests that randomiza-
by an adjustment Operation performed by the random interpreter. tion haS a Chance to Surpass determ|n|stlc algonthms n those p_rO-
The purpose of this operation is to adjust a program state such thatdram analysis problems that can be naturally reduced to checking
it reflects the additional equality fact implied by an equality condi- €quivalence of polynomials. Therefore it is not surprising that ran-
tional on its true branch. If we ignore this operation, we can give a dom interpretation works so well for checking equivalences in pro-
simpler proof of soundness in terms of polynomials. A straightline grams that involve only linear arithmetic computations. We show
sequence of assignments, involving only linear arithmetic, com- in the rest of this paper that even non-arithmetic operators can be
putes the values of variables at the end as linear polynomials in €ncoded using polynomials. These schemes are not as obvious as
terms of the variables live on input. The overall effect of the affine for linear arithmetic. They also sacrifice precision since the precise
join operation is to compute the weighted sum of these polynomi- meaning of the operator is lost. However, these schemes are very
als corresponding to each path. These weights themselves are nonéffective in discovering Herbrand equivalences.
linear polynomials in terms of the random weights For example,
the values of, b, c andd at the end of the program shownHig- .
ure 2can be written as follows (there are no live input variablesin 3 Random Interpretation of Operators
this program):
We consider a language in which the expressions occurring in as-

a = wpx0+(1-wp)x1 signments and equality assertions belong to the following simple
= 1l-w language of uninterpreted function terms (heis one of the vari-

b = wix1+(1-wp)x0 ables):

c = wyx(b—a)+(1—wp)x (2a+b) ex=x | F(e,e)

Wo X (W1 — 14 Wy) + (1 —wp) X (2— 2w + W)
3wiwy —wyp — 3w + 2
Wo X (172b)+(17W2) X (b*Z)
Wo X (1—2wyp) + (1 —wp) x (wp —2)
= —3wiwo+wy +3wp -2

For simplicity, we consider only one binary uninterpreted func-
tion F. However, our results can be extended easily to languages
with any finite number of uninterpreted functions of arbitrary ar-
ity. Comparing expressions in this language is trivial because only
identical expressions are Herbrand equivalent. The complications
Correspondingly, the two assertions at the end of the program canarise in the presence of join points in a program as shown by the
be written, respectively, a8wiwy — w1 — 3w + 2) + (—3wywy + example inFigure 1

o
I



The random interpreter compares expressions in this language by F F
choosing an interpretation fér randomly from a suitable set of ad- /\ /\
equate interpretations, followed by choosing random values for the

variables and evaluating the two expressions given these choices.

F F F F
We assume that the choice of the interpretatiorrds made by /\ /\ /\ /\
choosingp parameters from some field. Thus, the interpretation a b ¢ d a c b d

of F, written [F]) has the following type:

[F]:LP—=LxL—L Expression e; Expression e,

Given an expressioawith n variables, the given interpretation of €, = F(F(ab).F(c.d))
F induces an interpretation of the expresséon =1y (@)+1,(0)] + r,[ry (C)+ro(d)]

[[6]] P, =r%(a) + ryry(b+c) + r,2(d)
e, = F(F(a,c),F(b,d))

=r1y[r(@)+1,(C)] + rolry(b)+r,(d)]
=1,%(a) + ryry(b+c) + r,A(d)

We achieve the desired probabilistic soundness property of random
interpretation by ensuring that, for random choicestaf LP and

. . h.p.
p € LN, we have the following two properties (whevgep, means

‘implies with high probability”): Figure 3. An example of two distinct uninterpreted function

wh.p. terms e; and e, which are equivalent when we model the binary
[e]me =c [elmp =" [&] =cr—on—r [e] (2) uninterpreted function F as a linear function of its arguments.
[e] =gropnop [ = e =e ®)
We ensure propert® by choosing the interpretatidhto be a poly- Unfortunately, if [F] mis a linear polynomial then the soundness
nomial onp+ 2 variables. Assume now that we choose the follow- equation3 does not hold. Consider, for example, the linear inter-
ing polynomial interpretation fofF, with parameters; andr: pretation
[FI(ri,r2) (6y) = ro+ray? 4) [F] (ra,r2) (xy) = rax+ray

o ) ) o In Figure 3we show two distinct expressions that have the same
This interpretation has the desired probabilistic soundness prop-interpretation, under this interpretation fBr Similar counterex-
erty, although the degree of the polynomja]] is exponential in  amples arise for any linear interpretation, and in the presence of

the depth of the expressian According to Schwartz's theorem  functions of arity at least two, but not if the language contains only
this drastically increases the probability of error, suggesting that unary functions, or constants.

perhaps we should consider only polynomials that are linear in the

program variablesxandy). It appears that we have reached an impasse. If we fix the affine-join
o ) ) interpretation ofg, then only linear polynomials satisfy the com-
There is, in fact, another Important reason to choose linear polyno- p|eteness property. But linear po|yn0mia|s are not sound interpre_

mials. We choose the affine interpretation gpfunctions because  tations of arbitrary operators. In the next section we describe a way
it is very effective in reasoning about linear expressions in a pro- out of this impasse.

gram [7/]. We do not know of any other interpretation ferfunc-

tions that is effective in reasoning about any program properties.

In order to ensure the desired completeness property of randomin-3.1  Random k-Linear Interpretations

terpretation, we require thgE] respects the affine interpretation

given to thep functions. This means that for all field valuasb, c, One way to characterize the failure of the soundness property when
andd, and allrte £P we must have: using linear interpretations for binary functions is that we are re-
stricted to only three random coefficients, which are too few to en-

[om(F(a,b).Fed)]m = [F(@n(ac),om(b.d))] 1t code a large number of leaves. Thus, it is possible for two distinct
or, equivalently: trees to have identical interpretations.
W[F] t(a,b) + (1—w)[F]| t(c,d) = To increase the number of coefficients while maintaining linearity,

we modify the interpreter to maintaik values for each variable
and for each expression. This enables us to introduce more random
parameters in the interpretation functiok.is a parameter of the

It can be verified that the interpretation fBrin equation4 does ~ random interpreter, and we are going to derive lower boundk for
not satisfy completeness propery(except for the cases when laterin this section.

w € {0,1}, which correspond exactly to the actual paths through

[F] t(wa+ (1—w)c,wb+ (1—w)d) (5)

the program). Moreover, it is possible to prove that if gheinc- We need to refine the interpretationg given in the previo.us section.
tions are given the affine-join interpretation, and the completeness Both the functionF and any expressioanow have a family ok
equations is required to hold, thefiF]] tmust be a linear polyno-  interpretations, each with parameters:

mial in the program variables, for all valuesro LP. The example

in Section 2hat demonstrates that the affine join operation does not [FI : {1..k—=LP—LxL—L

preserve non-linear relationships also illustrates this fact. el : {1..k}—-LP-L" L



For the rest of the presentation we are going to work with a fam- of leaves in the tree. Interestingly, this value does not depend on the

ily of k linear polynomial interpretations (i.gF] i Ttis linear for all depth of the tree. A consequence is that trees involving only unary
1 <i <Kk). This family usegp = 4k — 2 parameters, named, . ., ry, constructors can be discriminated wkh= 1, independent of the
r’l,..,r{« s1,..,%-1 and dl,..,iil. In order to simplify the rest depth. The expressions that arise in programs can be represented as
of the presentation, we introduce an alternate notafigsi) for DAGs of size linear in the size of the program. In the worst case,
([€]) 1), for an expressioe and indexi between 1 an#t. The defi- the number of leaves in such a DAG, when expressed as a tree, is
nition of P(e,i) is by induction on the structure ef as follows: exponential in the largest depth of an expression computed by the
) program; thuk must be chosen at least as big as the largest depth
P(xi) = X of an expression computed by the program.
P(F(e1.e),1) = riP(e,1)+riP(e,1) We h ormed ber of s that hat
N ; ! ; e have performed a number of experiments that suggest that an
P(F(er&)l) = riP(eni) +.r,P(e2,|) even tighter bound ok might be possible, but we are not able to
+s-1P(ey,i—1) prove any such result at the moment. We also have not been able to
+5_41P(e2,i—1) fori>1 prove stronger properties by using more complex linear polynomial

interpretations.

Note that the degree of polynomiBle,i) is equal to the depth of

expressiore. Also note that for any, P(e,i) does not containany 4 The Random Interpreter R

of the variables;. 1,..,rx ands, .., s. This means that the polyno-

mial P(F(e1,e),i) can be decomposed uniquely into the subpoly- We now put together the ideas mentioned in the previous sections

nomialsriP(ey,i) -+ r/P(ez,i) (which contains variables andr), to describe the random interprefer
s_1P(e1,i — 1) (which contains variablg_1 but notr; orr{), and
§_,P(ez,i—1) (which contains variablg_, but notr;, r{ or s_1). 4.1 Notation
This implies the following useful property. )
PROPERTY 6. For any integer i> 1, P(F(e,e),i) = A statep € L" is an assignment of field values to theariables of
P(F(€,€),i) iff ' the program. We use the _notatlp(v() to denote the value of vari-
ablex in statep. The notatiorp[x < g] denotes the state obtained
(@) riP(er,i)+r{P(e,i) = riP(€},i)+r{P(&,i), and from p by setting the value of variabeto q.
(b) P(e1,i—1) = P(€},i—1),and Our algorithm performs arithmetic over some fiéld For imple-
mentation reasons it is desirable that the fiéldhould be finite
(c) P(ep,i—1) = P(€,,i—1) so that arithmetic can be performed using finite representation for

values. Hence, we chooge= Z4, whereq is some prime number
We now prove the soundness lemma, which states that if the sym-and Z2q refers to the field containing the integef@...,q—1}. In
bolic polynomials associated with two expressions are equivalent, this field, all the arithmetic operations are performed modulo prime
then the two expressions are equal. g. The error probability of our algorithm is inversely proportional
to the size of the field. (as stated imTheorem 14n Section 4.4.
Hence, by choosing a larggrwe can make the error probability of
our algorithm smaller.

LEMMA 7 (K-LINEAR SOUNDNESSLEMMA). Let e and ébe
two tree expressions such that e has at i2d$taves, and Be,i) =
P(¢,i) for some i> j. Thene=¥¢.

Our algorithm maintaink states at each point in the program,

PROOF. Note thate and€’ have the same depth sinBge,i) and wherek is as described in the previous section. This set of states is

P(¢,i) have the same degree (as they are equivalent). The proof

is by induction on the structure of expressi@ande. The base referred o as aample SWe writeS to refer to the'" state of the
y induction p : sampleS. The algorithm computels values for each expressien
case is trivial sinces and € are both leaves anB(e,i) = e and

N _ in the program. Théh value of an expressioaat some program
P(€,i) =¢. Clearly.e=¢. point o can be written a®(e,i) TS, whereP is the polynomial
interpretation given in the previous sectiatrefers to the values of
the parameters;,r{,s5_1 ands_; chosen independently and uni-
formly at random from the finite field, andSis the sample at the
program pointr. However, this value is computed directly (with-
out first computing the polynomi&l(e,i)) by simply evaluating the
expression on the given state and the values chosen for the parame-
tersr, r{, s_1 ands_,. Essentially, this value is computed by the
functionV (e,i,S), whose definition is given below.

For the inductive cases = F(e;,e) and€ = F(€|,&,). By as-
sumption,P(F (e1,e),i) = P(F (e}, €,),i) for somei > j. Sincee
has at most R2leaves, it must be that at least oneegfor e, has
at most 21 leaves. Consider the case whanhas at most 21
leaves (the other case is symmetric). From Propé(ty we have
thatP(e1,i — 1) = P(€},i —1). Sincei—1> j—1, we can apply
the induction hypothesis fa ande] to obtain thae; = €. Con-
sequentlyP(ey,i) = P(€],i). This allows us to simplify the Prop-

erty 6(a) toP(ey,i) = P(€,,i). Sincee, has at most 2leaves, we V(xi,9 = S[X

can apply the induction hypothesis fey and€, to conclude that V(E 19 = Vie 1.9 +r'V(e. 1.
e, = €,. This completes the proof.[] (Fler, &), X ) 1 (el’_ . )+,rl (e2., S
This result means that our family of interpretations is an injective +s-1V(ey,i—1,9)
mapping from trees to polynomials, and allows us to compare trees +9 4V(e,i—1,9) fori>1

by random testing of their corresponding polynomials. Note that
the higher the index of the polynomial, the larger the trees that it
can discriminate. The number of parallel values that we need to We say that a sampl8 satisfies a Herbrand equivaleneg= e,
compute for each node must be at least the logarithm of the numberwhenV (e1,k,S) = V(ey,k,S). We write S |= e; = e, when this



is the case. Note that we use only td& value when deciding The following property states the relationship between the samples
the equivalence. This is motivated hgmma 7 which says that computed byR and the symbolic samples computed®y
the Kt polynomial has the most discriminating power among the N -
polynomials that we evaluate. PROPERTY 8. LetS be a symbolic sample computedibgt some

point in the program and let S be the corresponding sample com-
Finally, we extend the affine join operation from individual values puted byR at the same_point. The sample S can be obtained
to states, in which case we perform the join with the same weight from the symbolic sampl® by substituting the input variables, the
for each variable. We further extend the affine join operation to weight and parameter variables w,and s with the values tha®
samples, in which case we perform the affine join operation on eachhas used for them.
pair of corresponding states with the same weight.

4.3.2 The Abstract Interpretet
4.2 The Random Interpreter Algomhm The abstract interpretet computes the Herbrand equivalences in
The random interpreteR executes a procedure like an abstract in- & Program. In the following definition we use the lettéto range
terpreter or a data-flow analyzer. It goes around each loop until a ©V€r Sets of Herbrand equivalences. We wite> e, = & to say
fixed pointis reached. The criterion for fixed point is define8ét- that the conjunction of the Herbrand equivalenced imply e, =
tion 4.4 The random interpreter maintains a samplé sfates at €2 We write U1 N Uy for the set of Herbrand equivalences that
each program point. These samples encode Herbrand equivalence&'® implied by botfJ; andUs. Finally, we writeU [e/X for the
or relationships among uninterpreted function terms of a program. relationships that are obtained from thos#iby substitutinge for
A sample at a program point is obtained from the sample(s) at the X- With these definitions we ca'n define the actionfobver the
immediately preceding program point(s). The initial sample con- nodes of a flow-chart as follows:
sists ofk copies of a randomly chosen statei.e. the values of all . ) .
variables of the program in stapeare chosen independently and ¢ ASS|gnment/Node. S,elé;gure 4(a). /s .
uniformly at random from the fielé. We now describe the action U = {x=e[X/x]} UU’[X/X], wherex'is a fresh variable
of the random interpreter on the three basic nodes of a flow-chart, e Conditional Node: SeEigure 4(b).

which are shown itfFigure 4 ul=u’anduZ2=u’
e Assignment Node: Segigure 4(a). . &OT L']l?rqw% 2Selatlgure 4(c).
S =Six—V(ei9) a
e Conditional Node SeEigure 4(b). The abstract interpreter starts with the empty set of Herbrand equiv-
St=9 and¥? = alences. Implementations of abstract interpretations sudhrese
e Join Node: Se§|gure 4(c). been described in the literatur@ [ The major concern there is the

concrete representation of the setand the implementation of the
operatiorlJ; NUs. In Kildall's original presentation the sethas an
exponential-size representation, although this is not neceskary [
After fixed point has been reached, the results of the random in- Here we usel only to state and prove the soundness and complete-

terpreter can be used to verify or discover equivalences among ex'zeisbﬁiuétgu?,f dtg?\cirir;?r(wmlleltgﬁﬁéimzl Ehgrg?c?rtsrﬁtelr&trleim(r;ter[ate d
pressions at any point in the program as follows. Two expressions P P P

e ande, always have the same value at some pBiitt a program and canditionals are non-deterministi?] 19).
if SE e = ey, whereSis the sample at poir®, or equivalently if
their kM value is the same in the given sample.

S= Sl oy F, wherew is a fresh random value chosen inde-
pendently and uniformly at random frof

We now state the relationship between the sets of symbolic samples
S computed byR and the sets of Herbrand equivalentbsom-
puted byA in the form of completeness and soundness theorems.
4.3 Completeness and Soundness Theorems

THEOREM9 (COMPLETENESSTHEOREM). Let U be a set of
For the purpose of the analysis of the algorithm, we introduce two Herbrand equivalences computed Hyat some point in the pro-
new interpreters: a symbolic random interprékemwhich isasym- ~ gram and letS be the corresponding symbolic sample. Leired &
bolic version of the random interpret, and an abstract inter-  be any two expressions such thattJe; = e,. Then SkEe =e.
preterA, which is sound and complete. We prove titas as com-

plete and as sound a%. We then show that this implies tha The completeness theorem implies that the random interpReter
is probabilistically sound, and is complete when all operators are discovers all the Herbrand equivalences that the abstract interpreter
uninterpreted and the conditionals are non-deterministic. A discovers. The proof afheorem ds based of.emma 10which

is stated and proved below.emma 10states that the affine join

. ~ of two states satisfies all the Herbrand equivalences that are satis-
4.3.1 The Symbolic Random Interprefer fied by both the states. The full proof heorem 9is given in
- AppendixA.1.
The symbolic random interpret®& maintains a symbolic state and
executes a program like the random interprétdout symbolically. LEMMA 10 (UNION COMPLETENESSLEMMA). Let S and g
Instead of using random values for the initial values for variables, be two symbolic samples that satisfy the Herbrand equivalence
or the parameter, ri ands, it uses variable names and maintains e; = e,. Then, for any choice of weight w, the unifh= S@WS'
symbolic expressions. We use the letfto range over the sym- also satisfies the same Herbrand equivalence.
bolic samples maintained by the symbolic random interpreter. We
write \7(e,i,S) to denote theéth symbolic value of expressiosin PROOF Note that for any expressios and any symbolic sample
symbolic sampl&. T,V(ek,T) is alinear function of the program variables in expres-



st Q! S2 Q2

1 U2
True v
st Ql u? g2 QZ Uls Q
(a) Assignment Node (b) Conditional Node (c) Join Node

Figure 4. Flow-chart nodes

sione, Hence, for any affine combination of two symbolic states LEMMA 13. Let T be the set of program variables. The Herbrand

S@WS one can easily verify thévt(e K, S@WS’) WxV(e k, S) equivalences at any point in the program can be represented by a

(1 — X V(e k, S Thus, if VQel,k S = V(ez,k S) and pair H = (I,E), where IC T is a set of independent variables and
Ve, k S) (ez k ), thenV (e1,k, Sow S) =V (e2,k, Sow S). E is a set of equivalences=xe, one for each variable ® T —1,

From here the completeness statement follows |mmed|at@:y such that all variables that occur in expression e belong to set I.

It is not surprising that the completeness lemma holds, since we This lemma can be proved by induction on structure of the program.
have chosen the linear interpretations of operators specifically to The key observation then is thathf, = (I2,Ep) is aboveH; =

satisfy this constraint. Next we state the soundness theorem. (I1,E1) in the lattice (which is to say thdd; is a stronger set of
equivalences thaHy), then|l| > |I1]. This implies that the lattice
THEOREM11 (SOUNDNESSTHEOREM). LetU be a set of Her- under consideration has depth at mast

brand equivalences computed yat some point in the program
and letS be the corresponding symbolic sample of k symbolic states.Thus, the abstract interpretdris guaranteed to reach a fixed point
Let g and g be two expressions such that= e; = e, and k> within a number of iterations that is linear in the number of vari-
min(degredV (e, k, 5)), degreeV (ez,k,S))). Then, U= e = e,. ables of the program. Given the close relationship betwéemd

R as established byheorem 9and Theorem 11 R also reaches
According toTheorem 11if the symbolic polynomials associated a fixed point in the same number of loop iterations. Furthermore,
with two expressions under our random interpretation scheme aregiven the relationship betweéhandX as mentioned in Propers;
equivalent, then those two expressions are also found equivalentR also reaches a fixed point with high probability in the same num-
by the abstract interpreter. The proof Ofieorem 11is based on ber of loop iterations.
Lemma 7 Notice, however, that iTheorem 1lthe lower bound
onk is stated based on the degreevﬁé k S) which is equal to The above observations suggest tiRamust go around each loop
the depth of expressiog while in Lemma 7 it is based on the for n steps (this would guarantee that fixed-point has been reached),
logarithm on the number of leaves. The reason for this weakening wheren is the number of variables that are defined inside the loop.
of the soundness statement is two-fold: it would have been more Another alternative is to detect when fixed-point has been reached
complicated to carry out the proof with leaf counts, and in the worst by comparing the set of Herbrand equivalences impliedRbin
case these measures are equal. The full prodfheforem 11is two successive executions of a loop (this can be done by building
given in AppendixA.2. We use this soundness theorem in the next a symbolic value flow graph of the prograd¥]). If these sets are
section to prov& heorem 14which establishes an upper bound on identical, then the fixed-point for that loop has been reached.
the probability thafR is unsound.

An upper bound on the number of iterations required for reaching

4.4 Fixed Point Computation fixed-point enables us to state an upper bound on the error proba-
bility in the analysis performed by the random interpréter

For a program with loops, the random interprefeigoes around
each loop until a fixed point is reached, like an abstract interpreter
or a dataflow analysis algorithm. A fixed point is reached when .

the Herbrand equivalences inferred from the numerical resufks of some progr.am p0|r.1t. Let S be the random sample at that program
are stable. The main concerns are then whether the fixed-point isPoint after fixed-point. If k> 2n° +t, thenPriS|= ey = €] < ZTJtv

ever reached, and how many iterations are required. The answeravhere n is an upper bound on the number of variables, function
to these questions are implied by the fact that the lattice of sets of applications, and join points in the program, afd| denotes the
Herbrand equivalences that are true at any point in a program hassize of the field. from which the random values are chosen.

finite depth as stated ifheorem 1elow.

THEOREM14 (PROBABILISTIC SOUNDNESSTHEOREM). Let
e; and & be two non-equivalent expressions of depth at most t at

PROOF Let She the corresponding symbolic sample, &nide the
THEOREM 12. The lattice of sets of Herbrand equivalences (in- corresponding set of Herbrand equivalences at that point. Since the
volving the program variables) that are true at any point in a pro- abstract interpretef is sound,U # e; = e;. There are at most
gram (under the set union operation as describe&éttion 4.3.p n function applications and at mostjoin points in the program.
has depth at most n where n is the number of program variables. Each function application and each join operation increases the de-

gree of the polynomial corresponding to the resulting expression
We give a brief sketch of the proof of this theorem. The complete by 1. Hence, one loop iteration contributes ® the degree of
proof is in the full version of the paper which is available as a tech- the polynomial corresponding to an expression. The fixed point
nical report B]. The proof of this theorem relies on the following  computation requires at mostiterations. Hence, the degrees of
lemma. the polynomialsV (e, k,S) andV (ex, k,S) are bounded above by



22 +t. It thus follows fromTheorem 1ithat$S e =ep. The of the random interpreteR to use the natural interpretation for the

desired result now follows from Prope®andTheorem 1 [ linear arithmetic operators as follows:

Theorem 14mplies that by choosing big enough, the error prob- v(a, ?’ S =4 _

ability can be made as small as we like. In particulan i 100, Vgxei,§ = agxV(ei,s)

and if we choos& such thatL | ~ 232 (which means that the ran- V(e £e.i,9 = V(eni,S=V(ei,9)

dom interpreter can perform arithmetic using 32-bit numbers), then
the error probability is bounded above by P0 By repeating the
algorithmb times, the error probability can be further reduced to Such a naive combination of the two schemes is unsound. For ex-
1050, ample, consider the two non-equivalent expressens F(a, b) +

F(c,d) ande; = F(a,d) + F(c,b). It is easy to see that for any

. ) sampleSand anyi, V(e1,i,S5) =V(e,i,9).

4.5 Computational Complexity

One way to fix this problem is to hash the value of an uninterpreted
The cost of each assignment operation performed by the random in-function term before being used in an arithmetic expression. This
terpreter i9O(k), assuming that each assignment operation involves 10ses some information about the uninterpreted term, but prevents
a constant number of function applications. hdte the number of the unintended interaction between the chosen linear interpretation
assignments in a program. The fixed-point for any loop is reached of the operator and the plus operator. For this purpose, we maintain
in at mostn steps. Therefore, the total number of assignment oper- an extra bit of information with every variable in a sample, namely
ations performed by the random interpreter is at r@(ﬁg)_ Thus, whether the top-level operator used in computing the value of a vari-
the total cost of all assignment operation€ig2k). The cost of ~ able was an uninterpreted operator or not. The random interpreter
a single join operation i©(mk), wherem is the number ofp as- R now maintains a tuplQ, S) at every pointin the program, where
signments at the join point. The total cost of all join operations can Srefers to a sample as before, &Rds a mapping that maps every
be amortized t®(n? x k) (since eachp assignment can be associ- variable to some Boolean value. The random interpreter upates
ated with an ordinary assignment). Hence, the total time taken by as follows.
the random interpreter i©(n® x k). Choosingk = O(n?), in or-
der to satisfy the requirement for probabilistic soundness, yields an
overall complexity ofo(n?).

e Assignment Node: Seeigure 4(a).
Q = Q'[x+ True] if eis of the formF (e, &)
= Q/[x + False], otherwise
whereQ' refers to the mapping before the assignment node,

Our analysis for probabilistic soundness requires choogirg andQ refers to the mapping after the assignment node

O(n?). However, we feel that our analysis is very conservative.
The experiments that we have performed also suggest that tighter e Conditional Node: SeEigure 4(b).

bounds ork might be possible, but we are not able to prove any Ql=Q andQ?=qQ

such result at the moment. Note thamma 7requires working whereQ refers to the mapping before the conditional node,
with only logn polynomials, whera is the size of the tree expres- and Q! and Q? refer to the mappings after the conditional
sions. If we can prove a similar lemma for DAGs, then we can prove node.

that choosind = O(logn) is sufficient for probabilistic soundness, « Join Node: Se€igure 4(c)

which will yield an overall complexity ot:)(n2 logn) for our algo- Q(X) = Ql('x) v Q(ZJ(X) '

rithm.

whereQ! andQ? refer to the mappings before the join node,
andQ refers to the mapping after the join node.

S Beyond Herbrand EqUivalenceS The functionV now assigns values to linear arithmetic expressions

. . . ) . in the following manner.
Until now, we have discussed how to discover equivalences in a pro-

gram in which all the operators are treated as uninterpreted. More V(ep£e,i,S ToArith(ey,i,S) £ ToArith(ey,i,S)
equivalences can be discovered if some of these operators are inter- V(gxei,S = qxToArithei,S)
preted. " "

where ToArith is a function that hashes uninterpreted function

. . . terms as follows:

5.1 Linear Arithmetic
ToArith(e1,i,S) = if Q(er) thenV(ey,i,S)

The random interpretation scheme described in our earlier pdper [ else HashV(ey,i,9))
discovers all linear relationships among variables in a program in
which all assignments compute only linear arithmetic expressions. . . ) o
The random interpretation scheme described in this paper discov-Such a random interpretation scheme is probabilistically sound
ers all Herbrand equivalences in a program in which all operators but not complete. For example, consider the two equivalent ex-
are treated as uninterpreted. It is interesting to consider whether byPressionse; = (F(a,b) +-¢) —c ande; = F(a,b). It is easy to
combining both these schemes, we can discover all the equivalences€e that for any samp®and anyi, V(ey,i,S) # V(e,i,S) (with
in a program that has expressions consisting of both linear arith- high probability over the random choices made by the Hash func-
metic as well as uninterpreted operators as described belowghere tion) sinceV(ey,i,S) = HashV(F(a,b),i,S)) and V(e,i,S) =

denotes a rational number): V(F(a,b),i,S). We can increase the precision with a simple modifi-
cation. We can convert an arithmetic value back to an uninterpreted
ex=x | F(e,e) | g | gxe | e1te function term value if the arithmetic value is equal to the hash of an

uninterpreted function term value. This modification can discover
One way to combine both these schemes is to extend the descriptiorall equivalences inside basic blocks, but still remains incomplete



for discovering equivalences across basic blocks. It is an interest-5.3 Memory Reads and Writes

ing question to figure out if there exists an efficient algorithm that

discovers all the equivalences in the presence of linear arithmetic,As another interesting example, consider the following program
uninterpreted operators and non-deterministic conditionals. fragment in whichx andy are input variables that take integer val-
ues, andMemrefers to some array. Note that the assert statement at
the end of the program is not always true (since the input variables

5.2 Bitwise Operatlons x andy may have the same values).

If we attempt to use the natural interpretation for non-arithmetic
operators as well, we loose probabilistic soundness. This is be- Mem
cause non-arithmetic expressions cannot be expressed as polyno-Mem
mials. For example, consider the following program fragment in L
whichx, y, andz are input variables that take integral values, and & ~ 25Sert
denotes the “bitwise and” operator.

[x] :=0;
lyl :=1;
= Mem[x];
(t =0)

If the basic block is executed with values foandy chosen ran-
domly from L, then the probability that the assert statement at the
end of the program is falsified (and the random interpreter detects
the possible failure of the assert)‘%r‘, which is very small. This

is the probability thak andy are chosen equal. Again, the prob-
lem of detecting equivalences of expressions inside a basic block
involving memory reads and writes is NP-hard. Hence, one should
not expect to decide equivalences of such expressions simply by
random testing.

ti=x&y &z &l
assert (t = 0)

The assertion is not always true, yet if the basic block is executed
with values forx, y, andz chosen randomly fromi, then the proba-
bility that the assert statement at the end of the program is falsified
is % (the probability that allk, y and z are all chosen to be odd
integers), meaning that most likely the random interpreter will er-

roneously validate the assert. Note that this problem is related to theMemory reads and memory writes can be modeled conservatively
NP-complete problem of detecting equivalences of Boolean expres- ing two special uninterpreted functions as follows. The mem-

sions. One should not expect that equivalence of Boolean expres-,y giate is represented by a special varigbleA memory read
sions can be decided simply by random testing since the problem ofis ' adeled by the binary uninterpreted functiosi ect that takes

deciding equivalence of Boolean expressions is NP-complete, andag arguments the state of the memory (represented by the special
it is not known whether NP-complete problems can be decided in variableyl) and the address in the memory as follows.

randomized polynomial time (RP).

V(Menlel,i,S) = V(Select(ye),i,S
One way to conservatively handle the bitwise operators is to model
them as uninterpreted functions. However, this may be too con-
servative. Another way is to interpret the bitwise logical operators
using the multiplication and addition operators as described below.

A memory writeMenTe;] = e, is modeled by updating the value of
the special memory variabjein the sample before the assignment
as follows.

V(er&ey,i,S) = V(erxey,i,§) S = S[u<V(Update(Wer,e),i,9)]
V(elle,i,S = V(e1+e,i,9

Here| denotes the “bitwise or” operator. This interpretation cap- HeréUpdate is an uninterpreted function of 3 arguments. Such a

tures the commutativity and associativity properties of the “bitwise S€lect-update formalism is commonly used to model memory and

and” and “bitwise or” operators inside basic blocks. It also captures N2S @lso been used ifi]]. TreatingSelect andupdate operators

the distributivity of “bitwise and” operator over the “bitwise or” op- &S uninterpreted helps to reason at least about the fact that two reads

erator. However, this is still far from capturing all the Boolean ax- Tom the same memory location with no intervening memory writes

ioms. For example, it does not capture the distributivity of “bitwise Y1€ld same values.

or” operator over the “bitwise and” operator. It also does not cap- .

ture the axiom that &e= e. Note that this interpretation is sound 5.4  Integer Division Operator

because & andsatisfy all the properties that are satisfied+gnd

+ respectively. As another example, consider the following program fragment in
whichxis an input variable that takes integral values, Adénotes

The random interpretation scheme for handling arithmetic is as ex- the integer division operator.

pected:

. . . t =2 + x;

V(epxe,i,S) = V(ey,i,S*V(ei,9 assert (t - 0)

V(erte,i,9 V(er,i,S) +V(ei,9
This is a sound scheme since the random interpretation scheme igl "€ @SSert statement above is not always true. If the basic block
sound for testing equivalence of polynomials. is executed with values fax chosen randomly fronf., then the

probability that the assert statement at the end of the program is

The above interpretation will be unsound if expressions involve falsified is at mos%, which is very small. This is the probability
both the bitwise operations and the arithmetic operations. Hence,thatx is chosen to be either 1 or 2. Note that this problem can be
an expression consisting of “bitwise and” and “bitwise or” operator easily reduced to the problem of checking whether a polynomial
must be hashed before being used in an arithmetic expression, jushas integral roots or not, which is an undecidable problem. Hence,
as uninterpreted function terms are hashed before being used in arone should not expect that equivalences of expressions involving
arithmetic expression as describedSiection 5.1 the integer division operator can be decided by random testing.



One way to conservatively handle the integer division operator is has demonstrated experimentally that balanced algorithms termi-
to model it as an uninterpreted function. However, this may be too nate faster than the optimistic algorithms and produce more precise
conservative. Another way to handle the integer division operator information than the pessimistic algorithms. OliveitRing, Jens

is to model it as a real division operator as follows. Knoop and Bernhard Steffen have extended the partition refinement
e algorithm proposed by Alpern, Wegman and Zadetdkwith the
V(e +e,i,5 = V(g,i,S) concept ofintegrated normalizatiorj15], wherein the partitioned

value graphs are modified according to a set of graph rewrite rules
Here 2 denotes the real division af by ay, while a; +a, denotes and the process (of partitioning the value graph and modifying it)

the integer division ofy by a,. This modeling, though incom- is repeated until fixed-point is reached. The graph rewrite rules are
plete, may help in detecting equivalences that are not discovered by2ble to discover some more equivalences which further trigger de-
the earlier one. This is a sound modeling becau% i S, then tection of equivalences by the partitioning algorithm. These hybrid

e1+ e =63 ey & algorithms discover more equivalences than the pessimistic algo-

rithms, but they also cannot discover all Herbrand equivalences and
The random interpretation scheme for handling real division is as @re 1ess precise than our algorithm. The4runn|ng time of the algo-
follows. rithm by Ruthing, Knoop and Steffen i®(n"*logn) and is compa-
L . ' 2
Vs — V(eniS) rable to the running time of our algorithm, whichGgn®).
T V(€,i,9) The random interpretation scheme described in this paper shares

Note that this is a sound scheme because the random interpretatioﬁﬂe ic:ea _OL usidng anbaf(;ir_]e-joi\?vinterpreéatki]on _gplfunc_ti'?ns with

scheme is sound for testing equivalence of polynomials, agchif the algorithm described iV]. We extend that idea with away to

e, — €3 x &, then it must be the case th%t: & interpret uninterpreted operators in the language in a manner that is
, e

complete and probabilistically sound. Furthermore, we show how

. . to improve the precision of the algorithm by giving more refined

6 Comparison with Related Work interpretations to a few special operators. These extensions make it
possible to start experimenting with random interpretation for real

The algorithms for global value numbering in literature can be programs, not just those restricted to linear computations.

broadly classified into being optimistic or pessimistic.

The optimistic algorithms start with the optimistic assumption that 7 Conclusion and Future Work
the expressions not known to be unequal are equal. Hence theyWe have presented a global value numbering algorithm based on
may maintain some incorrect facts about a program at an interme-th id pf d ; tg tati 0 | g’th g0 h th
diate analysis stag€]. These assumptions get refined in successive fi € Idea ot random Interpretation. Lur aigorithm 1S pernaps the
loop iterations, and the process is repeated until the assumptions bell"st polyno_mlal time a'gof'th”? that dl_s_covers all qulvalences ina
come consistent. The precise algorithms that discover all HerbrangP'0dram Wlth_non-determlnlstlc cond_ltlonals_and l_Jnlnterp_rete_d op-
equivalences in a function body fall into this optimistic category. erators. An important feature of this algorithm is the simplicity

They are based on an early algorithm by Kild&l), [which discov- qf its data structures and of the o_peratic_ms it _perfqrms. Our algo-
ers equivalences using an abstract interpretation on the lattice of“thm does not require any symbolic manipulations like other global

Herbrand equivalences. The running time of these algorithms is ex- value numbering algorithms. We are W_qu_lng on pfOV'”Q bgtter up-
ponential. Our algorithm also falls under the optimistic category. It per bounds on the value_ affor probab|l_|st|c soundness; this can
is based on random interpretation on the lattice of Herbrand equiv- "€dUCe the time complexity of our algorithm.

alences. It is complete and discovers all the equivalences that ar
discovered by the Kildall's algorithm. However, our algorithm runs
in polynomial timeO(n%).

The next step will be to implement this algorithm and compare it
with other existing algorithms on several benchmarks. We also plan
to use the value numbering algorithm proposed in this paper as part
of the translation validation infrastructur&l]. We hope that this

will reduce several of the false alarms currently generated by the
translation validation tool.

The pessimistic algorithms start with the pessimistic assumption
that the expressions not known to be equal are unequal. These al
gorithms maintain only true facts about a program at every inter-

mediate stage of the analysis and do not require fixed-point com- An interesting open problem is to discover all equivalences in a

putation. These algorithms are based on the popular partitioning proqram with non-deterministic conditionals and expressions that
algorithm by Alpern, Wegman, and Zaded},[which runsintime  jnyolve both uninterpreted operators and linear arithmetic. Another
O(elogn) wherenandeare the number of nodes and edges in a pro- interesting open problem is to consider the case when some of the
cedure’s static single assignment graph. The running time of theseuninterpreted operators are known to be commutative (for e.g. float-
algorithms is better than our algorithm because the pessimistic as-ing point arithmetic operators) or associative or both. We feel that
sumption does not need to be refined or reapplied, while the opti- randomization has much to offer to program analysis and this area
mistic assumption must be repeatedly refined and reapplied until it iS worthy of future research. Combining the randomized techniques
becomes consistent. But, these algorithms cannot discover all Her-With symbolic ones also seems to be a promising direction for fu-
brand equivalences in a procedure and hence are less precise thah'"® work.
our algorithm. The preciseness of the results of our algorithm may

outweigh its execution time. 8 References

Recently, there have been proposals for a hybrid approach which [1] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of
tries to combine the best of both the above approaches. Karthik variables in programs. Ih5th Annual ACM Symposium on Principles

Gargi has proposeblalanced algorithmswhich start with opti- of Programming Languagepages 1-11. ACM, 1988.
mistic assumptions for the reachability of blocks and edges and [2] P. Briggs, K. D. Cooper, and L. T. Simpson. Value numberiggft-
the pessimistic assumption for the congruence of val@gs e ware Practice and Experienc&7(6):701-724, June 1997.

10



[3] C.Click. Global code motion/global value numberingPiroccedings by the interpreters can be viewed as going forward in the sense that
of the ACM SIGPLAN "95 Conference on Programming Language De- the outputs of a flowchart node are determined by the inputs of the
sign and Implementatigpages 246-257, June 1995. node. Hence, for the inductive case of the proof, we prove that

[4] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice the required property holds for the outputs of the node given that it
model for static analysis of programs by construction or approxima- holds for the inputs of the node.
tion of fixpoints. InProceedings of the 4th ACM Symposium on Prin-
ciples of Programming Languagesages 234-252, 1977. A.1 Proof of Completeness (Theorenﬁ))

[5] R.Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.

Efficiently computing static single assignment form and the control  The proof is by induction on the number of operations performed by
degesndence g3rap_hACM ;’Bargacn%r;soon Programming Languages  the interpreters. The base case is trivial since initidlly: 0. Since
and Systems.3(4):451-490, Oct. 1990. 0= e; = ey, it must be the case thaf = e;. Hence S|=e; = ey.
[6] K. Gargi. A sparse algorithm for predicated global value numbering. For the inductive case, the following scenarios arise.
In Proceedings of the ACM SIGPLAN 2002 Conference on Program-
ming Language Design and Implementativalume 37, 5, pages 45— e Assignment Node: Sdeigure 4(a).
56. ACM Press, June 17-19 2002. Consider the expressiogs = e;[e/x| ande, = ez[e/x]. Since

[7] S.Gulwaniand G. C. Necula. Discovering affine equalities using ran- U=e =g U= §/ = &,. It follows from the induction
dom interpretation. 1180th Annual ACM Symposium on Principles of hypothesis o’ andS thatS |= €] = €,. HenceSl=e; = ey.
Programming Languagegages 74-84. ACM, Jan. 2003. « Conditional Node. SeBigure 4(b

[8] S.Gulwaniand G. C. Necula. Global value numbering using random This case is trivial sinc&)! = U% U andSt =& =8.
interpretation. Technical Report UCB//CSD-03-1296, University of ; ; ; /

California, Berkeley, 2003, ggslijrselggget:litlnductlon hypothesis & andU’, we get the

[9] G.A.Kildall. A unified approach to global program optimization. In .
1st ACM Symposium on Principles of Programming Langupgges * Join Node: Se€&igure 4(C) 2
194-206. ACM, Oct. 1973. By definition of A, U1 $1e1 ezlandU :>2e1 egz. By

[10] S. S. Muchnick. Advanced Compiler Design and Implementation induction hypOtheSIS o_and S and onU*® and S, we
Morgan Kaufmann, San Francisco, 2000. Cz\rlr?n:gals(lr';% = 221 angZS [~ €1 =¢€z. Itnow follows from
[11] G. C. Necula. Translation validation for an optimizing compiler.
In Proceedings of the ACM SIGPLAN '00 Conference on Program-
ming Language Design and Implementatipages 83—-94. ACM SIG- A.2 Proof of Soundness (Theorerril)
PLAN, 18-21 June 2000. , ) _ , ,
| el ) lati lidati The proof is again by induction on the number of operations per-
[12] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In ¢ .04 by the interpreters. For the base c¥dey, k, ) = P(ey, k)
B. Steffen, editorTools and Algorithms for Construction and Analysis andV (e, k é) — P(e2,K) sinceé‘k[x] — . Since an expression of
of Systems, 4th International Conference, TACASV@&ime LNCS > ) T b
1384{ pages 151-166. Slpringer, 1998, S deptht can have at most 2eaves when expressed as a tree, it fol-
lows from Lemma 7thate; = . HenceU = e; = e,. For the
[13] B.K.Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers ;4 ctive case. the following scenarios arise
and redundant computations. Isth Annual ACM Symposium on ' ’
Principles of Programming Languaggsages 12-27. ACM, 1988. e SeeFigure 4(a).
[14] O. Rithing, J. Knoop, and B. Steffen. The value flow graph: A pro- Consider the expressions = el[e/x] and €, = ey[e/X.
gram repdrisg\tationdfor op;irtrrl]al I[EJrogram tlgnsform_ations.Pln N. D. Note that § Eé = % since S Ee = e. Also
ones, editorProceedings of the European Symposium on Program- . &
ming pages 389-405. Springer-Verlag LNCS 432, 1990. 2‘;;3 de”r‘:;\/(gzeir%?;/(el ;es)r)eév— %df%teév(e&hkéfgi
[15] O. Ruthing, J. Knoop, and B. Steffen. Detecting equalities of vari- K > 9 d ’V’ o k_S gd v (e, k, S’ N
ables: Combining efficiency with precision. 8tatic Analysis Sym- = _m'n( egregV ( i ), degreé 6’2 since
posium volume 1694 of_ecture Notes in Computer Sciengmages k > min(degregV (e1,k, S)), degreeV (e, k,9))). |t follows
232-247. Springer, 1999. from the induction hypothesis obl’, S, € and €, that
!/ _ B —
[16] J. T. Schwartz. Fast probabilistic algorithms for verification of poly- U= e,l - e’lz Thus, it follows that) = e; = €.
nomial identities JACM, 27(4):701-717, Oct. 1980. e SeeFigure 4(b). ~
[17] B. Steffen. Optimal run time optimization - proved by a new look This case is trivial sincé' = :_SI ar_1dU1 =u? = U’. The
at abstract interpretations. #nd International Joint Conference on induction hypothesis o8 andU’ implies the desired result.
Theory and Practice of Software Development (TAPSOFT @31}
ume 249 ofLNCS pages 52—68. Springer-Verlag, March 1987. ® gseggfﬁjrﬁggqv(el . S) Cwe V(el . Sl) - w) x
[18] M. N. Wegman and F. K. Zadeck. Constant propagation with condi- 7 _ &1 _
tional branchesACM Transactions on Programming Languages and ~ (el’k’i) and V(ez,k.,.S) w ><.V(e2, k,S) + (1 -w) x
Systemsl3(2):181-210, Apr. 1991. V(ez,k, S), where wis a varlable that does not oc-
cur in V(e k S'), V(e k&), V(ep,k ') or V(e k).
&1
A Proof of Completeness and SmceV(el k.S = V(e k 9), it follows thatV (e;,k,S') =

We now give the proofs for the completeness and soundness theo-

Soundness Theorems

rems stated isection 4.3.2Both the abstract interpretérand the
random interpretefR perform similar operations for each node in
the flow-graph. The proofs are by induction on the number of op-

erations performed by the interpreters. The computation performed

11

V(ep,k,SY) (by substitutingw = 0). Hence,S' = e =
e. Also, degreéV (er,k Sh) < degregV(er,k S and
degredV (e, k,S)) < degredV (es,k,S)). Thus, it follows
from the induction hypothesis dn', S, e; ande, thatu? =
e; = . Similarly, we can prove that2 = e; = e. It now
follows from the definition of the abstract interpretérthat
U=e=e.



	Introduction
	Background
	Random Interpretation of Operators
	Random k-Linear Interpretations

	The Random Interpreter R
	Notation
	The Random Interpreter Algorithm
	Completeness and Soundness Theorems
	The Symbolic Random Interpreter 
	The Abstract Interpreter A

	Fixed Point Computation
	Computational Complexity

	Beyond Herbrand Equivalences
	Linear Arithmetic
	Bitwise Operations
	Memory Reads and Writes
	Integer Division Operator

	Comparison with Related Work
	Conclusion and Future Work
	References
	Proof of Completeness and  Soundness Theorems
	Proof of Completeness (Theorem 9)
	Proof of Soundness (Theorem 11)


