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Abstract

We present a polynomial time randomized algorithm for global
value numbering. Our algorithm is complete when conditionals are
treated as non-deterministic and all operators are treated as uninter-
preted functions. We are not aware of any complete polynomial-
time deterministic algorithm for the same problem. The algorithm
does not require symbolic manipulations and hence is simpler to
implement than the deterministic symbolic algorithms. The price
for these benefits is that there is a probability that the algorithm can
report a false equality. We prove that this probability can be made
arbitrarily small by controlling various parameters of the algorithm.

Our algorithm is based on the idea of random interpretation, which
relies on executing a program on a number of random inputs and
discovering relationships from the computed values. The computa-
tions are done by giving random linear interpretations to the opera-
tors in the program. Both branches of a conditional are executed. At
join points, the program states are combined using a random affine
combination. We discuss ways in which this algorithm can be made
more precise by using more accurate interpretations for the linear
arithmetic operators and other language constructs.
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1 Introduction

Detecting equivalence of expressions in a program is a prerequi-
site for many important optimizations like constant and copy prop-
agation [18], common sub-expression elimination, invariant code
motion [3, 13], induction variable elimination, branch elimination,
branch fusion, and loop jamming [10]. It is also important for dis-
covering equivalent computations in different programs, for exam-
ple, plagiarism detection and translation validation [12, 11], where
a program is compared with the optimized version in order to check
the correctness of the optimizer. Since the equivalence problem is
undecidable, compilers typically implement algorithms that solve a
restricted problem, where expressions are considered equivalent if
and only if they are computed using the same operator applied on
equivalent operands. This form of equivalence, where the operators
are treated as uninterpreted functions, is calledHerbrand equiva-
lence. Such analyses, which include global value numbering [2],
are widely used in optimizing compilers.

Existing algorithms for global value numbering are either too ex-
pensive or imprecise. The precise algorithms are based on an early
algorithm by Kildall [9], where equivalences are discovered us-
ing an abstract interpretation [4] on the lattice of Herbrand equiva-
lences. Kildall’s algorithm discovers all Herbrand equivalences in a
function body but has exponential cost [15]. On the other extreme,
there are several polynomial time algorithms that are complete for
basic blocks, but are imprecise in the presence of joins and loops
in a program. An example of a program that causes difficulties is
given inFigure 1.

The popular partition refinement algorithm proposed by Alpern,
Wegman, and Zadeck (AWZ) [1] is particularly efficient, however
at the price of being significantly less precise than the Kildall’s
algorithm. The novel idea in the AWZ algorithm is to represent
the values of variables after a join using a fresh selection func-
tion φm, similar to the functions used in the static single assignment
form [5], and to treat theφm function as another uninterpreted func-
tion. The values ofzandx after the join in our example can both be
written asφm(a,b). The AWZ algorithm then treats theφ functions
as additional uninterpreted operators in the language and is able to
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x := a;  z := a;

y := F(a);

x := b;  z := x;

y := F(b);

T F

assert (z = x); 

assert (y = F(x));

Figure 1. Example of non-trivial assertions

detect thatx andz are equivalent. The AWZ algorithm rewrites the
second assertion asφm(F(a),F(b)) = F(φm(a,b)), which cannot
be verified if theφ functions are uninterpreted.

In an attempt to remedy this problem, Rüthing, Knoop and Stef-
fen have proposed a polynomial time algorithm that alternately ap-
plies the AWZ algorithm and some rewrite rules for normalization
of terms involvingφ functions, until the congruence classes reach a
fixpoint [15]. Their algorithm discovers more equivalences than the
AWZ algorithm (including the second assertion in our example). It
is complete for acyclic control-flow graphs, but is incomplete in the
presence of loops. Recently, Karthik Gargi has proposed a set of
balanced algorithms that are efficient, but also incomplete [6].

In this paper, we describe a randomized algorithm that discovers
as many Herbrand equivalences as the abstract interpretation algo-
rithm of Kildall, while retaining polynomial time complexity. Our
algorithm works by simulating the execution of a function on a
small number of random values for the input variables. It executes
both branches of a conditional, and combines the values of vari-
ables at join points usingφ functions. The key idea is that each
operator and each implicitφ function at a join point in the program
is given a random interpretation. These interpretations are care-
fully chosen such that they obey all the semantic properties ofφ
functions (i.e. our algorithm does not regardφ functions as unin-
terpreted unlike the AWZ algorithm). This means that the values
of variables computed in one pass through the program reflect all
of the Herbrand equivalences that are common to all paths through
the program. The algorithm is also simpler to implement than the
deterministic symbolic algorithms, primarily because it resembles
an interpreter that uses a simple mapping of variables to values as
its main data structure. The price for the completeness and simplic-
ity of the algorithm is that, in rare situations, the algorithm might
report an apparent Herbrand equivalence that is actually false. We
prove that the probability of this happening is very small.

The idea of giving random affine interpretations toφ functions has
been used earlier in the context of a randomized algorithm for dis-
covering linear equalities among variables in a program [7]. That
algorithm, however, is limited to programs in which all computa-
tions consist of linear arithmetic. The biggest obstacle we had to
overcome in trying to extend the linear arithmetic approach to ar-
bitrary operators was to find a suitable class of random interpreta-
tions for the non-arithmetic operators. We show later in this paper
that all straightforward interpretations (i.e., as some functions of

a = *, b =*, c = *, d = *

T F

a := 0; b := 1; a := 1; b := 0;

c := b – a; d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

a = -4, b = 5, c = *, d= *

a = -4, b = 5, c = -39, d = 39 

c := 2a + b; d := b - 2;

a = 1, b = 0, c = *, d = *a = 0, b = 1, c = *, d = *

a = -4, b = 5, c = -3, d = 3a = -4, b = 5, c = 9, d = -9

T F

w1 = 5

w2 = -3

Figure 2. A code fragment with four paths. Of the two equa-
tions asserted at the end the first one holds on all paths but the
second one holds only on three paths. The numbers shown next
to each edge represent values of variables in the random inter-
pretation scheme.

the value of the operands) are either unsound or incomplete, when
taken along with the affine interpretation ofφ functions. Our solu-
tion is surprising because it requires several parallel simulations of
the program. The result of an expression in a given simulation is not
only based on its top-level operator and the values of its operands
in that simulation, but also on the values of its operands in other
simulations. We give a proof of probabilistic soundness and com-
pleteness of this scheme. We also give an analytical formula de-
scribing the number of parallel simulations required to achieve a
desired probability of error. Furthermore, we show that it is possi-
ble to combine, in the same algorithm, the natural interpretation of
linear arithmetic operators with our random interpretation of non-
arithmetic operators.

In Section 2we review the random interpretation technique for dis-
covering linear relationships. Then, inSection 3, we describe the
proposed scheme for interpreting operators, and prove its sound-
ness. InSection 4, we assemble the main ideas to construct the
random interpreter for discovering Herbrand equivalences. InSec-
tion 5, we extend this scheme to discover more equivalences by us-
ing more accurate interpretations for the linear arithmetic operators
and other language constructs.

2 Background

We illustrate the random interpretation scheme for discovering lin-
ear relationships among variables in a program [7], by means of
an example. We also show a new proof of probabilistic soundness
that gives insight into how this algorithm could be extended beyond
linear arithmetic.

Consider the program shown inFigure 2(ignoring for the moment
the annotations shown on the side). Of the two assertions at the end
of the program, the first is true on all four paths, and the second is
true on three of them (it is false when the first conditional is false
and the second is true). Regular testing would have to exercise that
precise path to avoid inferring that the second equality holds. In-
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stead, we use a non-standard interpretation model. At conditionals,
we proceed on both true and false branches. At joins, we choose a
random weightw and use it to combine the valuesv1 andv2 of a
variable on the two sides of a join as follows:

φ(v1,v2) = w×v1 +(1−w)×v2

We call this operation anaffine joinof v1 andv2 with weight w,
written asv1⊕w v2. In essence, we are interpreting theφ functions
as affine combinations with random weights.

In the example, all variables are dead on entry; so the random val-
ues with which we start the interpretation are irrelevant (we show
them as∗ in the figure). We use the random weightsw1 = 5 for the
first join point andw2 =−3 for the second join point. We perform
the computations, maintaining at each step only a value for each
variable. We can then verify easily that the resulting state at the
end of the program satisfies the first assertion but does not satisfy
the second. Thus, in one run of the program we have noticed that
one of the exponentially many paths breaks the invariant. Note that
choosingw to be either 0 or 1 at a join point corresponds to execut-
ing either the true branch or the false branch of its corresponding
conditional; this is what naive random testing accomplishes. How-
ever, by choosingw (randomly) from a set that also contains non-
Boolean values, we are able to capture the effect of both branches
of a conditional in just one interpretation of the program.

The completeness argument of this interpretation scheme relies on
the observation that by performing an affine join of two sets of val-
ues (all with the same weight), the resulting values satisfy alllinear
relationships that are satisfied byboth initial sets of values. For the
purpose of this paper, it is also important to note that (unfortunately)
the affine join operation does not preserve non-linear relationships.
For example, in the program inFigure 1it is true thata×b= 0, but
this non-linear relationship is not implied by the program state after
the first join point.

The probabilistic soundness argument given in [7] is complicated
by an adjustment operation performed by the random interpreter.
The purpose of this operation is to adjust a program state such that
it reflects the additional equality fact implied by an equality condi-
tional on its true branch. If we ignore this operation, we can give a
simpler proof of soundness in terms of polynomials. A straightline
sequence of assignments, involving only linear arithmetic, com-
putes the values of variables at the end as linear polynomials in
terms of the variables live on input. The overall effect of the affine
join operation is to compute the weighted sum of these polynomi-
als corresponding to each path. These weights themselves are non-
linear polynomials in terms of the random weightswi . For example,
the values ofa, b, c andd at the end of the program shown inFig-
ure 2can be written as follows (there are no live input variables in
this program):

a = w1×0+(1−w1)×1
= 1−w1

b = w1×1+(1−w1)×0
= w1

c = w2× (b−a)+(1−w2)× (2a+b)
= w2× (w1−1+w1)+(1−w2)× (2−2w1 +w1)
= 3w1w2−w1−3w2 +2

d = w2× (1−2b)+(1−w2)× (b−2)
= w2× (1−2w1)+(1−w2)× (w1−2)
= −3w1w2 +w1 +3w2−2

Correspondingly, the two assertions at the end of the program can
be written, respectively, as(3w1w2−w1−3w2 +2)+ (−3w1w2 +

w1+3w2−2) = 0 and 3w1w2−w1−3w2+2= (1−w1)+1. Note
that the first equality of polynomials is a tautology, while the second
is not. We can prove that an assertion that is true on all paths (i.e.,
on all Boolean values forw1 andw2) will correspond to an equal-
ity between two equivalent polynomials. The opposite is true for
assertions that are false on at least one path. Note that when fully
expanded, these polynomials are exponential in size; however, this
is not a problem since our interpreter can evaluate them in linear
time.

The significance of reducing the problem to that of detecting poly-
nomial equivalence lies in the following classic theorem due to
Schwartz [16].

THEOREM 1 (RANDOMIZED POLYNOMIAL TESTING.). Let
Q1(x1, . . ,xn) and Q2(x1, . . ,xn) be two non-equivalentmultivariate
polynomials of degree at most d, in variables x1, . . ,xn over a
field L. Fix any finite setL̃ ⊆ L, and let a1, . . ,an be chosen
independently and uniformly at random from̃L. The probability
that this choice is such that Q1(a1, . . ,an) = Q2(a1, . . ,an) is at
most d

|L̃| .

Schwartz’s theorem says that if a random evaluation of two polyno-
mials returns the same result then it is very likely that the polyno-
mials are equivalent. The theorem suggests that we can reduce the
error probability in the random interpretation scheme by increas-
ing the size of the set from which the random values are chosen.
Additionally, the error probability decreases exponentially with the
number of independent trials. Random testing can be thought of as
an instance of this random interpretation scheme wherein the choice
of weightsw is restricted to the small set{0,1} (this corresponds to
executing either the true branch or the false branch of a conditional);
but this gives a useless bound ofd/2 for the error probability.

The lack of a known polynomial time deterministic algorithm for
checking the equivalence of polynomials suggests that randomiza-
tion has a chance to surpass deterministic algorithms in those pro-
gram analysis problems that can be naturally reduced to checking
equivalence of polynomials. Therefore it is not surprising that ran-
dom interpretation works so well for checking equivalences in pro-
grams that involve only linear arithmetic computations. We show
in the rest of this paper that even non-arithmetic operators can be
encoded using polynomials. These schemes are not as obvious as
for linear arithmetic. They also sacrifice precision since the precise
meaning of the operator is lost. However, these schemes are very
effective in discovering Herbrand equivalences.

3 Random Interpretation of Operators

We consider a language in which the expressions occurring in as-
signments and equality assertions belong to the following simple
language of uninterpreted function terms (herex is one of the vari-
ables):

e ::= x | F(e1,e2)

For simplicity, we consider only one binary uninterpreted func-
tion F . However, our results can be extended easily to languages
with any finite number of uninterpreted functions of arbitrary ar-
ity. Comparing expressions in this language is trivial because only
identical expressions are Herbrand equivalent. The complications
arise in the presence of join points in a program as shown by the
example inFigure 1.
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The random interpreter compares expressions in this language by
choosing an interpretation forF randomly from a suitable set of ad-
equate interpretations, followed by choosing random values for the
variables and evaluating the two expressions given these choices.
We assume that the choice of the interpretation ofF is made by
choosingp parameters from some fieldL. Thus, the interpretation
of F , written [[F ]] has the following type:

[[F ]] : Lp→L×L→L

Given an expressione with n variables, the given interpretation of
F induces an interpretation of the expressione:

[[e]] : Lp→Ln→L

We achieve the desired probabilistic soundness property of random
interpretation by ensuring that, for random choices ofπ ∈ Lp and

ρ ∈ Ln, we have the following two properties (where
w.h.p.⇒ , means

“implies with high probability”):

[[e1]] π ρ =L [[e2]] π ρ w.h.p.⇒ [[e1]] =Lp→Ln→L [[e2]] (2)

[[e1]] =Lp→Ln→L [[e2]] ⇒ e1 = e2 (3)

We ensure property2 by choosing the interpretationF to be a poly-
nomial onp+2 variables. Assume now that we choose the follow-
ing polynomial interpretation forF , with parametersr1 andr2:

[[F ]] (r1, r2) (x,y) = r1x2 + r2y2 (4)

This interpretation has the desired probabilistic soundness prop-
erty, although the degree of the polynomial[[e]] is exponential in
the depth of the expressione. According to Schwartz’s theorem
this drastically increases the probability of error, suggesting that
perhaps we should consider only polynomials that are linear in the
program variables (x andy).

There is, in fact, another important reason to choose linear polyno-
mials. We choose the affine interpretation forφ functions because
it is very effective in reasoning about linear expressions in a pro-
gram [7]. We do not know of any other interpretation forφ func-
tions that is effective in reasoning about any program properties.
In order to ensure the desired completeness property of random in-
terpretation, we require that[[F ]] respects the affine interpretation
given to theφ functions. This means that for all field valuesa, b, c,
andd, and allπ ∈Lp we must have:

[[φm(F(a,b),F(c,d))]] π ≡ [[F(φm(a,c),φm(b,d))]] π

or, equivalently:

w[[F ]] π (a,b)+(1−w)[[F ]] π (c,d) ≡
[[F ]] π (wa+(1−w)c,wb+(1−w)d) (5)

It can be verified that the interpretation forF in equation4 does
not satisfy completeness property5 (except for the cases when
w ∈ {0,1}, which correspond exactly to the actual paths through
the program). Moreover, it is possible to prove that if theφ func-
tions are given the affine-join interpretation, and the completeness
equation5 is required to hold, then[[F ]] π must be a linear polyno-
mial in the program variables, for all values ofπ∈Lp. The example
in Section 2that demonstrates that the affine join operation does not
preserve non-linear relationships also illustrates this fact.

FF

F FF F

a dbca dcb

Expression e2Expression e1

e1 = F(F(a,b),F(c,d))

= r1[r1(a)+r2(b)] + r2[r1(c)+r2(d)]

= r1
2(a) + r1r2(b+c) + r2

2(d)

e2 = F(F(a,c),F(b,d))

= r1[r1(a)+r2(c)] + r2[r1(b)+r2(d)]

= r1
2(a) + r1r2(b+c) + r2

2(d)  

Figure 3. An example of two distinct uninterpreted function
terms e1 and e2 which are equivalent when we model the binary
uninterpreted function F as a linear function of its arguments.

Unfortunately, if[[F ]] π is a linear polynomial then the soundness
equation3 does not hold. Consider, for example, the linear inter-
pretation

[[F ]] (r1, r2) (x,y) = r1x+ r2y

In Figure 3we show two distinct expressions that have the same
interpretation, under this interpretation forF . Similar counterex-
amples arise for any linear interpretation, and in the presence of
functions of arity at least two, but not if the language contains only
unary functions, or constants.

It appears that we have reached an impasse. If we fix the affine-join
interpretation ofφ, then only linear polynomials satisfy the com-
pleteness property. But linear polynomials are not sound interpre-
tations of arbitrary operators. In the next section we describe a way
out of this impasse.

3.1 Random k-Linear Interpretations

One way to characterize the failure of the soundness property when
using linear interpretations for binary functions is that we are re-
stricted to only three random coefficients, which are too few to en-
code a large number of leaves. Thus, it is possible for two distinct
trees to have identical interpretations.

To increase the number of coefficients while maintaining linearity,
we modify the interpreter to maintaink values for each variable
and for each expression. This enables us to introduce more random
parameters in the interpretation function.k is a parameter of the
random interpreter, and we are going to derive lower bounds fork
later in this section.

We need to refine the interpretations given in the previous section.
Both the functionF and any expressione now have a family ofk
interpretations, each withp parameters:

[[F ]] : {1, . . ,k}→Lp→L×L→L

[[e]] : {1, . . ,k}→Lp→Ln→L
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For the rest of the presentation we are going to work with a fam-
ily of k linear polynomial interpretations (i.e.[[F ]] i π is linear for all
1≤ i ≤ k). This family usesp= 4k−2 parameters, namedr1, . . , rk,
r ′1, . . , r

′
k, s1, . . ,sk−1 ands′1, . . ,s

′
k−1. In order to simplify the rest

of the presentation, we introduce an alternate notationP(e, i) for
([[e]] i), for an expressione and indexi between 1 andk. The defi-
nition of P(e, i) is by induction on the structure ofe, as follows:

P(x, i) = x

P(F(e1,e2),1) = r1P(e1,1)+ r ′1P(e2,1)
P(F(e1,e2), i) = r iP(e1, i)+ r ′iP(e2, i)

+si−1P(e1, i−1)
+s′i−1P(e2, i−1) for i > 1

Note that the degree of polynomialP(e, i) is equal to the depth of
expressione. Also note that for anyi, P(e, i) does not contain any
of the variablesr i+1, . . , rk andsi , . . ,sk. This means that the polyno-
mial P(F(e1,e2), i) can be decomposed uniquely into the subpoly-
nomialsr iP(e1, i)+ r ′iP(e2, i) (which contains variablesr i andr ′i ),
si−1P(e1, i−1) (which contains variablesi−1 but notr i or r ′i ), and
s′i−1P(e2, i−1) (which contains variables′i−1 but notr i , r ′i or si−1).
This implies the following useful property.

PROPERTY 6. For any integer i > 1, P(F(e1,e2), i) ≡
P(F(e′1,e

′
2), i) iff

(a) r iP(e1, i)+ r ′iP(e2, i) ≡ r iP(e′1, i)+ r ′iP(e′2, i), and

(b) P(e1, i−1) ≡ P(e′1, i−1), and

(c) P(e2, i−1) ≡ P(e′2, i−1)

We now prove the soundness lemma, which states that if the sym-
bolic polynomials associated with two expressions are equivalent,
then the two expressions are equal.

LEMMA 7 (K-L INEAR SOUNDNESSLEMMA ). Let e and e′ be
two tree expressions such that e has at most2 j leaves, and P(e, i)≡
P(e′, i) for some i≥ j. Then e= e′.

PROOF. Note thate ande′ have the same depth sinceP(e, i) and
P(e′, i) have the same degree (as they are equivalent). The proof
is by induction on the structure of expressionse ande′. The base
case is trivial sincee and e′ are both leaves andP(e, i) = e and
P(e′, i) = e′. Clearly,e= e′.

For the inductive case,e = F(e1,e2) and e′ = F(e′1,e
′
2). By as-

sumption,P(F(e1,e2), i) ≡ P(F(e′1,e
′
2), i) for somei ≥ j. Sincee

has at most 2j leaves, it must be that at least one ofe1 or e2 has
at most 2j−1 leaves. Consider the case whene1 has at most 2j−1

leaves (the other case is symmetric). From Property6(b) we have
that P(e1, i−1) ≡ P(e′1, i−1). Sincei−1≥ j −1, we can apply
the induction hypothesis fore1 ande′1 to obtain thate1 = e′1. Con-
sequently,P(e1, i) ≡ P(e′1, i). This allows us to simplify the Prop-
erty 6(a) toP(e2, i) ≡ P(e′2, i). Sincee2 has at most 2j leaves, we
can apply the induction hypothesis fore2 ande′2 to conclude that
e2 = e′2. This completes the proof.

This result means that our family of interpretations is an injective
mapping from trees to polynomials, and allows us to compare trees
by random testing of their corresponding polynomials. Note that
the higher the index of the polynomial, the larger the trees that it
can discriminate. The number of parallel values that we need to
compute for each node must be at least the logarithm of the number

of leaves in the tree. Interestingly, this value does not depend on the
depth of the tree. A consequence is that trees involving only unary
constructors can be discriminated withk = 1, independent of the
depth. The expressions that arise in programs can be represented as
DAGs of size linear in the size of the program. In the worst case,
the number of leaves in such a DAG, when expressed as a tree, is
exponential in the largest depth of an expression computed by the
program; thusk must be chosen at least as big as the largest depth
of an expression computed by the program.

We have performed a number of experiments that suggest that an
even tighter bound onk might be possible, but we are not able to
prove any such result at the moment. We also have not been able to
prove stronger properties by using more complex linear polynomial
interpretations.

4 The Random Interpreter R

We now put together the ideas mentioned in the previous sections
to describe the random interpreterR.

4.1 Notation

A stateρ ∈Ln is an assignment of field values to then variables of
the program. We use the notationρ(x) to denote the value of vari-
ablex in stateρ. The notationρ[x← q] denotes the state obtained
from ρ by setting the value of variablex to q.

Our algorithm performs arithmetic over some fieldL. For imple-
mentation reasons it is desirable that the fieldL should be finite
so that arithmetic can be performed using finite representation for
values. Hence, we chooseL = Zq, whereq is some prime number
andZq refers to the field containing the integers{0, . . ,q−1}. In
this field, all the arithmetic operations are performed modulo prime
q. The error probability of our algorithm is inversely proportional
to the size of the fieldL (as stated inTheorem 14in Section 4.4).
Hence, by choosing a largerq, we can make the error probability of
our algorithm smaller.

Our algorithm maintainsk states at each point in the program,
wherek is as described in the previous section. This set of states is
referred to as asample S. We writeSi to refer to theith state of the
sampleS. The algorithm computesk values for each expressione
in the program. Theith value of an expressione at some program
point α can be written asP(e, i) π Si , whereP is the polynomial
interpretation given in the previous section,π refers to the values of
the parametersr i , r ′i ,si−1 ands′i−1 chosen independently and uni-
formly at random from the finite fieldL, andS is the sample at the
program pointα. However, this value is computed directly (with-
out first computing the polynomialP(e, i)) by simply evaluating the
expression on the given state and the values chosen for the parame-
tersr i , r ′i , si−1 ands′i−1. Essentially, this value is computed by the
functionV(e, i,S), whose definition is given below.

V(x, i,S) = Si [x]
V(F(e1,e2),1,S) = r1V(e1,1,S)+ r ′1V(e2,1,S)
V(F(e1,e2), i,S) = r iV(e1, i,S)+ r ′iV(e2, i,S)

+si−1V(e1, i−1,S)
+s′i−1V(e2, i−1,S) f or i > 1

We say that a sampleS satisfies a Herbrand equivalencee1 = e2
whenV(e1,k,S) = V(e2,k,S). We write S |= e1 = e2 when this
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is the case. Note that we use only thekth value when deciding
the equivalence. This is motivated byLemma 7, which says that
the kth polynomial has the most discriminating power among the
polynomials that we evaluate.

Finally, we extend the affine join operation from individual values
to states, in which case we perform the join with the same weight
for each variable. We further extend the affine join operation to
samples, in which case we perform the affine join operation on each
pair of corresponding states with the same weight.

4.2 The Random Interpreter Algorithm

The random interpreterR executes a procedure like an abstract in-
terpreter or a data-flow analyzer. It goes around each loop until a
fixed point is reached. The criterion for fixed point is defined inSec-
tion 4.4. The random interpreter maintains a sample ofk states at
each program point. These samples encode Herbrand equivalences,
or relationships among uninterpreted function terms of a program.
A sample at a program point is obtained from the sample(s) at the
immediately preceding program point(s). The initial sample con-
sists ofk copies of a randomly chosen stateρ, i.e. the values of all
variables of the program in stateρ are chosen independently and
uniformly at random from the fieldL. We now describe the action
of the random interpreter on the three basic nodes of a flow-chart,
which are shown inFigure 4.

• Assignment Node: SeeFigure 4(a).
Si = S′i [x←V(e, i,S)]

• Conditional Node: SeeFigure 4(b).
S1 = S′ andS2 = S′

• Join Node: SeeFigure 4(c).
S= S1⊕w S2, wherew is a fresh random value chosen inde-
pendently and uniformly at random fromL.

After fixed point has been reached, the results of the random in-
terpreter can be used to verify or discover equivalences among ex-
pressions at any point in the program as follows. Two expressions
e1 ande2 always have the same value at some pointP in a program
if S|= e1 = e2, whereS is the sample at pointP, or equivalently if
theirkth value is the same in the given sample.

4.3 Completeness and Soundness Theorems

For the purpose of the analysis of the algorithm, we introduce two
new interpreters: a symbolic random interpreterR̃, which is a sym-
bolic version of the random interpreterR, and an abstract inter-
preterA, which is sound and complete. We prove thatR̃ is as com-
plete and as sound asA. We then show that this implies thatR
is probabilistically sound, and is complete when all operators are
uninterpreted and the conditionals are non-deterministic.

4.3.1 The Symbolic Random InterpreterR̃

The symbolic random interpreterR̃ maintains a symbolic state and
executes a program like the random interpreterR but symbolically.
Instead of using random values for the initial values for variables,
or the parametersw, r i andsi , it uses variable names and maintains
symbolic expressions. We use the letterS̃ to range over the sym-
bolic samples maintained by the symbolic random interpreter. We
write Ṽ(e, i, S̃) to denote theith symbolic value of expressione in
symbolic samplẽS.

The following property states the relationship between the samples
computed byR and the symbolic samples computed byR̃.

PROPERTY 8. Let S̃ be a symbolic sample computed byR̃ at some
point in the program and let S be the corresponding sample com-
puted byR at the same point. The sample S can be obtained
from the symbolic samplẽS by substituting the input variables, the
weight and parameter variables w, ri and si with the values thatR
has used for them.

4.3.2 The Abstract InterpreterA

The abstract interpreterA computes the Herbrand equivalences in
a program. In the following definition we use the letterU to range
over sets of Herbrand equivalences. We writeU ⇒ e1 = e2 to say
that the conjunction of the Herbrand equivalences inU imply e1 =
e2. We write U1 ∩U2 for the set of Herbrand equivalences that
are implied by bothU1 andU2. Finally, we writeU [e/x] for the
relationships that are obtained from those inU by substitutinge for
x. With these definitions we can define the action ofA over the
nodes of a flow-chart as follows:

• Assignment Node: SeeFigure 4(a).
U = {x = e[x′/x]}∪U ′[x′/x], wherex′ is a fresh variable

• Conditional Node: SeeFigure 4(b).
U1 = U ′ andU2 = U ′

• Join Node: SeeFigure 4(c).
U = U1∩U2

The abstract interpreter starts with the empty set of Herbrand equiv-
alences. Implementations of abstract interpretations such asA have
been described in the literature [9]. The major concern there is the
concrete representation of the setU and the implementation of the
operationU1∩U2. In Kildall’s original presentation the setU has an
exponential-size representation, although this is not necessary [15].
Here we useA only to state and prove the soundness and complete-
ness results of the random interpreterR. The abstract interpreter
A is both sound and complete when all operators are uninterpreted
and conditionals are non-deterministic [17, 15].

We now state the relationship between the sets of symbolic samples
S̃ computed byR̃ and the sets of Herbrand equivalencesU com-
puted byA in the form of completeness and soundness theorems.

THEOREM 9 (COMPLETENESSTHEOREM). Let U be a set of
Herbrand equivalences computed byA at some point in the pro-
gram and letS̃ be the corresponding symbolic sample. Let e1 and e2
be any two expressions such that U⇒ e1 = e2. Then,S̃|= e1 = e2.

The completeness theorem implies that the random interpreterR
discovers all the Herbrand equivalences that the abstract interpreter
A discovers. The proof ofTheorem 9is based onLemma 10which
is stated and proved below.Lemma 10states that the affine join
of two states satisfies all the Herbrand equivalences that are satis-
fied by both the states. The full proof ofTheorem 9is given in
AppendixA.1.

LEMMA 10 (UNION COMPLETENESSLEMMA ). Let S̃ and S̃′

be two symbolic samples that satisfy the Herbrand equivalence
e1 = e2. Then, for any choice of weight w, the unionS̃u = S̃⊕w S̃′

also satisfies the same Herbrand equivalence.

PROOF. Note that for any expressione, and any symbolic sample
T̃, Ṽ(e,k, T̃) is a linear function of the program variables in expres-
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sion e. Hence, for any affine combination of two symbolic states
S̃⊕w S̃′, one can easily verify that̃V(e,k, S̃⊕w S̃′) = w×Ṽ(e,k, S̃)+
(1 − w) × Ṽ(e,k, S̃′). Thus, if Ṽ(e1,k, S̃) = Ṽ(e2,k, S̃) and
Ṽ(e1,k, S̃′) = Ṽ(e2,k, S̃′), thenṼ(e1,k, S̃⊕w S̃′) = Ṽ(e2,k, S̃⊕w S̃′).
From here the completeness statement follows immediately.

It is not surprising that the completeness lemma holds, since we
have chosen the linear interpretations of operators specifically to
satisfy this constraint. Next we state the soundness theorem.

THEOREM 11 (SOUNDNESSTHEOREM). Let U be a set of Her-
brand equivalences computed byA at some point in the program
and letS̃ be the corresponding symbolic sample of k symbolic states.
Let e1 and e2 be two expressions such thatS̃ |= e1 = e2, and k≥
min(degree(Ṽ(e1,k, S̃)),degree(Ṽ(e2,k, S̃))). Then, U⇒ e1 = e2.

According toTheorem 11, if the symbolic polynomials associated
with two expressions under our random interpretation scheme are
equivalent, then those two expressions are also found equivalent
by the abstract interpreter. The proof ofTheorem 11is based on
Lemma 7. Notice, however, that inTheorem 11the lower bound
on k is stated based on the degree ofṼ(e,k, S̃), which is equal to
the depth of expressione, while in Lemma 7, it is based on the
logarithm on the number of leaves. The reason for this weakening
of the soundness statement is two-fold: it would have been more
complicated to carry out the proof with leaf counts, and in the worst
case these measures are equal. The full proof ofTheorem 11is
given in AppendixA.2. We use this soundness theorem in the next
section to proveTheorem 14, which establishes an upper bound on
the probability thatR is unsound.

4.4 Fixed Point Computation

For a program with loops, the random interpreterR goes around
each loop until a fixed point is reached, like an abstract interpreter
or a dataflow analysis algorithm. A fixed point is reached when
the Herbrand equivalences inferred from the numerical results ofR
are stable. The main concerns are then whether the fixed-point is
ever reached, and how many iterations are required. The answers
to these questions are implied by the fact that the lattice of sets of
Herbrand equivalences that are true at any point in a program has
finite depth as stated inTheorem 12below.

THEOREM 12. The lattice of sets of Herbrand equivalences (in-
volving the program variables) that are true at any point in a pro-
gram (under the set union operation as described inSection 4.3.2)
has depth at most n where n is the number of program variables.

We give a brief sketch of the proof of this theorem. The complete
proof is in the full version of the paper which is available as a tech-
nical report [8]. The proof of this theorem relies on the following
lemma.

LEMMA 13. Let T be the set of program variables. The Herbrand
equivalences at any point in the program can be represented by a
pair H = (I ,E), where I⊆ T is a set of independent variables and
E is a set of equivalences x= e, one for each variable x∈ T − I,
such that all variables that occur in expression e belong to set I.

This lemma can be proved by induction on structure of the program.
The key observation then is that ifH2 = (I2,E2) is aboveH1 =
(I1,E1) in the lattice (which is to say thatH1 is a stronger set of
equivalences thanH2), then|I2|> |I1|. This implies that the lattice
under consideration has depth at mostn.

Thus, the abstract interpreterA is guaranteed to reach a fixed point
within a number of iterations that is linear in the number of vari-
ables of the program. Given the close relationship betweenA and
R̃ as established byTheorem 9andTheorem 11, R̃ also reaches
a fixed point in the same number of loop iterations. Furthermore,
given the relationship betweeñR andR as mentioned in Property8,
R also reaches a fixed point with high probability in the same num-
ber of loop iterations.

The above observations suggest thatR must go around each loop
for n steps (this would guarantee that fixed-point has been reached),
wheren is the number of variables that are defined inside the loop.
Another alternative is to detect when fixed-point has been reached
by comparing the set of Herbrand equivalences implied byR in
two successive executions of a loop (this can be done by building
a symbolic value flow graph of the program [14]). If these sets are
identical, then the fixed-point for that loop has been reached.

An upper bound on the number of iterations required for reaching
fixed-point enables us to state an upper bound on the error proba-
bility in the analysis performed by the random interpreterR.

THEOREM 14 (PROBABILISTIC SOUNDNESSTHEOREM). Let
e1 and e2 be two non-equivalent expressions of depth at most t at
some program point. Let S be the random sample at that program
point after fixed-point. If k≥ 2n2+ t, thenPr[S|= e1 = e2]≤ 2n2+t

|L| ,

where n is an upper bound on the number of variables, function
applications, and join points in the program, and|L| denotes the
size of the fieldL from which the random values are chosen.

PROOF. Let S̃be the corresponding symbolic sample, andU be the
corresponding set of Herbrand equivalences at that point. Since the
abstract interpreterA is sound,U 6⇒ e1 = e2. There are at most
n function applications and at mostn join points in the program.
Each function application and each join operation increases the de-
gree of the polynomial corresponding to the resulting expression
by 1. Hence, one loop iteration contributes 2n to the degree of
the polynomial corresponding to an expression. The fixed point
computation requires at mostn iterations. Hence, the degrees of
the polynomialsṼ(e1,k, S̃) andṼ(e2,k, S̃) are bounded above by
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2n2 + t. It thus follows fromTheorem 11that S̃ 6|= e1 = e2. The
desired result now follows from Property8 andTheorem 1.

Theorem 14implies that by choosingL big enough, the error prob-
ability can be made as small as we like. In particular, ifn < 100,
and if we chooseL such that|L| ≈ 232 (which means that the ran-
dom interpreter can perform arithmetic using 32-bit numbers), then
the error probability is bounded above by 10−5. By repeating the
algorithmb times, the error probability can be further reduced to
10−5b.

4.5 Computational Complexity

The cost of each assignment operation performed by the random in-
terpreter isO(k), assuming that each assignment operation involves
a constant number of function applications. Letn be the number of
assignments in a program. The fixed-point for any loop is reached
in at mostn steps. Therefore, the total number of assignment oper-
ations performed by the random interpreter is at mostO(n2). Thus,
the total cost of all assignment operations isO(n2k). The cost of
a single join operation isO(mk), wherem is the number ofφ as-
signments at the join point. The total cost of all join operations can
be amortized toO(n2×k) (since eachφ assignment can be associ-
ated with an ordinary assignment). Hence, the total time taken by
the random interpreter isO(n2× k). Choosingk = O(n2), in or-
der to satisfy the requirement for probabilistic soundness, yields an
overall complexity ofO(n4).

Our analysis for probabilistic soundness requires choosingk =
O(n2). However, we feel that our analysis is very conservative.
The experiments that we have performed also suggest that tighter
bounds onk might be possible, but we are not able to prove any
such result at the moment. Note thatLemma 7requires working
with only logn polynomials, wheren is the size of the tree expres-
sions. If we can prove a similar lemma for DAGs, then we can prove
that choosingk = O(logn) is sufficient for probabilistic soundness,
which will yield an overall complexity ofO(n2 logn) for our algo-
rithm.

5 Beyond Herbrand Equivalences

Until now, we have discussed how to discover equivalences in a pro-
gram in which all the operators are treated as uninterpreted. More
equivalences can be discovered if some of these operators are inter-
preted.

5.1 Linear Arithmetic

The random interpretation scheme described in our earlier paper [7]
discovers all linear relationships among variables in a program in
which all assignments compute only linear arithmetic expressions.
The random interpretation scheme described in this paper discov-
ers all Herbrand equivalences in a program in which all operators
are treated as uninterpreted. It is interesting to consider whether by
combining both these schemes, we can discover all the equivalences
in a program that has expressions consisting of both linear arith-
metic as well as uninterpreted operators as described below (hereq
denotes a rational number):

e ::= x | F(e1,e2) | q | q×e | e1±e2

One way to combine both these schemes is to extend the description

of the random interpreterR to use the natural interpretation for the
linear arithmetic operators as follows:

V(q, i,S) = q

V(q×e, i,S) = q×V(e, i,S)
V(e1±e2, i,S) = V(e1, i,S)±V(e2, i,S)

Such a naive combination of the two schemes is unsound. For ex-
ample, consider the two non-equivalent expressionse1 = F(a,b)+
F(c,d) and e2 = F(a,d) + F(c,b). It is easy to see that for any
sampleSand anyi, V(e1, i,S) = V(e2, i,S).

One way to fix this problem is to hash the value of an uninterpreted
function term before being used in an arithmetic expression. This
loses some information about the uninterpreted term, but prevents
the unintended interaction between the chosen linear interpretation
of the operator and the plus operator. For this purpose, we maintain
an extra bit of information with every variable in a sample, namely
whether the top-level operator used in computing the value of a vari-
able was an uninterpreted operator or not. The random interpreter
R now maintains a tuple(Q,S) at every point in the program, where
S refers to a sample as before, andQ is a mapping that maps every
variable to some Boolean value. The random interpreter updatesQ
as follows.

• Assignment Node: SeeFigure 4(a).
Q = Q′[x← True] if e is of the formF(e1,e2)

= Q′[x← False], otherwise
whereQ′ refers to the mapping before the assignment node,
andQ refers to the mapping after the assignment node.

• Conditional Node: SeeFigure 4(b).
Q1 = Q′ andQ2 = Q′

whereQ′ refers to the mapping before the conditional node,
and Q1 and Q2 refer to the mappings after the conditional
node.

• Join Node: SeeFigure 4(c).
Q(x) = Q1(x)∨Q2(x)
whereQ1 andQ2 refer to the mappings before the join node,
andQ refers to the mapping after the join node.

The functionV now assigns values to linear arithmetic expressions
in the following manner.

V(e1±e2, i,S) = ToArith(e1, i,S)±ToArith(e2, i,S)
V(q×e, i,S) = q×ToArith(e, i,S)

where ToArith is a function that hashes uninterpreted function
terms as follows:

ToArith(e1, i,S) = if Q(e1) thenV(e1, i,S)
else Hash(V(e1, i,S))

Such a random interpretation scheme is probabilistically sound
but not complete. For example, consider the two equivalent ex-
pressionse1 = (F(a,b) + c)− c and e2 = F(a,b). It is easy to
see that for any sampleS and anyi, V(e1, i,S) 6= V(e2, i,S) (with
high probability over the random choices made by the Hash func-
tion) sinceV(e1, i,S) = Hash(V(F(a,b), i,S)) and V(e2, i,S) =
V(F(a,b), i,S). We can increase the precision with a simple modifi-
cation. We can convert an arithmetic value back to an uninterpreted
function term value if the arithmetic value is equal to the hash of an
uninterpreted function term value. This modification can discover
all equivalences inside basic blocks, but still remains incomplete
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for discovering equivalences across basic blocks. It is an interest-
ing question to figure out if there exists an efficient algorithm that
discovers all the equivalences in the presence of linear arithmetic,
uninterpreted operators and non-deterministic conditionals.

5.2 Bitwise Operations

If we attempt to use the natural interpretation for non-arithmetic
operators as well, we loose probabilistic soundness. This is be-
cause non-arithmetic expressions cannot be expressed as polyno-
mials. For example, consider the following program fragment in
whichx, y, andzare input variables that take integral values, and &
denotes the “bitwise and” operator.

t := x & y & z & 1;
assert (t = 0)

The assertion is not always true, yet if the basic block is executed
with values forx, y, andzchosen randomly fromL, then the proba-
bility that the assert statement at the end of the program is falsified
is 1

8 (the probability that allx, y and z are all chosen to be odd
integers), meaning that most likely the random interpreter will er-
roneously validate the assert. Note that this problem is related to the
NP-complete problem of detecting equivalences of Boolean expres-
sions. One should not expect that equivalence of Boolean expres-
sions can be decided simply by random testing since the problem of
deciding equivalence of Boolean expressions is NP-complete, and
it is not known whether NP-complete problems can be decided in
randomized polynomial time (RP).

One way to conservatively handle the bitwise operators is to model
them as uninterpreted functions. However, this may be too con-
servative. Another way is to interpret the bitwise logical operators
using the multiplication and addition operators as described below.

V(e1&e2, i,S) = V(e1 ∗e2, i,S)
V(e1|e2, i,S) = V(e1 +e2, i,S)

Here | denotes the “bitwise or” operator. This interpretation cap-
tures the commutativity and associativity properties of the “bitwise
and” and “bitwise or” operators inside basic blocks. It also captures
the distributivity of “bitwise and” operator over the “bitwise or” op-
erator. However, this is still far from capturing all the Boolean ax-
ioms. For example, it does not capture the distributivity of “bitwise
or” operator over the “bitwise and” operator. It also does not cap-
ture the axiom thate&e≡ e. Note that this interpretation is sound
because & and| satisfy all the properties that are satisfied by∗ and
+ respectively.

The random interpretation scheme for handling arithmetic is as ex-
pected:

V(e1 ∗e2, i,S) = V(e1, i,S)∗V(e2, i,S)
V(e1 +e2, i,S) = V(e1, i,S)+V(e2, i,S)

This is a sound scheme since the random interpretation scheme is
sound for testing equivalence of polynomials.

The above interpretation will be unsound if expressions involve
both the bitwise operations and the arithmetic operations. Hence,
an expression consisting of “bitwise and” and “bitwise or” operator
must be hashed before being used in an arithmetic expression, just
as uninterpreted function terms are hashed before being used in an
arithmetic expression as described inSection 5.1.

5.3 Memory Reads and Writes

As another interesting example, consider the following program
fragment in whichx andy are input variables that take integer val-
ues, andMemrefers to some array. Note that the assert statement at
the end of the program is not always true (since the input variables
x andy may have the same values).

Mem[x] := 0;
Mem[y] := 1;
t := Mem[x];
assert (t = 0)

If the basic block is executed with values forx andy chosen ran-
domly fromL, then the probability that the assert statement at the
end of the program is falsified (and the random interpreter detects
the possible failure of the assert) is1|L| , which is very small. This
is the probability thatx andy are chosen equal. Again, the prob-
lem of detecting equivalences of expressions inside a basic block
involving memory reads and writes is NP-hard. Hence, one should
not expect to decide equivalences of such expressions simply by
random testing.

Memory reads and memory writes can be modeled conservatively
using two special uninterpreted functions as follows. The mem-
ory state is represented by a special variableµ. A memory read
is modeled by the binary uninterpreted functionSelect that takes
as arguments the state of the memory (represented by the special
variableµ) and the address in the memory as follows.

V(Mem[e], i,S) = V(Select(µ,e), i,S)

A memory writeMem[e1] = e2 is modeled by updating the value of
the special memory variableµ in the sample before the assignment
as follows.

Si = S′i [µ←V(Update(µ,e1,e2), i,S)]

HereUpdate is an uninterpreted function of 3 arguments. Such a
select-update formalism is commonly used to model memory and
has also been used in [11]. TreatingSelect andUpdate operators
as uninterpreted helps to reason at least about the fact that two reads
from the same memory location with no intervening memory writes
yield same values.

5.4 Integer Division Operator

As another example, consider the following program fragment in
whichx is an input variable that takes integral values, and/ denotes
the integer division operator.

t := 2 ÷ x;
assert (t = 0)

The assert statement above is not always true. If the basic block
is executed with values forx chosen randomly fromL, then the
probability that the assert statement at the end of the program is
falsified is at most 2

|L| , which is very small. This is the probability
thatx is chosen to be either 1 or 2. Note that this problem can be
easily reduced to the problem of checking whether a polynomial
has integral roots or not, which is an undecidable problem. Hence,
one should not expect that equivalences of expressions involving
the integer division operator can be decided by random testing.
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One way to conservatively handle the integer division operator is
to model it as an uninterpreted function. However, this may be too
conservative. Another way to handle the integer division operator
is to model it as a real division operator as follows.

V(e1÷e2, i,S) = V(
e1

e2
, i,S)

Here a1
a2

denotes the real division ofa1 by a2, while a1÷a2 denotes
the integer division ofa1 by a2. This modeling, though incom-
plete, may help in detecting equivalences that are not discovered by
the earlier one. This is a sound modeling because ife1

e2
= e3

e4
, then

e1÷e2 = e3÷e4.

The random interpretation scheme for handling real division is as
follows.

V(
e1

e2
, i,S) =

V(e1, i,S)
V(e2, i,S)

Note that this is a sound scheme because the random interpretation
scheme is sound for testing equivalence of polynomials, and ife1×
e4 = e3×e2, then it must be the case thate1

e2
= e3

e4
.

6 Comparison with Related Work

The algorithms for global value numbering in literature can be
broadly classified into being optimistic or pessimistic.

The optimistic algorithms start with the optimistic assumption that
the expressions not known to be unequal are equal. Hence they
may maintain some incorrect facts about a program at an interme-
diate analysis stage [9]. These assumptions get refined in successive
loop iterations, and the process is repeated until the assumptions be-
come consistent. The precise algorithms that discover all Herbrand
equivalences in a function body fall into this optimistic category.
They are based on an early algorithm by Kildall [9], which discov-
ers equivalences using an abstract interpretation on the lattice of
Herbrand equivalences. The running time of these algorithms is ex-
ponential. Our algorithm also falls under the optimistic category. It
is based on random interpretation on the lattice of Herbrand equiv-
alences. It is complete and discovers all the equivalences that are
discovered by the Kildall’s algorithm. However, our algorithm runs
in polynomial timeO(n4).

The pessimistic algorithms start with the pessimistic assumption
that the expressions not known to be equal are unequal. These al-
gorithms maintain only true facts about a program at every inter-
mediate stage of the analysis and do not require fixed-point com-
putation. These algorithms are based on the popular partitioning
algorithm by Alpern, Wegman, and Zadeck [1], which runs in time
O(elogn) wheren andeare the number of nodes and edges in a pro-
cedure’s static single assignment graph. The running time of these
algorithms is better than our algorithm because the pessimistic as-
sumption does not need to be refined or reapplied, while the opti-
mistic assumption must be repeatedly refined and reapplied until it
becomes consistent. But, these algorithms cannot discover all Her-
brand equivalences in a procedure and hence are less precise than
our algorithm. The preciseness of the results of our algorithm may
outweigh its execution time.

Recently, there have been proposals for a hybrid approach which
tries to combine the best of both the above approaches. Karthik
Gargi has proposedbalanced algorithmswhich start with opti-
mistic assumptions for the reachability of blocks and edges and
the pessimistic assumption for the congruence of values [6]. He

has demonstrated experimentally that balanced algorithms termi-
nate faster than the optimistic algorithms and produce more precise
information than the pessimistic algorithms. Oliver Rüthing, Jens
Knoop and Bernhard Steffen have extended the partition refinement
algorithm proposed by Alpern, Wegman and Zadeck [1] with the
concept ofintegrated normalization[15], wherein the partitioned
value graphs are modified according to a set of graph rewrite rules
and the process (of partitioning the value graph and modifying it)
is repeated until fixed-point is reached. The graph rewrite rules are
able to discover some more equivalences which further trigger de-
tection of equivalences by the partitioning algorithm. These hybrid
algorithms discover more equivalences than the pessimistic algo-
rithms, but they also cannot discover all Herbrand equivalences and
are less precise than our algorithm. The running time of the algo-
rithm by Rüthing, Knoop and Steffen isO(n4 logn) and is compa-
rable to the running time of our algorithm, which isO(n4).

The random interpretation scheme described in this paper shares
the idea of using an affine-join interpretation forφ functions with
the algorithm described in [7]. We extend that idea with a way to
interpret uninterpreted operators in the language in a manner that is
complete and probabilistically sound. Furthermore, we show how
to improve the precision of the algorithm by giving more refined
interpretations to a few special operators. These extensions make it
possible to start experimenting with random interpretation for real
programs, not just those restricted to linear computations.

7 Conclusion and Future Work

We have presented a global value numbering algorithm based on
the idea of random interpretation. Our algorithm is perhaps the
first polynomial time algorithm that discovers all equivalences in a
program with non-deterministic conditionals and uninterpreted op-
erators. An important feature of this algorithm is the simplicity
of its data structures and of the operations it performs. Our algo-
rithm does not require any symbolic manipulations like other global
value numbering algorithms. We are working on proving better up-
per bounds on the value ofk for probabilistic soundness; this can
reduce the time complexity of our algorithm.

The next step will be to implement this algorithm and compare it
with other existing algorithms on several benchmarks. We also plan
to use the value numbering algorithm proposed in this paper as part
of the translation validation infrastructure [11]. We hope that this
will reduce several of the false alarms currently generated by the
translation validation tool.

An interesting open problem is to discover all equivalences in a
program with non-deterministic conditionals and expressions that
involve both uninterpreted operators and linear arithmetic. Another
interesting open problem is to consider the case when some of the
uninterpreted operators are known to be commutative (for e.g. float-
ing point arithmetic operators) or associative or both. We feel that
randomization has much to offer to program analysis and this area
is worthy of future research. Combining the randomized techniques
with symbolic ones also seems to be a promising direction for fu-
ture work.
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A Proof of Completeness and
Soundness Theorems

We now give the proofs for the completeness and soundness theo-
rems stated inSection 4.3.2. Both the abstract interpreterA and the
random interpreterR perform similar operations for each node in
the flow-graph. The proofs are by induction on the number of op-
erations performed by the interpreters. The computation performed

by the interpreters can be viewed as going forward in the sense that
the outputs of a flowchart node are determined by the inputs of the
node. Hence, for the inductive case of the proof, we prove that
the required property holds for the outputs of the node given that it
holds for the inputs of the node.

A.1 Proof of Completeness (Theorem9)

The proof is by induction on the number of operations performed by
the interpreters. The base case is trivial since initiallyU = /0. Since
/0⇒ e1 = e2, it must be the case thate1 = e2. Hence,S̃|= e1 = e2.
For the inductive case, the following scenarios arise.

• Assignment Node: SeeFigure 4(a).
Consider the expressionse′1 = e1[e/x] ande′2 = e2[e/x]. Since
U ⇒ e1 = e2, U ′ ⇒ e′1 = e′2. It follows from the induction
hypothesis onU ′ andS̃′ thatS̃′ |= e′1 = e′2. Hence,S̃|= e1 = e2.

• Conditional Node. SeeFigure 4(b).
This case is trivial sinceU1 = U2 = U ′ and S̃1 = S̃2 = S̃′.
By using the induction hypothesis oñS′ andU ′, we get the
desired result.

• Join Node: SeeFigure 4(c).
By definition of A, U1 ⇒ e1 = e2 andU2 ⇒ e1 = e2. By
induction hypothesis onU1 and S̃1 and onU2 and S̃2, we
have thatS̃1 |= e1 = e2 andS̃2 |= e1 = e2. It now follows from
Lemma 10thatS̃|= e1 = e2.

A.2 Proof of Soundness (Theorem11)

The proof is again by induction on the number of operations per-
formed by the interpreters. For the base case,V(e1,k, S̃) = P(e1,k)
andV(e2,k, S̃) = P(e2,k) sinceS̃k[x] = x. Since an expression of
deptht can have at most 2t leaves when expressed as a tree, it fol-
lows from Lemma 7that e1 = e2. HenceU ⇒ e1 = e2. For the
inductive case, the following scenarios arise.

• SeeFigure 4(a).
Consider the expressionse′1 = e1[e/x] and e′2 = e2[e/x].
Note that S̃′ |= e′1 = e′2 since S̃ |= e1 = e2. Also
note that degree(V(e1,k, S̃)) = degree(V(e′1,k, S̃

′))
and degree(V(e2,k, S̃)) = degree(V(e′2,k, S̃

′)). Hence,
k ≥ min(degree(V(e′1,k, S̃

′)),degree(V(e′2,k, S̃
′))) since

k ≥ min(degree(V(e1,k, S̃)),degree(V(e2,k, S̃))). It follows
from the induction hypothesis onU ′, S′, e′1 and e′2 that
U ′⇒ e′1 = e′2. Thus, it follows thatU ⇒ e1 = e2.

• SeeFigure 4(b).
This case is trivial sincẽS1 = S̃2 = S̃′ andU1 =U2 =U ′. The
induction hypothesis oñS′ andU ′ implies the desired result.

• SeeFigure 4(c).
By definition, Ṽ(e1,k, S̃) = w× Ṽ(e1,k, S̃1) + (1− w) ×
Ṽ(e1,k, S̃2) and Ṽ(e2,k, S̃) = w× Ṽ(e2,k, S̃1) + (1− w) ×
Ṽ(e2,k, S̃2), where w is a variable that does not oc-
cur in Ṽ(e1,k, S̃1), Ṽ(e1,k, S̃2), Ṽ(e2,k, S̃1) or Ṽ(e2,k, S̃2).
SinceṼ(e1,k, S̃) = Ṽ(e2,k, S̃), it follows that Ṽ(e1,k, S̃1) =
Ṽ(e2,k, S̃1) (by substitutingw = 0). Hence, S̃1 |= e1 =
e2. Also, degree(V(e1,k, S̃1)) ≤ degree(V(e1,k, S̃) and
degree(V(e2,k, S̃1)) ≤ degree(V(e2,k, S̃)). Thus, it follows
from the induction hypothesis onU1, S̃1,e1 ande2 thatU1⇒
e1 = e2. Similarly, we can prove thatU2⇒ e1 = e2. It now
follows from the definition of the abstract interpreterA that
U ⇒ e1 = e2.
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