A Randomized Satisfiability Procedure for
Arithmetic and Uninterpreted Function
Symbols !

Sumit Gulwani , George C. Necula

Department of Computer Science, UC-Berkeley, Berkeley, CA 94720, USA

Abstract

We present a new randomized algorithm for checking the satisfiability of a con-
junction of literals in the combined theory of linear equalities and uninterpreted
functions. The key idea of the algorithm is to process the literals incrementally
and to maintain at all times a set of random variable assignments that satisfy the
literals seen so far. We prove that this algorithm is complete (i.e., it identifies all
unsatisfiable conjunctions) and is probabilistically sound (i.e., the probability that
it fails to identify satisfiable conjunctions is very small). The algorithm has the abil-
ity to retract assumptions incrementally with almost no additional space overhead.
The algorithm can also be easily adapted to produce proofs for its output. The key
advantage of the algorithm is its simplicity. We also show experimentally that the
randomized algorithm has performance competitive with the existing deterministic
symbolic algorithms.

Key words: Randomized Algorithm, Satisfiability Procedure, Linear Arithmetic,
Uninterpreted Function Symbols

Email addresses: gulwani@cs.berkeley.edu (Sumit Gulwani),
necula@cs.berkeley.edu (George C. Necula).

URLs: http://wuw.cs.berkeley.edu/~gulwani (Sumit Gulwani),
http://www.cs.berkeley.edu/~necula (George C. Necula).
1 This research was supported in part by the National Science Foundation Career
Grant No. CCR-9875171, and ITR Grants No. CCR-0085949 and No. CCR-0081588,
and gifts from Microsoft Research.

Preprint submitted to Elsevier Science 11 December 2004

1 Introduction

In this paper, we consider the problem of checking the satisfiability of a formula
that involves linear equalities and uninterpreted function symbols, and explore
what can be learned about the formula by evaluating it over some randomly
chosen variable assignments.

Consider, for example, the following formulas ¢; and ¢,.
¢r:(z=z+y)A(@=y)A(z#22)

¢ (z=z+y) Nz =y)A(2#0)

The formula ¢; is unsatisfiable because no assignment that satisfies the con-
straint (z = o + y) A (z = y) also satisfies the constraint (z # 2z). In other
words, the solution space L for the constraint (z = z+y) A (x = y) is included
in the solution space R; for the constraint (z = 2x), as shown in Figure 1(a).
On the other hand, the formula ¢ is satisfiable because there exists at least
one solution that satisfies the constraint (z = =z + y) A (z = y) as well as
the constraint (z # 0). In other words, the solution space L for the constraint
(z = x+y)A(z =y) is not included in the solution space Ry for the constraint
z = 0, as shown in Figure 1(b). In general, a conjunction of literals is unsatis-
fiable if and only if the solution space for all of the equality literals is included
in the solution space for the negation of one of the disequality literals.

Can we decide the satisfiability of these formulas by evaluating them over
some random values? If we choose arbitrary random values for z, y and z,
then, very likely, they will not satisfy the constraint (z = = + y) A (z = y)
(and hence they will satisfy neither ¢; nor ¢s). Thus, such a naive “test” fails
to discriminate between satisfiable and unsatisfiable formulas. However, if we
manage to choose random values for x, y and z from the solution space L,
then they will still not satisfy formula ¢, but, very likely, they will satisfy
formula ¢o. This is because, as shown in Figure 1(b), there is only one point
P (x =y =2=0) in L that also lies in Ry, and it is extremely unlikely that
when we choose a point randomly on the line represented by L, we choose the
point P. In general, if a formula is unsatisfiable, then any randomly chosen
assignment does not satisfy the formula. On the other hand, if a formula is
satisfiable, an assignment that satisfies the equality literals in the formula,
very likely also satisfies the disequality literals in the formula. We can further
reduce the probability of error by choosing several random points from L
rather than just one. These observations form the basis for our randomized
algorithm for deciding the satisfiability of a formula.

The key step in our algorithm is to generate random assignments that sat-
isfy all of the equality literals. We do this incrementally, by starting with a
set of completely random assignments and then adjusting them so that they

Fig. 1. The line L represents the solution space for the constraint
(z=x+4y)A(z =y). If we choose points randomly on L, we can easily deduce that
L=R; andL7é>R2.

satisfy each equality literal in turn. The adjustment operation can be viewed
geometrically as a projection onto the hyperplane represented by an equality
literal.

As we will see, this algorithm is simple and efficient. It avoids the need for
symbolic manipulation and construction of normal forms. Handling arithmetic
expressions becomes especially easy because we only evaluate them instead of
manipulating them symbolically. Furthermore, we require a simple data struc-
ture (a set of variable assignments and a hash table for handling uninterpreted
function symbols), and we perform only simple arithmetic operations.

We start with a discussion of the notation in Section 2. In Section 3, we de-
scribe the algorithm for the arithmetic fragment along with the proof of com-
pleteness, and a sketch of the proof of probabilistic soundness (the complete
proof is in Appendix A). We then extend the algorithm to handle uninter-
preted function symbols in Section 4. In Section 5, we show that it is quite
easy to also retract equality literals (a property that is useful in the context
of a Nelson-Oppen theorem prover). In Section 6, we describe a procedure to
produce a proof for the output of the algorithm by using some information
computed by the algorithm; such a certificate can be used to remove any er-
ror probability from the algorithm. In Section 7, we describe an interesting
optimization, namely a randomized transformation for converting arbitrary
function terms to terms with only one unary function symbol; such an opti-
mization makes the implementation of the algorithm simpler and efficient. In
Section 8, we describe our initial experience with an implementation of this
algorithm, and we compare it with a deterministic satisfiability algorithm for
the same theory.

2 Notation

Consider the following language of terms ¢ over rationals Q.

ti==zx | q | t1 + o | t1 — 19 | th | f(tl,..,tk)

Here ¢ € QQ, x is some variable and f is some k-ary uninterpreted function
symbol for some non-negative integer k. An equality literal is an equality of
the form ¢t = 0 while a disequality literal is a disequality of the form ¢ # 0 for
some term t. A formula ¢ is a set of equality and disequality literals.

An assignment p for n variables maps each variable to a rational value. We
use the notation p(x) to denote the value of variable z in assignment p. Occa-
sionally, in order to expose the geometric intuition behind the algorithms, we
also refer to the n variables as coordinates and to an assignment as a point in
Q™. We write [t]p for the meaning of term ¢ in assignment p (using the usual
interpretation of arithmetic operations over Q). An assignment p satisfies an
equality t = 0 (written p =t = 0) when [t]p = 0.

We refer to a sequence of assignments S as a sample and we write S; to refer
to the 7" assignment in sample S. In the geometric interpretation, a sample
is a sequence of points. A sample satisfies a linear equality ¢ = 0 when all of
its assignments satisfy the equality. We write S |=t = 0 when this is the case.

An affine combination of two assignments p; and ps with weight w € Q
(denoted by p1 @y p2) is another assignment p such that for any variable
z, p(r) = w x p1(x) + (1 — w) X po(z). If the assignments p; and py are
viewed as points in Q", then their affine combinations are the points situ-
ated on the line passing through p; and p,. The affine combination of two
assignments has the property that it satisfies all the linear equalities that
are satisfied by both the assignments. Similarly, we define an affine combina-
tion of m assignments p1, ..., p,, with weights wy, ..., w,_1 € Q (denoted by
p1 Buwy -+ Buw,,_, Pm) as another assignment p such that for any variable z,

m—1
p(x) = wy X p1(x) + ... 4+ W1 X pr—1(x) + <1 - ; wi) X pm ().

3 The Algorithm for the Arithmetic Fragment

We start with a discussion of the satisfiability algorithm for formulas that do
not contain any uninterpreted function symbols. We first describe the Adjust
operation and then show how it can be used to check the satisfiability of a
formula.

3.1 The Adjust Operation

The Adjust operation takes a sample S and a term e, and produces a new
sample S such that S’ satisfies all the linear equalities that are satisfied by S
and exactly one more linearly independent equality e = 0. For this definition

to be meaningful, the Adjust operation has a precondition that S £ e+c=0
for any constant c. Note that if this precondition does not hold and ¢ = 0,
then since S already satisfies e = 0, there is no need for the Adjust operation;
and if ¢ # 0, then S’ cannot simultaneously satisfy e4+c¢ = 0 and e = 0. In the
latter case, the formula being checked is declared unsatisfiable.

The resulting sample S has the following properties:

(A1) For any term t, if S =t =0, then S’ =t = 0.
(A2) " Ee=0.
(A3) For any term ¢, if S =t = 0, then 3\ such that S =t + Ae = 0.

The property Al says that the sample S’ continues to satisfy all the linear
equalities that are satisfied by the sample S, while the property A2 says that
the sample S’ also satisfies the equality e = 0. The property A3 implies that
S’ satisfies exactly one more linearly independent equality than those satisfied
by S.

3.1.1 An Implementation of the Adjust Operation

We now present an efficient implementation of the Adjust operation, assuming
the precondition ~(3c € Q. S = e+ c=0):

Adjust ([Sy,..,Sk],e =0)

1 pick j such that [e]S; # [e]Sk.
2 pick ¢ € Q such that ¢ #0 and ¢ # [e]S; for all i€ {1,...,k}.
3 let pg = Sj @y Sk, where w:[[eﬂlgjﬁ_%.
4 for ¢ =1 to k—1:
5 let S be the point at the intersection of the plane
e =0 and the line passing through py and S;
i.e. S/ =S, By, po, where w; = m.
6 return [S},...S;_4].

There are a few details in the definition of the Adjust procedure that deserve
discussion. Line 1 in the Adjust procedure presumes the existence of a point
S; in sample S such that the term e evaluates to distinct values at points S
and Sy; this assumption is guaranteed by the pre-condition for the Adjust
operation. (Geometrically, this means that the points S; and Sy, should lie at
different distances from the plane e = 0.) The operation in line 2 is a linear
time operation and the point pg is computed such that [e]py = ¢. Since we
choose ¢ such that py and S; are at different distances from the hyperplane
e = 0, the line joining py and S; intersects the hyperplane e = 0 (in exactly
one point). An example of the Adjust procedure is shown in Figure 2. The

S1

’ j

- !

} b
4

Fig. 2. An example of the Adjust procedure on a 4-point sample S, which satisfies
the equality z = x + y. The adjustment is performed with respect to the equality
x = y. The adjusted points S] are obtained as the intersections of the lines connect-
ing the original points S; with the point pg. Note that the adjusted points lie on
the line that represents the intersection of the hyperplanes z = x + y and x = y.

sample S consists of 4 points that lie in the plane z = x+y. We pick the point
Sy to play the role of S; (where j is as in line 1) since the line passing through
S, and Sy is not parallel to the plane x = y. We then pick another point py on
the line passing through S, and S4 such that it does not lie in the plane x =y
and the lines passing through it and any other point in S are not parallel to
the plane. Then, we obtain the points S.(i = 1,2, 3) as the intersection of the
lines that pass through py and S; with the plane x = y. Note that the resulting
sample S’ consists of 3 points that lie in the plane x = y as well as the plane
2= +Yy.

We now prove that S’ = Adjust(.S, e) has the desired properties A1, A2 and
A3. We first state a useful and easily provable property of the affine combina-
tion operation.

Proposition 1 (Affine Combination Property) Let p; and ps be any two
points, and let p3 be any affine combination of p1 and ps. If p1 and py satisfy
any linear equality e = 0, then p3 also satisfies the equality e = 0.

It follows from Proposition 1 that if all points in sample .S satisfy some equality
t = 0, then so does py (since it is an affine combination of two points in sample
S) and any point in sample S’ (since it is an affine combination of py and some
point in sample S). Thus, sample S’ has property Al. The points in sample
S’” lie on the hyperplane e = 0 (by definition), and hence S’ = e = 0. Thus,
sample S’ has property A2. For ¢ < k — 1, we have S} = S; ®,, po. Note that
this means that there is a value w; such that S; = S; @, po. Also Sy, can be
expressed as an affine combination of S% and py. This means that S satisfies
all the linear equalities satisfied by both S’ and py. In order to show that S’
has property A3, we assume that S’ =t = 0 and we show that S = t+ e = 0,
for A = —[[[[z]]]]’;‘;. Since S" = e = 0, we have that S’ =t 4+ Ae = 0. It is easy
to verify that py =t + Ae = 0. Thus, S |t + Ae = 0. Hence, sample S’ has
property A3.

3.2 The Satisfiability Procedure

The IsSatisfiable procedure described below is a randomized algorithm
that takes as input a formula ¢ and a r-point random sample R. The only
random choice in this algorithm is the value of this initial sample R. If ¢ is
unsatisfiable, the algorithm returns false for any choice of R. If ¢ is satisfiable,
the algorithm returns true with high probability over the choice of the random
sample R.

IsSatisfiable (¢, R)

let ¢ be {t; =0}, U{t; # 0},

S—R

for ¢ = 1 to k:
if SEt;+c¢=0 for some ¢c#0, then return false
else if St; =0 then S « Adjust(S,t; =0)

for j =1 to m:
if S =1, =0, then return false

return true

(SRS TS N M NG VS

The loop starting in line 3 adjusts the sample incrementally so that it satisfies
each equality literal in turn. Finally, the loop starting in line 6 checks for each
disequality if there is an assignment in the resulting sample that satisfies it.

We now state the completeness and soundness results for this algorithm. Then,
in Section 4 we show how to extend this algorithm to handle uninterpreted
function symbols as well.

Theorem 1 (Completeness Theorem) IfIsSatisfiable (¢, R) returns true,
then ¢ is satisfiable.

PROOF. Suppose IsSatisfiable(¢, R) returns true. Due to properties Al
and A2 of the Adjust operation, at the end of the loop starting in line 3 we
have an adjusted sample S whose assignments satisfy all the equality literals
of the formula. We know from linear algebra that the formula ¢ is satisfiable
if and only if for each j = 1,...,m, the formula {t; = 0};_, U {t; # 0}
is satisfiable. The loop starting in line 6 ensures that each such formula is
satisfied by at least one assignment in the final sample.

Theorem 2 (Soundness Theorem) If ¢ is satisfiable, then
IsSatisfiable(¢, R) returns true with high-probability over the random choice
of the initial sample R.

In order to prove the soundness theorem, we define the notion of consistency
of a sample with a formula:

Definition 2 Given a formula ¢ and a sample S, we say that S is consistent
with ¢ if

¢ is satisfiable = (Vt.S|Et=0 = ¢U{t =0} is satisfiable)

Intuitively, a sample S is consistent with a satisfiable formula ¢, if S satisfies
only those linear equalities that do not contradict ¢. Note that any sample is
consistent with an unsatisfiable formula. We have the following useful property.

Proposition 3 If S is consistent with the formula pU{e = 0}, then Adjust(S,e =
0) is consistent with the same formula.

PROOF. Assume that S is consistent with ¢U{e = 0}. Let S" = Adjust(S,e =
0). Assume that ¢ U {e = 0} is satisfiable. Pick an arbitrary ¢ such that
S" =t = 0. This means that S =t 4+ Ae = 0 (by property A3). Since S is
consistent with ¢ U {e = 0}, we know that ¢ U {e = 0, + Ae = 0} must be
satisfiable. Consequently pU{e = 0,¢ = 0} must be satisfiable. This completes
the proof.

Using Proposition 3, we can easily prove the following lemma:

Lemma 4 If the initial random sample R is consistent with ¢, and
IsSatisfiable(¢, R) returns false, then ¢ is unsatisfiable.

PROOF. Suppose that the initial sample is consistent with ¢. It follows from
Proposition 3 that the sample S in procedure IsSatisfiable always remains
consistent with ¢. Now, consider the following two cases.

e Suppose IsSatisfiable returns false in line 4. Then S = t;+c¢ = 0. Since
S is consistent with ¢ and ¢ U {t; + ¢ = 0} is unsatisfiable, it must be that
¢ is unsatisfiable.

e Suppose IsSatisfiable returns false in line 7. Then S |= t; = 0. Since S
is consistent with ¢, and also ¢ U {t; = 0} is unsatisfiable, it must be that
¢ is unsatisfiable.

This means that as long as we start with a sample that is consistent with
the input formula ¢, the algorithm is sound. The question now is how to

choose the initial sample such that it is consistent with any given formula
¢. The key observation is that we can choose R randomly because there are
many more samples that are consistent with ¢ than those that are not. This
is obvious if ¢ is unsatisfiable, because then all samples are consistent with
¢. If ¢ is satisfiable, then R is inconsistent with ¢ only if there is a term ¢
such that ¢ = ¢t # 0 and R = ¢ = 0. Such a term ¢ can be written as a
linear combination of the equality literals of ¢ added to either the constant 1
or one of the disequality literals of ¢. For any such term ¢, it is unlikely that
we choose R such that all of its r assignments satisfy ¢ = 0. The following
lemma provides an upper bound on the probability that a randomly chosen
sample R is inconsistent with a formula ¢.

Lemma 5 (Consistent Random Sample Lemma) If ¢ is satisfiable, then
the probability that the r-point random sample R is inconsistent with ¢ is at

r—k’
most (m + 1) | F||€|3T (%) , where m is the number of disequality literals in
o, |F| is the size of the finite subset of Q from which we choose the elements
of R uniformly at random and independently of each other, and k' < k is the

mazimum number of linearly independent equality literals in ¢.

This lemma along with Lemma 4 proves Theorem 2 and also provides an upper
bound for the probability that our satisfiability algorithm incorrectly reports
a satisfiable formula to be unsatisfiable.

The proof of Lemma 5 is somewhat involved and is given in the Appendix.
Note that the probability of error increases linearly with the number of dise-
qualities (because we might make an independent error in handling each one
of them). The dominant factor is (%)T_k , which decreases with the size of
the subset from which we make random choices. (We cannot choose directly
from @Q because each choice would need an infinite number of random bits.)
The probability of error also decreases exponentially when we increase r. Es-
sentially, when we work with more random assignments it becomes less likely
that all of them accidentally satisfy an equality. The IsSatisfiable algo-
rithm performs at most k£ Adjust operations, one for each equality literal in
¢. However, the Adjust operation is performed only if the equality literal is
not entailed by the previously processed equalities. This means that Adjust
is performed only £’ times. The r — k’ exponent suggests that r should be at
least as large as k’. This makes sense because we have seen that each Adjust

operation “loses” one assignment.

4 Extension to Uninterpreted Function Symbols

n
The theory of uninterpreted functions has one congruence axiom: (N e = eé) =
i=1

fler,..,en) = f(€],..,e)) for any n-ary uninterpreted function f. We can ef-
ficiently detect the equivalences of expressions e; and e, by comparing the
values of these expressions under the random variable assignments. This al-
lows us to reason about the congruence axiom of uninterpreted functions in
an interesting manner. We now extend the satisfiability procedure to handle

formulas that also contain uninterpreted function symbols.

We first introduce some notation. For any term ¢, let V' (¢) be the term obtained
from ¢ by replacing all occurrences of the outermost function term by a fresh
variable as follows: V (t1+t2) = V(t1)+V (ta), V(t1—ta) = V(t1) =V (t2), V(g X
t)=qgxV(t),V(g) =q, V(f(t1, .. th)) = Vs, 1) Let C(¢) denote the for-
mula obtained from ¢ after performing the Ackerman transformation [1] as fol-
lows: (1) each term ¢ in ¢ is replaced by V (t), and (2) for every pair of distinct
function terms f(t11,..,t1x) and f(t21,..,t2x) in ¢, we introduce the condi-
tional equalzty (1/\ kV(tLZ) = V(tgﬁz)) = (V(f(tl,la .. ,th)) = V(f(tgvl, ..)t2,/€)))~

1=1,..

Following is an example of a formula ¢ and the corresponding C(¢):

¢ ={fle+3)=[(2),fly+2)=y,y=3}
C(¢) ={vi=v,v3=y,y =3, (v +3=2) = (v =),
(x4+3=y+z)=(vy=1v3),(z=y+2z) = (1y =103)}

Here we have introduced new variables vy, vo and v for the terms f(z+3), f(z)
and f(y 4 z) respectively. The conditional equalities that are used to obtain
C(¢) from ¢ capture the essence of the congruence axiom for uninterpreted
functions, and one can easily show that ¢ is satisfiable if and only if C(¢) is
satisfiable.

For any formula ¢, let .A(¢) be the formula that does not contain any uninter-
preted function symbols or conditional equalities, and is obtained from C(¢)

as follows. Each conditional equality of the form (A s;=¢5,) = (v=17")in
i=1,..k

C(¢) is replaced with the equality v = v if C(¢) = s; = s for all i = 1,.. kK,
or with the disequality v # v’ otherwise. For the above example, we have:

-A(Qb) = {Ul = U, U3 =Y,y = 3,0V] = V3,V1 # U2,V2 # Ug}

Just like C(¢), A(¢) is satisfiable if and only if ¢ is satisfiable. Note that C(¢)
is easy to compute but A(¢) is not. This is not a problem because we use
A(¢) only in the correctness arguments.

10

The IsSatisfiable’ procedure shown below decides the satisfiability of a
formula ¢ by considering the modified formula C(¢). The procedure makes use
of a macro Assume that takes a sample and an equality literal as arguments,
and has the following definition.

Assume (S,t = 0)
if SEt+c¢=0 for some c# 0, then return false
else if S £t =0, then S« Adjust(S,t=0)

1 IsSatisfiable’ (¢, R)

2 let C(¢) be {t;= 0}§=1 U{t; #0}2, U {(N Sig= Sg,j) = v; =] f:l

3 S—R

4 for i1 =1 to k:

5 Assume (S,t; = 0)

6 repeat until no changes to S occur:

7 for w =1 to {:

8 if (o 1/\k S = Swj—s,; =0), Assume(S,v, — v, =0)
j=1,kw

9 for ¢ = 1 to m:

10 if St =0, then return false

11 return true

The IsSatisfiable’ procedure is similar to IsSatisfiable procedure with
respect to processing of equalities ¢; = 0 and disequalities ¢, # 0. Conditional

equalities (A s;; = s} ;) = v; = v; are handled by processing the equality
=1,k ’
v; =v; when A s;; =s;; is discovered to be true.
j:17"’ki

Note that IsSatisfiable’(¢, R) returns the correct answer if and only if
IsSatisfiable(A(¢), R) returns the correct answer. It follows from Theo-
rem 1 that if ¢ is unsatisfiable, then IsSatisfiable’(¢, R) returns false. It
also follows from Theorem 2 that if ¢ is satisfiable, then IsSatisfiable’(¢, R)
returns true with probability (over the random choices for the r-point sample
R) at least 1 — (m/ + 1) | F||F_|3T(%)’"_k/, where m’ is the number of disequality
literals in A(¢), and £’ is the maximum number of linearly independent equal-
ity literals in A(¢). Clearly, m’ < m+ (2, where m is the number of disequality
literals in ¢ and /¢ is the number of function terms in ¢. Also, k' < k + ¢ since
there can be at most ¢ linearly independent equalities among ¢ function terms.

The IsSatisfiable’ algorithm as presented here emphasizes logical clarity
over efficiency. In our experiments, we use an optimized variant of this algo-
rithm that does not create the conditional equalities in C(¢) explicitly. In-
stead, we maintain, for each function symbol f, a list of pairs of the form

11

([s1,--,8k],v) for each function term f(¢q,..,tx), where s; = V(t;) and v =
V(f(ty,..,tx)). For our example, the list corresponding to f is {([z+3], v1), ([2],
va), ([y+x],v3)}. This allows us to find quickly, in line 7, the pairs of [sy, . ., sg]
and [s],..,s;] such that S |= s; — s} = 0 for all j = 1,..,k, by using a hash
table indexed by [[s1]5h,..,[sk]S1], i-e. the values of the terms s; in the
assignment 5.

5 Retracting Assumptions

It is often the case that we must solve a number of satisfiability problems
that share literals. Such a situation arises naturally in the context of program
verification when the formulas correspond to paths and are constructed as
conjunction of branch conditions. For example, consider the program fragment:
if z = x + y then
if x = y then assert (z = 2x) else assert (x = z - y)

This fragment can be verified by checking the unsatisfiability of the two for-
mulas {z = x+y,x =y,z2 # 2z} and {z =+ y,x # y,x # z —y}. If we
process these formulas independently, we end up duplicating work for assum-
ing z = x + y. Instead, if we have a satisfiability procedure that can retract
assumptions, then after processing the first formula we can retract the equality
x =y and continue with the disequalities in the second formula.

Another situation where ability to retract assumptions is important is the con-
text of a Nelson-Oppen theorem prover [2], in which non-convex theories are
handled using backtracking. Similarly, a Shostak theorem prover [3] handles
non-solvable theories using backtracking.

In our algorithm, a naive way to retract the last equality assumption is to
restore the current sample to the sample before the Adjust operation. One
method to do this is to remember the old samples, but requires some additional
space. Another method relies on the fact that we can recover the previous
sample S from the adjusted one, if we remember just the weights w;.

Next we show a different and interesting technique that has a slightly better
space usage than the above mentioned methods. The key observation is that we
need not restore the original sample exactly, as long as we obtain an equivalent
sample in the sense that it satisfies exactly the same linear equalities as the
original one. To achieve this we extend the Adjust operation to return not just
an adjusted sample but also a point that when added to the adjusted sample
produces a sample equivalent to the original one. This means that we need to
remember only this special point and we can undo an Adjust operation by
simply adding this point to the adjusted sample.

12

5.1 The Adjust’ Operation

Let Adjust’ be the operation that takes a sample S and a term e as input,
where S [~ e 4+ ¢ = 0 for any constant ¢, and returns another sample S’ and a
point p. The adjusted sample S’ satisfies the properties A1, A2, A3 mentioned
in Section 3.1, and the point p satisfies the following additional properties:

(B1) For any term ¢, if S |=¢ =0 then p =t =0.
(B2) For any term ¢, if S’ =t =0and p =t =0 then S =t = 0.

These properties, along with property Al, mean that S satisfies exactly the
same linear equalities that are satisfied by both S’ and p.

5.1.1 An Implementation of the Adjust’ Operation

We now present an efficient implementation of the Adjust’ operation:

Adjust/(S,e)
1 let S’ < Adjust(S,e).
2 pick j such that S; f£e=0.
3 return (5',S;)

The precondition for Adjust’ ensures that an appropriate j can be found in
line 2. It is a simple exercise to verify that (S’ p) = Adjust’(S, e) satisfies the
properties A1, A2, A3, B1, and B2.

5.2 The UnAdjust Operation

The modified satisfiability procedure is just like the one described in Section 4
except that it uses the Adjust’ operation in place of the Adjust operation and
remembers the point p returned by the Adjust’.

We now define the operation UnAdjust for retracting the last equality that
was adjusted for. The operation UnAdjust takes the current sample S and the
point p corresponding to the last equality and returns another sample S’ such
that S’ satisfies exactly those linear equalities that are satisfied by both S and
p. The UnAdjust operation can be implemented efficiently as

UnAdjust([S1,...,Sk,p) = [S1, .., Sk pl.

13

5.8 Correctness of Retraction

Consider the algorithm IsSatisfiable’. We must retract assumptions in the
reverse order in which they were made. In order to retract an assumption
t; = 0, we must invoke UnAdjust for all of the Adjust operations that are
performed in the i*" iteration of the loop starting at line 4.

The following lemma states that if a sample S is consistent with a formula ¢,
then the sample obtained from S after any number of Adjust and an equal
number of corresponding UnAdjust operations is also consistent with ¢.

Lemma 6 (The Adjust-UnAdjust Lemma) Let (51, p) = Adjust’(Sp, e =
0) and Sy a sample that satisfies the same linear equalities as Sy, and Sz =
UnAdjust(Ss, p). Then S satisfies the same linear equalities as Sp.

PROOF. Let t be an arbitrary term. We first prove that if Sy = ¢ = 0 then
S3 =t = 0. Due to property Al we know that S = ¢ = 0 and thus Sy =t = 0.
Due to property Bl, we know that p =t = 0 and hence from the definition
of UnAdjust we conclude that S3 =t = 0. Next we prove that if S5 =t =0
then Sy =t = 0. From definition of UnAdjust we know that Sy = ¢ = 0 and
p Et=0.Hence S; =t =0, and from property B2, Sy =t = 0.

6 Producing Proofs

In this section, we show how to produce a proof for the correctness of the out-
put of the algorithm. Such a procedure has several advantages. First of all, it
can be used to convert the IsSatisfiable’ procedure, which is a Monte Carlo
algorithm 2| to a Las Vegas algorithm 2 [4]. This can be done by repeating the
algorithm on the same input until a proof can be produced. Secondly, it can
be used as a mechanism to certify the output of the satisfiability procedure.
This is useful for testing the implementation of the satisfiability procedure
and in the context of proof-carrying code [5].

Proof production and its validity has also been considered in the context of
the CVC (Cooperating Validity Checker) decision procedure [6,7].

2 A Monte Carlo algorithm runs for a fixed number of steps for each input and
produces an answer that is correct with a bounded probability.
3 A Las Vegas algorithm always produces the correct answer, but its runtime for
each input is a random variable whose expectation is bounded

14

6.1 Proof for Satisfiability of a Formula

We first discuss how to produce a proof when the IsSatisfiable’ procedure
returns true on some input formula ¢. Any point that satisfies ¢ is a certificate
for the satisfiability of ¢. We describe how to obtain one such point from the
resulting sample at the end of the IsSatisfiable’ procedure.

Let C(¢) be EU{t; # 0}, where E consists only of equality literals (possibly
including some conditional equality literals). The resulting sample at the end
of the IsSatisfiable’ procedure contains a point p; for each i € {1,..,m}
such that p; satisfies the formula ¢; = E U {t, # 0}. Clearly, such a point p;
is a certificate for the satisfiability of the formula ¢;. It follows from linear
algebra that the formula ¢ is satisfiable if and only if all of the formulas ¢;
are satisfiable. Hence, the collection of the points {p;}", act as a certificate
for the satisfiability of the formula ¢.

It is also possible to produce a more succinct certificate, namely a single point p
that satisfies the entire formula ¢. We now describe a randomized construction
to obtain such a point p. Let p = p1 By, - . . Buw,,,_, Pm Where wy, ..., w,,_; are
weights chosen independently and u.a.r. from the set F. It is easy to show
that p satisfies all the equalities that are satisfied by all of py, ..., pp. Also, it
is not hard to show that the probability that p satisfies any equality that is
not satisfied by at least one of the points py, ..., p,, is at most % We now use
these properties about p to obtain an upper bound on the probability that p
does not satisfy C(¢).

Let e; = e; = e3 = e4 be any conditional equality literal in E. If p does not
satisfy e; = e; = e3 = ey, then it must be the case that p satisfies e; = ey and
some p; does not satisfy e; = es. (This is because if all p;’s satisfy e; = ey, then
all p;’s satisfy e3 = e4 and hence p also satisfies e3 = e4, thereby satisfying
e1 = e3 = e3 = e4.) The probability that this happens is at most ﬁ Let
t # 0 be some disequality literal. Note that p; does not satisfy the equality
t: = 0. Hence, the probability that p satisfies the equality ¢, = 0 is at most
|le|. Hence, the probability that p does not satisfy the formula C(¢) is at most
C}m, where ¢ is the number of conditional equality literals in E. This suggests
that if F' is big enough, then it is very likely that p will satisfy the formula
C(¢). If p does not satisfy C(¢), then we can repeat the above construction

until we obtain a point that does satisfy C(¢).

15

6.2 Proof for UnSatisfiability of a Formula

In this section, we describe a procedure to construct a proof when the IsSatisfiable’
procedure returns false on some input formula ¢. Note that there is a small
probability that the formula ¢ is satisfiable even when the IsSatisfiable’
procedure returns false. Hence, the certificate that our procedure will construct
will be valid only when the IsSatisfiable’ procedure returned a correct an-
swer. However, it is easy to verify the validity of a certificate. If the certificate
is not valid, then the IsSatisfiable’ procedure can be repeated on the same
input formula ¢ until we obtain a valid certificate, or the IsSatisfiable’
procedure returns true. We prove that the probability that a valid certificate
will be produced, given that the IsSatisfiable’ procedure returns false, is
high. Thus, the expected value of the number of repetitions required is small.

i=1

k
A certificate for a valid implication (/\ t; = 0) = (t = 0) is a sequence of

k
constants A, ..., A\x such that t = > Ait;. We can produce such a certificate

=1
if, for each ¢ € L, we have a point p; that satisfies the equality literals t; = 0
for all 1 <7 <i—1, but does not satisfy ¢; = 0, where L is the following set.

i—1
L={i | 1<i<k N\t;=0%1t =0}

J=1

Note that {t;}icr is a maximal set of linearly independent ¢;’s. It thus follows

from linear algebra that there exist {\;};cr such that t = > Ait;. Thus, for
i€l
any i € L, [t]p = X A\j x [tj]lpi = X Aj x [tj]pi, or equivalently, \; =
jJEL jel,j>i
o= 22 Ax[tile:
2 EL[[‘;E; . Hence, given these points, we can compute the certificate
coefficients as follows.

for ¢ = k downto 1:
[lei— > Ajx[tslpe:
JEL,j>1
[t:]p:

if 1 € L, then)\, =
else \;, =0

We now describe how to certify the result of IsSatisfiable’ procedure when
it returns false on some input formula ¢. Let C(¢) be {t; = 0}, U {t; #
0} U{(A sij=sj;) = v; =v}}i_,. Let e be the term defined as follows.

=1y ks
If IsSatisfiable’ returns false in Assume procedure for some input equality
t = 0, then e is equal to ¢. Else if IsSatisfiable’ returns false in line 10 for

some 4, then let e be equal to t.. Let d be the number of successful calls made

16

to the Assume procedure before the IsSatisfiable’ procedure returns false.
Let (S% e; = 0) be the input to the Assume procedure in the i call. For any
i € {1,...,d}, if the i"" call to the Assume procedure is made in line 8, then
let E; be the collection of the corresponding equalities {s,; — s, ; = 0}F=, in
the guard in line 8. We assume that the Assume procedure uses the Adjust’
function described in Section 5.1.1 instead of the Adjust function. Let L be
the set of all 7 such that the i"* call to the Assume procedure results in a call
to the Adjust’ procedure, i.e. S* J£ e¢; = 0. For any i € L, let p; be the point
returned by the Adjust’ procedure. Note that p; satisfies the equality literals
ej =0 forall 1 < j <+ —1 but does not satisfy e; = 0.

A proof for the result of IsSatisfiable’ procedure consists of a proof of the

i=1

t =0 for each t =0 € F;. A certificate for each of these implications can be

generated by the procedure described above using the points {p;}icr, pro-
i—1

vided for all i ¢ L, A e; = 0 = e; = 0. If these certificates are valid, then
j=1

we have a valid proof for the unsatisfiability of the formula. Else we can re-

peat the IsSatisfiable’ procedure until we obtain a valid certificate, or the
IsSatisfiable’ procedure returns true.

d i—1
implication (/\ e; = 0] = e =0, and a proof of the implication (A e = 0) =
j=1

We now show that the probability of obtaining an invalid certificate is small
(given that the IsSatisfiable’ procedure returns false). Hence, the expected
number of repetitions of IsSatisfiable’ procedure until a proof can be pro-

i—1
duced is also small. The certificate would be valid if for all ¢ ¢ L, A e; =
j=1

, i1
0 = e; = 0. The probability that S* = e; = 0 when A e; =0 % ¢; = 0 is
j=1

the same as the probability that the initial random sample R is inconsistent
with the formula {e; = 0}/Z} U {e; # 0}. It thus follows from Lemma 9 that

, i—1
for any ¢ € L, the probability that S* =e; =0 when A e; =0 ¢; =0is
j=1

bounded above by 7 = \F‘\Ii‘?:r (%)T_k , where r is the number of points in the
initial random sample R, and £’ is the maximum number of linearly indepen-
dent equality literals in A(¢). Hence, the probability of obtaining an invalid
certificate is bounded above by 7k’. This probability can be made arbitrarily

small by increasing the value of |F| or r.

17

7 Optimization: Conversion of terms to terms with only a single
unary function symbol

In this section, we describe a randomized transformation that converts terms
in a formula involving (possibly multiple) uninterpreted function symbols of
any finite arity to terms involving only one unary uninterpreted function sym-
bol. Such a transformation can be used to make the implementation simpler
and possibly efficient. This is another example of obtaining simplicity at the
expense of making soundness probabilistic.

Let V' be any injective mapping from uninterpreted function symbols f to
rationals. Let d be the maximum arity of any uninterpreted function symbol
f. Let wo, .., wyg be some rationals chosen independently and u.a.r. from some
finite subset F' of Q. Let g be a new unary uninterpreted function symbol.
The following transformation 7" transforms any term to a term that involves
only one uninterpreted function symbol, namely g.

T(z)==x
T(q)=q
T(ty +to)=T(t1) + T(ts)
T(ty —to) =T(t1) — T(t2)
T(gxt)=qxT(t)

7.1 Correctness

We now prove the correctness of the transformation 7. We say that the trans-
formation 7' is correct for a formula ¢ if any two subterms that occur in ¢ are
equal iff they are equal after the transformation. For any formula ¢ = {t; =
0} U{t; # 0}, let T(¢) denote the formula {T'(¢;) = 0}7,U{T'(;) # 0},.
Note that if the transformation T is correct for a formula ¢, then ¢ is sat-
isfiable iff the formula T'(¢) is satisfiable. The following theorem states that
the transformation 7' is correct for a formula ¢ with high probability over the
choice of the random weights {w;}L.

Theorem 3 For any two subterms t and t' in a formula ¢, t =t iff T(t) =
T(t'), with high probability over the choice of the random weights {w;}%_.

The proof of Theorem 3 follows easily from Lemma 7 and Lemma 8 stated
and proved below. Lemma 7 states that any two equal subterms of formula

18

¢ are also equal after the transformation 7. Lemma 8 implies that any two
unequal subterms of formula ¢ are not equal after the transformation 7" with
high probability.

Lemma 7 (Completeness) For any two subterms t and t' in formula ¢, if
t=1t, then T(t) =T(t).

Lemma 7 can be proved easily by induction on size of the terms.

Before stating the soundness lemma, we introduce some notation. Let the
height H(t) of a term ¢ be defined as follows.

H(z)=1
H(g)=1
H(ty + to) =max{H(t1), H(t2)}
H(tl — tg) = max{H(tl), H(tz)}
H(gxt)=H(t)
H(F(t1,..,tx)) =14+ max{H(t1),.., H(ty)}

Lemma 8 (Soundness) Let n, be the number of pairs of function subterms
of height less than or equal to h in formula ¢. Let Ej be the event that there
exist two subterms t and t' of height less than or equal to h in formula ¢ such
that t # t' and T'(t) = T(t'). The probability (over the choice of the random

weights {w;}4_,) that event Ej, occurs is at most vk

PROOF. The proof is by induction on the height h of the subterms that
occur in formula ¢. We prove the inductive case. (Proof for the base case is

similar). We assume that Pr(E}) < i and prove that Pr(Ep.q1) < ""}j‘l.

Let Ej be the event that there exist two function subterms t and t' of height
less than or equal to h such that ¢t # t' and T'(t) = T('). It is not difficult
to see that the event FEj occurs iff the event Fj occurs. Hence, it suffices to
prove that Pr(Ej,) < %

Let t = f(aq,..,ax) and t' = f'(by, .., by) be two function subterms in formula
¢ such that the height of any one of them, say t, is at least h + 1 and t # t'.
We show that the probability that T'(t) = T'(t') is at most ﬁ At least one of
the following cases arise.

o f # f'. Note that
Tt)=T(t)

19

/

<= wo = 5, where d = V(f)—=V(f), and c = sz i szaz

Note that d # 0, since f # f’ and the mapping V is 1nJectlve If £ is not a

constant, then wy # 5. If < is a constant, then the probability that wo = §
S |—}| Hence, the probability that wg = § is at most ﬁ
o f = f"(and thus k = k'), but a; # b; for some j € {1,..,k}. Note that

T(t)=T(t)

k K’
< woV (f) + X wiT(a;) = woV(f) + X wiT(b)

i=1 =1

i—1

< w; = §, where d = T'(a;) — T(b;), and ¢ = jE wi(T(b;) — T(a;)) +

i=1
k
> () - T(a),
=]
Note that d # 0 (under the assumption that the event Ej, does not occur).
The probability that wy = 5 is at most ﬁ
The number of pairs of function subterms in ¢ such that at least one of them

has height h + 1 is nj41 — ny,. Thus, Pr(E} 4 | 7Eh) < (npe1 —)‘F‘ Hence,

Pr(Epi1) =Pr(Ep)
< Pr(Ep) + Pr(E), | ~En)

Lemma 8 suggests that the error probability in the transformation 7' can
be made arbitrarily small by choosing random weights {w;}%, from a large
enough F'.

8 Experimental Results

We have implemented the IsSatisfiable’ procedure (described in Section 4)
in programming language C with some optimizations. One important op-
timization that we have used is to perform arithmetic operations over the
field Z, for some randomly chosen prime p. This avoids the need to perform
arbitrary precision arithmetic, which is otherwise required if the operations
are over rational numbers. This optimization is problematic in an otherwise-
deterministic algorithm, but for our randomized algorithm it simply results
in an additional probability of error. For lack of space, we do not present the
analysis of the error probability that results from working over Z, rather than

20

Q. This idea is similar to fingerprinting mechanisms that involve performing
arithmetic modulo a randomly chosen prime [4]. Our implementation also uses
the optimization described in Section 7. We did not observe a significant dif-
ference in performance based on this optimization; however this optimization
made the implementation simpler.

We compared the running-time performance of our implementation with the
SRI’s ICS (version 1.0) and Stanford’s SVC and CVC Lite (version 20040606 -
the latest build version, as recommended by the CVC Lite developers) decision
procedure packages. ICS (Integrated Canonized and Solver) is implemented in
Ocaml [8] and is based on the refinement of Shostak’s algorithm by Ruess
and Shankar [9]. It can decide a fragment of first-order logic where the terms
are built from uninterpreted function symbols and operators from a combi-
nation of datatypes including arithmetic, functional arrays, tuples, cotuples,
and fixed-sized bitvectors. ICS uses arbitrary precision rational numbers from
the GNU multi-precision library (GMP). SVC (Stanford Validity Checker) is
implemented in C++, and is used to check the validity of quantifier-free first-
order formulas over several theories including real linear arithmetic, arrays,
uninterpreted functions [10]. It has been used primarily for the formal ver-
ification of hardware designs. CVC Lite Lite (Cooperating Validity Checker
Lite) is a successor of SVC [11]. It provides a C++ library with a well-defined
API that provides support for the theory of linear arithmetic over reals as
well as integers, and their combination. It can also handle a limited form of
non-linear arithmetic. It supports arbitrary precision arithmetic using GMP.

Figure 3 shows the time in milliseconds taken by our implementation and the
time in seconds taken by ICS, SVC and CVC Lite while deciding validity of
several formulas that involve only linear arithmetic. Column Rand shows the
time taken by our implementation when run with the best possible parameters.
This includes performing arithmetic operations over a small field (in this case
Za68435399, SO that the arithmetic can be performed using 32-bit integers) and
working with as few points (in the initial random sample) as required. In
particular, we chose 5 more points than the number of Adjust operations
performed; this was sufficient to guarantee a very low error probability. The
number of Adjust operations is equal to the number of independent equality
literals in the formula. Since this cannot be determined beforehand, we chose
the number of equality literals as a good upper approximation to the number
of Adjust operations for the purpose of determining the number of points
to use. The experiments were performed on a 1.7 GHz Pentium 4 machine
running Linux 2.4.5. The formulas in the table have been classified based on
the number of equality literals in the formula and the maximum number of
variables that occur in each equality literal. Our implementation is 2 to 4
orders of magnitude faster than the other tools. This is primarily due to the
fact that our algorithm performs arithmetic over a small randomly chosen
field and hence all arithmetic operations can be performed efficiently. The

21

Equalities || Sparsity | Rand ICS SVC CVC Lite
(ms) | (sec) | (sec) (sec)
20 5 0.30 0.02 0.01 0.05
20 10 0.37 0.08 0.15 0.05
20 20 0.83 0.37 0.18 1.83
20 40 1.38 0.50 2.84 mem
20 60 1.63 0.55 6.01 mem
20 80 2.24 0.58 6.31 mem
20 100 2.40 0.59 7.08 mem
40 3 0.87 0.04 0.21 0.05
40 5 1.62 0.08 0.51 1.83
40 10 2.24 1.09 8.62 mem
40 20 4.54 4.24 32.91 mem
40 40 6.75 6.01 67.65 mem
40 50 7.23 6.20 time mem
60 2 1.58 0.04 0.52 0.24
60 4 2.71 0.68 2.12 mem
60 8 6.21 10.24 | 26.86 mem
60 15 13.2 20.93 | time mem
60 30 17.24 | 25.64 | time mem
60 50 22.6 27.76 | time mem
80 1 0.76 0.02 0.5 0.18
80 2 2.71 0.11 1.60 1.57
80 4 7.39 2.59 15.96 mem
80 8 13.1 39.96 | time mem
80 15 27.6 67.28 | time mem
80 30 43.4 81.5 time mem
80 50 50.5 86.32 | time mem
100 1 1.26 0.05 1.84 0.33
100 2 5.32 0.64 5.25 mem
100 4 17.59 | 29.33 | 54.00 mem
100 6 23.49 | 66.19 | time mem
100 8 42.00 | time time mem
100 10 40.8 time time mem
125 1 4.50 0.12 3.56 0.68
125 2 11.9 1.06 17.38 mem
125 3 26.8 38.73 | time mem
125 4 33.33 | time time mem
150 1 8.21 0.19 94 1.92
150 2 28.57 | 10.69 | 71.63 mem
150 3 56.57 | time time mem
150 4 80.00 | time time mem
200 1 27.78 1.55 40.90 mem
200 2 83.33 | 377.68 | time mem

Table 1

This table compares the time taken by our implementation Rand (in milliseconds),
ICS (in seconds), CVC Lite (in seconds) and SVC (in seconds) on several example
formulas involving only linear arithmetic. The number of points used by Rand were 5
more than the number of adjust operations performed by it. Column # Equalities
denotes the number of equality literals. The number of variables in each formula is
twice the number of equality literals in that formula. Column sparsity denotes the
maximum number of variables in each equality literal as a percentage of the total
number of variables in the formula. time denotes “more than 100 seconds”, and mem

denotes “out of memory” on a machine with 2.3 GB of virtual memory.

22

Equalities || Depth | Rand | ICS SVC | CVC Lite
(sec) | (sec) | (sec) (sec)
20 1 0.001 | 0.02] 0.09 0.09
20 2 0.007 | 0.04 | 0.09 mem
20 3 0.016 | 0.08 | 0.19 mem
20 4 0.1T | 0.13 | 0.12 mem
40 1 0.007 | 0.04 | 0.22 0.16
40 2 0.01 | 0.09 | 0.21 48.92
40 3 0.06 | 0.19 | 0.32 mem
40 4 1.97 1 0.36 | 0.25 mem
60 1 0.008 [0.05 | 0.24 0.17
60 2 0.04 | 0.44 | 1.55 mem
60 3 0.2 0.31 | 0.53 mem
60 4 227 | 0.84 | 0.85 mem
80 1 0.009 | 0.06 | 0.24 0.25
80 2 0.04 1 0.19 | 0.64 mem
80 3 0.32 | 0.58 | 1.61 mem
80 4 1.91 | 1.17 | 1.29 mem
100 1 0.01 | 0.08 | 0.27 0.32
100 2 0.03 | 0.16 | 0.44 14.88
100 3 0.08 1 0.28 | 0.41 mem
100 4 3.16 | 0.55 | 0.54 mem
125 1 0.02 | 0.1T | 0.39 0.47
125 2 0.03 | 0.20 | 1.64 mem
125 3 0.38 1 0.61 | 0.92 mem
125 4 11.61 | 1.80 | 1.17 mem
150 1 0.02 1 0.12 | 0.38 0.56
150 2 0.05 | 0.23 | 1.96 mem
150 3 024 1 0.69 | 2.36 mem
150 4 236 | 0.71 | 1.32 mem
200 1 0.04 | 0.16 | 0.54 0.8
200 2 0.090 | 0.27 | 2.74 9.04
200 3 0.44 1 2.11 | 17.86 mem
200 4 7.67 | 240 | 6.41 mem
300 1 0.11T | 0.27 | 1.14 sf
300 2 0.18 | 0.47 | 4.12 sf
300 3 237 1 207 | 7.93 sf
300 4 28.63 | 7.95 | 15.67 sf
300 5 13431 6.23 | 22.15 st
400 1 028 | 0.39 | 1.93 sf
400 2 0.36 | 0.51 3.4 sf
400 3 7.94 1 12.07 | 26.75 sf
400 4 48.84 | 12.28 | 24.07 sf
400 5 time | 18.94 | 26.68 st
500 1 043 1 047 | 2.34 st
500 2 0.75 1 0.85 | 12.08 sf
500 3 5.1 10.3 | 50.45 sf
500 4 12.13 | 39.01 | time sf
500 5 time | 57.56 | 30.47 sf

Table 2

This table compares the time (in seconds) taken by our implementation Rand, ICS,
CVC Lite and SVC on several examples that involve combination of linear arithmetic
with uninterpreted functions. The number of points used by Rand were 5 more than
the number of adjust operations performed by it. #Equalities denotes the number
of equality literals. Depth denotes the maximum switching depth of the two theories
in the literals. time denotes “more than 100 seconds”, mem denotes “out of memory”
on a machine with 2.3 GB of virtual memory, and sf denotes “segmentation fault”.

23

deterministic algorithms implemented by other tools use arbitrary precision
arithmetic, which is expensive. Note that the speedup of our algorithm is more
when the number of variables in each equality literal is more. This is because
greater number of variables in each literal lead to large intermediate arithmetic
constants while manipulating those literals symbolically.

Figure 4 shows the time in seconds taken by our implementation Rand, ICS,
SVC and CVC Lite while deciding validity of formulas that involve both linear
arithmetic and uninterpreted functions. Here also, Rand performed arithmetic
over the field Zagg435399 and worked with points that were 5 more than the
number of Adjust operations performed. However, in this case, the number of
equality literals do not provide an upper bound on the number of Adjust op-
erations. Hence, ideally, the tool needs to start with a small number of points,
and then increase the number of points on demand. However, for quick proto-
typing, we have not yet implemented this feature in the tool. For experiments,
we first ran our tool with large enough points to determine the number of
Adjust operations performed, and then ran it again and timed it with 5 more
points than the number of Adjust operations. We suspect that because of this
methodology of quick prototyping, the time measurement of Rand is slightly
better than otherwise. The formulas in the table have been classified based
on the number of equality literals in the formula and the maximum number
of theory switches in the literals. The speed-up of our implementation over
other tools decreases with the increase in the switching depth of theories in
the literals. This is because the cost of arithmetic operations gets dominated
by the cost of sharing of equalities between the two theories. In fact, both ICS
and SVC perform better than Rand when switching depth is 4 or more. This
suggests that they handle the combination of uninterpreted functions with
linear arithmetic in a more efficient manner than our implementation.

As expected, Rand never returned a false answer in these experiments.

9 Related Work

A notable difference between the algorithm that we have described here and
the existing deterministic algorithms that solve a similar problem is the han-
dling of arithmetic. Instead of manipulating symbolic expressions we simply
evaluate the arithmetic expression. This is a simpler operation and even gives
us a slight advantage in the presence of non-linear arithmetic. For example,
our algorithm can very naturally prove the unsatisfiability of the formula
r = yAx?—2xy+ y? # 0. However, the advantage is small because the Adjust
operation we have does not work with non-linear equalities, which means that
we can handle non-linearity only in the disequalities and as arguments to
uninterpreted function symbols.

24

The existing deterministic algorithms for the combination of linear equalities
and uninterpreted function symbols are typically constructed from two sep-
arate satisfiability procedures for the two theories, along with a mechanism
for combining satisfiability procedures. One such mechanism is described by
Nelson and Oppen [2] and requires the individual satisfiability procedures to
communicate only equalities between variables. Our algorithm has a similar
communication mechanism, specifically implemented by the loop in line 6 in
the definition of IsSatisfiable’. The difference is that we detect an equality
between terms when they have equal values in all the random assignments.

Shostak [3] gave a more efficient algorithm, which works for the theory of un-
interpreted functions and for solvable and canonizable theories. The theory of
linear arithmetic is canonizable and solvable. A canonizer o for linear arith-
metic must rewrite terms into an ordered sum—of—monomgals form. A solver for

linear arithmetic may take an equality of the form ¢+ " a;x; = 0 and return
i=1

T = O'(—i + 22 —g—;’), where a; # 0. The ICS tool that we have used in our

performance comparisons uses Shostak’s algorithm.

There are similarities between Shostak’s algorithm and our randomized algo-
rithm. Our Adjust operation is similar to the solve procedure used in Shostak’s
algorithm since both serve the purpose of propagating a new equality. The
sample S maintained by the randomized algorithm at each step can be re-
garded as a canonizer, since for any term ¢, [[t]S1,. ., [t]S,] is a probabilistic
canonical form for ¢ in the following sense. Two terms that are congruent
have the same canonical form, while there is a small probability that two
non-congruent terms have the same canonical forms.

The soundness of Shostak’s algorithm is straightforward, but its complete-
ness and termination have resisted proofs for a couple of decades. Shostak’s
original algorithm and several of its subsequent variations are incomplete and
potentially non-terminating. Recently, Ruess and Shankar [9] have presented
a correct version of the algorithm along with rigorous proofs for its correct-
ness. Similar difficulties in carrying out the correctness proof seem to arise for
randomized algorithms, but here the difficulties are not due to the complexity
of the algorithm but due to the complexity of probability analysis. This is
typical of randomized algorithms, which are usually easy to describe, simple
to implement, but require subtle proofs to bound the error probability.

There are similarities between this randomized algorithm and the random
interpretation that we have described in an earlier paper [12] for the purpose
of discovering linear equalities in a program. The contributions of this paper
are a modified Adjust algorithm that also handles uninterpreted function
symbols and allows for retracting assumptions, and a more general proof of
soundness. In our earlier paper the proof of probabilistic soundness relies on

25

the fact that the analysis is performed over a finite field. In this paper, mostly
because the application domain is simpler, we are able to give a different proof
that does not rely on the finiteness of the field over which the satisfiability is
checked.

10 Conclusion and Future Work

We have described a randomized algorithm for deciding the satisfiability of
a conjunction of equalities and disequalities involving linear arithmetic and
uninterpreted function symbols. The most notable feature of this algorithm
is simplicity of its data structures and of the operations it performs. The
cost for this simplicity is that, in rare occasions, it might incorrectly decide
that a satisfiable formula is not satisfiable. However, we have shown that the
probability that this happens is very small and can be controlled by varying
the number of points in the initial random sample and the size of the set from
which the random values are chosen. The error probability can be reduced to
an infinitesimally small value so that it is negligible for all practical purposes.

An interesting direction for future work is to explore whether these ideas can
be extended to other theories, such as inequalities, or arrays. One possible
approach is suggested by the observation that when we evaluate terms in a
random sample we essentially compute a hash value for the term, such that
if two terms have the same hash values then, with high probability, they are
equal. For arithmetic this is naturally achieved by just performing arithmetic
on some random inputs. Perhaps we can find similar hash functions for other
theories. Another promising direction for future research is integration of sym-
bolic techniques with randomized ones.

References

[1] W. Ackermann, Solvable Cases of the Decision Problem, Studies in Logic and
the Foundations of Mathematics, North-Holland, Amsterdam, 1954.

[2] G. Nelson, D. Oppen, Simplification by cooperating decision procedures, ACM
Transactions on Programming Languages and Systems 1 (2) (1979) 245-257.

[3] R. E. Shostak, Deciding combinations of theories, Journal of the ACM 31 (1)
(1984) 1-12.

[4] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University
Press, 1995.

[5] G. C. Necula, Proof-carrying code, in: Proceedings of the 24th ACM Symposium
on Principles of Programming Languages, 1997, pp. 106-119.

26

[6] A. Stump, Checking validities and proofs with cvec and flea, Ph.D. thesis,
Stanford University, available from http://www.cse.wustl.edu/ stump (2002).

[7] A.Stump, D. L. Dill, Generating proofs from a decision procedure, in: A. Pnueli,
P. Traverso (Eds.), Proceedings of the FLoC Workshop on Run-Time Result
Verification, Trento, Italy, 1999.

[8] J.-C. Filliatre, S. Owre, H. Ruef}, N. Shankar, ICS: Integrated Canonization and
Solving, in: G. Berry, H. Comon, A. Finkel (Eds.), Computer-Aided Verification,
CAV 2001, Vol. 2102 of Lecture Notes in Computer Science, Springer-Verlag,
Paris, France, 2001, pp. 246-249.

[9] H. Ruess, N. Shankar, Deconstructing Shostak, in: 16th Annual IEEE
Symposium on Logic in Computer Science (LICS ’01), IEEE, Washington -
Brussels - Tokyo, 2001, pp. 19-28.

[10] C. W. Barrett, D. L. Dill, L. Levitt, Validity checking for combinations of
theories with equality, in: M. K. Srivas, A. Camilleri (Eds.), Proceedings of the
First International Conference on Formal Methods in Computer-Aided Design
(Palo Alto, CA), Vol. 1166 of Lecture Notes in Computer Science, Springer,
1996, pp. 187-201.

[11] C. Barrett, S. Berezin, Cvc lite: A new implementation of the cooperating
validity checker, in: R. Alur, D. Peled (Eds.), Proceedings of the 16th
International Conference on Computer Aided Verification, CAV’04 (Boston,
Massachusetts), Lecture Notes in Computer Science, Springer, 2004, pp. 515
518.

[12] S. Gulwani, G. C. Necula, Discovering affine equalities using random
interpretation, in: The 30th Annual ACM Symposium on Principles of
Programming Languages, ACM, 2003, pp. 74-84.

A Proof of Consistent Random Sample Lemma

Lemma 5 (Consistent Random Sample Lemma). If ¢ is satisfiable, then
the probability that the r-point random sample R is inconsistent with ¢ is at

r—k’
most (m+1) ‘F‘i‘?)r (‘%) , where m is the number of disequality literals in ¢,
|F'| is the size of the finite subset of Q from which we choose the elements of R
uniformly at random and independently of each other, and k' is the maximum

number of linearly independent equality literals in ¢.

PROOF. Without any loss of generality, let us assume that {t; = 0}%, is
any maximal set of linearly independent equalities in the satisfiable formula
¢. Then R is not consistent with ¢ iff there exists a ¢ such that ¢ = ¢t # 0
and R =t = 0. It follows from linear algebra that ¢ can be written as a linear

27

combination of ¢; (for i = 1,.. k") added to either the constant 1 or one of
t’ (where j € {1,..,m}). The error probability for each of these m + 1 cases
can be obtained by instantiating ¢ in the following Lemma 9 with either the
constant 1 or one of the ¢;. The desired bound on the probability of error can
now be obtained by multiplying the probability of error in each case by m+ 1.

Lemma 9 Let tq,..,tp be linearly independent terms in variables xq, .., x,
and t an additional term, such that the formula {t; = 0 flzl U {t # 0} s
satisfiable. Then,

K r—k'
Prr[3ay, .., ap such that R = (t+ Y ait; = 0)] < |F||Ii|37- (IS%I) .
i=1

PROOF. Let & be the event that there exist ay,..,ap such that R = (¢ +

k‘l
> agt; = 0). Let £ be the following system of equations in variables z1, . . , zg::
i=1

r

{im, + £ wam)= - of

=1

Event & occurs if and only if £ has a solution. Let C,. and érx(kurl) be
the coefficient matrix and the augmented matrix* respectively for £. £ has a
solution iff for all i € {1,..,7} if the i row of C is linearly dependent on the
first i — 1 rows of C, then the " row of C is also linearly dependent on the
first i — 1 rows of C.

We partition the event £ into cases depending on which set of rows in C are
linearly independent of the previous rows. For any subset I of {1,..,r}, let
& be the event that for any i € I, the i** row of C is linearly independent
of the first i — 1 rows of C, and for any i € {1,..,7} — I, the i'" row of C is
linearly dependent on the first i« — 1 rows of C. The set of events {&; | I C
{1,..,r},1 € I,|I| <K'} is a disjoint partition of the underlying probability
space since there can be at most k' linearly independent rows in C,y . Thus,

Pri&] = > %r[é’ﬂ&] (A.1)

R IC{1,..r L 1E, 1<K

It now follows from the claim stated and proved below that

Prie né) < (,g)ru (A.2)

4 The augmented matrix is obtained from the coefficient matrix by adding a column
corresponding to the constants.

28

Here is some intuition behind Inequality A.2. Note that the event ENE; occurs
only when all the rows d € {1,...,r} —I are linearly dependent on some rows
in the set I, both in the coefficient matrix C' and in the augmented matrix
C. For each such row d, the probability of choosing the assignment R, with
elements from the finite set F' such that this row is linearly dependent on the
rows in [is at most ﬁ

The desired probability for event £ can now be obtained from Inequalities

(A.1) and (A.2) as follows:

Pr(e] < > (@)Hl

IC{1,.r} 1L 1|<K

(o) (r)
ie{l,..k'} i—1 ‘Fl
1 r—1 1 r—1
£, () < (n)
ie{t,. ey \ T | F|
1e{1,...k'} |F‘

< |F‘ y 377, ’I"—k?,
—F =3 \F

IN

Claim 10 For any subset I of {1,..,r}, Prrl€N&/] < (ﬁy—lll'

PROOF. For any subset [of {1,..,r} and for any i € I, let F;,; be the
event that the i"® row of C is linearly independent of the first i — 1 rows of
C. For any subset [of {1,..,r} and for any ¢ € {1,..,r} — I, let G, be the
event that the i row of C is linearly dependent on the first i — 1 rows of C,
and let QNM be the event that the i row of C is linearly dependent on the
first i — 1 rows of C. By definition of event &, for any subset I, the event
&r occurs iff the events {F7;}icr and the events {Gy;}icqi,. -1 occur. Thus,

Prg[€1] = Prr[A Fri A A Gril.
el ; -1

ie{l,..,r}

Let I be any subset of {1,..,r} such that 1 € I and I contains at most &’
elements. It follows from the definition of G 1; and the necessary and sufficient
condition for event £ mentioned at the end of the first paragraph in the proof
of Lemma 9 that

29

f;r[g NEl = I;r[/\ Fri N /\ gh]
el i€{l,.r}—1I
= H %r[fl,i | /\ Frj A /\ g~],j]
i€l jelj<i je{l,..,r}—1,5<s
< I PrlGul N\ Fiy oA A G1,]
ie{l,..,r}—1 jelj<i je{l,..,r}—1,5<i

<]I %F[QNI,H N Fi; A A Gr,] (A.3)

ie{l,..,r}—1I jelj<i je{l,..,r}—1,5<i

For any i € {1,..,r} — I, let I, be the set {j € I | j < i} and let n; = |I;|.
Let M, « be the sub-matrix of C' that consists of the rows of C' with indices
from set I;. Let]\Z/(niﬂ)x(k/ﬂ) be the sub-matrix of A that consists of the rows
of A with indices from set I; U {i}.

Consider any i € {1,..,7} — I. We now bound the quantity

Prep(Gri | AN Fr; A A Gr;]. Suppose that the assignments
J€el,j<i je{l,..,r}—1,5<i

Ry, .., R;_1 have been chosen such that the events {F7;};e;, and the events
{Gl,j}je{lwi_l}_li occur, and we have to choose the assignment R;. Since the
events {Fy ; }jer, occur, the rows in M are linearly independent, i.e. Rank(M) =
n;. Thus, there exists a sub-matrix T}, x,, of M such that Rank(T) = n,,
Le. Det(T) # 0. Let T{,, \ 1)y (n;+1) Pe the sub-matrix of M’ that has T as a
sub-matrix and an additional row corresponding to the i row of A and an ad-
ditional column that contains all 1’s. Since the events {g},j }ieq1,. -1, oceur,
the event G 1.; occurs iff the assignment R; is chosen such that the it" row of A
turns out to be linearly dependent on the rows of A with indices from set I;,
which implies that Rank(T) = n;, or, equivalently, Det(T) = 0. Since we have
not yet chosen the assignment R;, Det(T) is a linear multivariate polynomial
in variables x1, .., z,. Note that Det(T) is not identically equal to 0 because
otherwise we can write 1 as a linear combination of the terms ¢y, .., tx (expand
the determinant with respect to the row not present in sub-matrix 7"), which
will contradict the assumption that {t; = O}f’:l is satisfiable. The probability
that some polynomial of degree 1 that is identically not equal to zero, eval-
uates to zero when the values for its variables are chosen independently and

u.a.r. from the set F' is at most ﬁ Thus,

1

< 03] (A4)

fl’%l"[éfﬂ /\ Frj N /\ gfﬂj]

jel,j<i je{1,..,r}—1,j<i

The required result now follows from Inequalities (A.3) and (A.4).

30

	Introduction
	Notation
	The Algorithm for the Arithmetic Fragment
	The Adjust Operation
	The Satisfiability Procedure

	Extension to Uninterpreted Function Symbols
	Retracting Assumptions
	The Adjust Operation
	The UnAdjust Operation
	Correctness of Retraction

	Producing Proofs
	Proof for Satisfiability of a Formula
	Proof for UnSatisfiability of a Formula

	Optimization: Conversion of terms to terms with only a single unary function symbol
	Correctness

	Experimental Results
	Related Work
	Conclusion and Future Work
	References
	Proof of Consistent Random Sample Lemma

