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Abstract This paper describes a taxonomy for a
ubiquitous computing software stack called UbigStack.
Through the lens of the UbiqStack taxonomy we survey
a variety of subsystems designed to be the building
blocks from which sophisticated infrastructures for
ubiquitous computing are assembled. Our experience
shows that many of these building blocks fit neatly into
one of the five UbiqStack categories, each containing
functionally-equivalent components. Effectively identi-
fying the best-fit “Lego pieces”, which in turn deter-
mines the composite functionality of the resulting
infrastructure, is critical. The selection process, however,
is impeded by the lack of convention for labeling these
classes of building blocks. The lack of clarity with re-
spect to what ready-made subsystems are available
within each class often results in naive re-implementa-
tion of ready-made components, monolithic and clumsy
implementations, and implementations that impose non-
standard interfaces onto the applications above. This
paper describes the UbigStack classes of subsystems and
explores each in light of the experience gained over
2 years of active development of both ubiquitous com-
puting applications and software infrastructures for
their deployment.
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1 Introduction

A ubiquitous computing (UbiComp) environment en-
tails (1) an extensive and complex computer architecture
deployment, (2) sophisticated conduits for dynamic data
flow and control across this architecture, and (3) a
judicious external interface facilitating user interaction
with the system. A ubiquitous infrastructure must act
very much like a telephone patch board i.e., a software
layer where various assets are “hooked” into and where
logical and physical connections between these assets are
instantiated. Assets, in the broadest sense, refer to
physical devices, bandwidth, processors, as well as ser-
vices made available through the patch board. This
analogy suggests a standard and uniform, but not nec-
essarily central, interface. It is only through this mid-
dleware layer that the vast array of disparate assets can
be brought together to create the type of rich ubiquitous
applications we are excited about.

A necessary precondition for deployment of a Ubi-
Comp application is a distributed system composed of
(1) computational resources including network con-
nected sensors and actuators, and (2) a mechanism to
generalize patterns of interaction with these resources.
The reusable corpora of middleware can speed the sec-
ond step, but in our own experience, we have often
overextended or mis-used existing UbiComp middleware
subsystems. A standard language for describing mid-
dleware subsystems or a simple taxonomy for classifying
subsystems could aid in the identification of potential
candidates for a middleware deployment.

Different distributed applications, each using mid-
dleware for intra-application communication, have very
diverse needs. Similarly, an individual distributed
application might, at times, require very different things
of middleware subsystems. In these cases, multiple,
complementary middleware subsystems might be used
simultaneously across a single computer architecture
deployment to provide the most effective communica-
tion tools to all applications. Here the middleware tax-
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onomy must also provide aid in choosing what multiple
middleware subsystems might be deployed simulta-
neously to the greatest effect.

To arrive at a reasonable taxonomy describing Ubi-
Comp infrastructure and to understand the possible
infrastructure interactions, we begin by examining some
current and potential UbiComp infrastructures such as
UPnP, MediaBroker, and the GRID. By partitioning
these varied middleware subsystems into categories/
equivalence classes, it becomes possible to reason about
entire infrastructures piecemeal. Thus a whole infra-
structure may be evaluated in terms of its constituent
parts, streamlining the evaluation process and the
infrastructure’s subsequent refinement. This evaluation
allows isolation of individual infrastructure system
faults as well as isolation of security concerns.

In addition, standard subsystem classes can improve
development of standard intra-infrastructure, system-to-
system interaction patterns. With a clearer picture of
what infrastructure capabilities exist and where they are
located, developers are better positioned to leverage
these capabilities in their applications. Once the appli-
cation requirements have been identified, developers
may be able to pick existing infrastructure pieces to
develop the application quickly and effectively.

This paper proposes UbiqStack: a five-class infra-
structure taxonomy based on the orthogonal function-
alities of most commonly occurring subsystems. These
include registration and discovery, service and subscrip-
tion, data storage and streaming, computation sharing
and context management.

Figure 1 shows a visualization of our UbiqStack
corresponding to top to bottom interaction between the
equivalence classes. The user application is provided
with the APIs for interacting with services, streams and
storage locations, and process migration/distribution.
Context management services and ontologies are also
common among all applications.

Ubiquitous Computing Applications

Context
Management
Data Storage Service and Computation
and Streaming Subscription Sharing

Registration and Discovery
1 1

Network

Fig. 1 OSI application layer with added UbiqStack infrastructure
component classes

This paper continues in Sect. 2 discussing the imag-
ined computer architecture deployment for UbiComp as
well as some initial application deployment experience
using middleware to bridge between application and
hardware deployment. Section 3 details the taxonomy
classes of UbiqStack. Section 4 discusses securing a
ubiquitous computing infrastructure in UbiqStack
terms. We conclude in Sect. 5.

2 Examining existing infrastructure components

The intrinsic nature of common UbiComp applications
builds on connecting distributed nodes into a over-
arching application. This application might distribute
itself onto multiple computers as a common Internet
messaging client is deployed on multiple computers
throughout the world, while each individual client con-
nects into a larger whole that is a global messaging
application. An application might also run in a single
location but request and access resources available
throughout its environment. As an example, a UbiComp
television set-top box might request both a program
stream from the cable company and display permission
on an autonomous television display. The set-top box
could then provide advanced television watching func-
tionality as it routed the stream from the cable company
to the television.

A common infrastructure built to support UbiComp
applications must then provide the ability for applica-
tions to use computation and data resources through-
out the environment. Previously we discussed
UbiComp infrastructure as the combination of de-
ployed computer hardware and the middleware stitch-
ing it together. Before we discuss the middleware
subsystems running across the hardware, we will dis-
cuss the hardware deployment paradigm we are work-
ing from and our previous experiences in building
applications on top of hardware deployed according to
this paradigm.

2.1 A deployment paradigm

Striving toward the deployment of UbiComp applica-
tions in smart spaces, we have been developing both
applications and infrastructures with a simple paradigm
in mind. This paradigm is constructed of simple, mod-
ular, moderately-capable computing devices being con-
nected directly to sensors or sinks throughout a space. In
this paradigm each computer can proxy access to its
directly connected devices over its network interfaces.
Transient devices and stationary devices are connected
together abstracting over connection media to form
connected graphs of computational devices. Each device
then is a node in the graph.

Each of these distributed nodes will provide simple
building block resources that applications might query
and use. This way, an application might require a



camera stream or a speaker, query for devices containing
that service in the area requested, then request and use
the resource. Each of these resources as well as the
infrastructures exposing these resources to the outside
world are managed as modular building blocks.

2.2 Development case study

Our software intercom is an example of an application
built on existing hardware and middleware, deployed
with the above paradigm in mind, in the Aware Home at
Georgia Tech [1]. Using consumer electronics comput-
ers, microphones, speakers, and our middleware—Me-
diaBroker [2]—this software intercom allows users
throughout a home to communicate through walls and
floors as if they were in the same room.

In accordance with the paradigm described above,
applications expose resources which other applications
use. The user interacts with an intercom interface
application which controls a set of modular audio
applications deployed throughout the Aware Home. The
user interface application projects a control-information
resource which outputs current state information while
the audio applications provide audio resources which
stream captured audio. While running, the interface
application queries the state of the audio resources and
actuates end-to-end connections through its single con-
trol resource. In turn each audio application listens to
the interface application’s control resource for direction.

Our initial deployment, built entirely on Media-
Broker, relied on one-way data streams to transfer audio
information between audio inputs and outputs between
audio access applications while using the same one-way
data streams to distribute control information from the
interface application to the audio applications. The
nature of these one-way, relatively static, connections
between controller and controlled made the deployment
of the intercom much less dynamic than anticipated.

Recently, the intercom has been redesigned to use
MediaBroker as an infrastructure for low latency audio
data streams and UPnP for distributing discrete control
messages between a set of control applications and the
audio applications they control.

In this case, taking advantage of UPnP for low-
bandwidth message passing allows us to apply Media-
Broker to the problem it better solves—moving audio
data from sources to sinks according to data re-
quests—while offloading control message handling to
UPnP. UPnP has better facilities for creating the inter-
face application’s control resource and for allowing the
many audio access applications to better listen to mul-
tiple interface applications at once.

Using the strength of each subsystem and the scaf-
folding each offers, the job of programming the audio
application and the control application is greatly sim-
plified. Using the standard interfaces provided by UPnP
and MediaBroker cleanly, the programmer can con-
centrate on the individual concerns of each application
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and not how to translate those concerns into something
the middleware can do. With a well-defined taxonomy
with which to understand UbiComp middleware sub-
systems, implementation of this intercom would begin
with brief modeling of all intra-application and inter-
application interactions based on the capabilities of each
middleware subsystem categories’ abilities.

3 Subsystem category overview

In the brief case study above, system deployment and
application development were made simpler through
leveraging an existing technology in the context of a
novel problem. This anecdotal evidence is in fact
exemplary of the benefits derived through clean sepa-
ration of subsystems. As we have seen, the delineation
and choosing of subsystems along functional boundaries
enables us to better reason about the infrastructure as a
whole as well as to improve the quality of a specific
application. Each of these existing subsystems filled a
specific role in the development of the application and in
the larger infrastructure deployment.

Similar in functionality to UPnP [3], most WebSer-
vices implementations provide the ability to make re-
mote calls to procedure located in other applications on
other hosts. We argue, then, that UPnP and WebSer-
vices provide interchangeable functionality, which
means that they belong to the same category of sub-
systems, namely Service and Subscription, and might be
fairly compared to each other when selecting the best-fit
subsystem for the job at hand. In turn, their current
limitations may serve as a driver for development of a
more robust replacement.

In turn, the high-bandwidth, low-latency streaming
facilities offered by MediaBroker is what earns its place
in a different category of subsystems, namely Data
Storage and Streaming. Other subsystems exist to
accomplish similar tasks: GnuStream [4] and D-Stam-
pede [5], while still other subsystems provide shared,
network accessible, data stores: Coda [6] and T-Spaces

[71.

3.1 Registration and discovery

At the heart of UbiqStack, registration and discovery
facilitates connection of all other UbigStack compo-
nents. Communication between applications running on
top of the distributed nodes of a UbiComp infrastruc-
ture begins with discovery of available resources. Once
different applications connect, they can share descrip-
tions of their capabilities and begin to collaborate on
higher order tasks. The semantics of discovering dis-
tributed resources (whatever they might be) varies along
several independent dimensions. One is whether the re-
source is actively published/advertised, the other is
where the resource is marked globally accessible. An-
other dimension is the level of flexibility in querying.
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Myriad languages, protocols and frameworks exist
for the discovery of hosts on the network, applications
running on hosts, and services and resources provided
by those applications. Common to the WebServices and
UPnP world are protocols like SSDP [8], UDDI [9], and
WSDL [10]. These allow robust and systematic
description and discovery of services. Jini provides sig-
nificant functionality in the area of service discovery as
well as actual resource migration once it is discovered.
Many lightweight services like DNS [11] and LDAP
provide a more static registration mechanism suitable
for resources with considerably longer lifetimes. Spe-
cialized facilities like BSDP, which is tied to Bluetooth
protocol stack, are also popular.

Evaluating registration and discovery subsystems
based on their capabilities must take into account effi-
ciency and extensibility. Some subsystems will require
strict and complex registration as well as manual dis-
covery and iterative search of what is available. Other
subsystems will provide functionality to automate much
of this.

3.2 Service and subscription

Service and subscription, the primary pillar of Ubig-
Stack, encompasses the passing of discrete messages to
accomplish distributed service registration and access.
For example, an application might offer a resource
capable of converting US zip codes to map images [12].
Applications across the network can then access this
resource to accomplish this. Applications might also
want to know when some event happens and they might
subscribe to be notified of some change. Both service
and subscription rely on discrete messages being reliably
passed between applications.

According to the paradigm discussed above, Ubi-
Comp applications will consist of many smaller parts
that will require intra-application communication for
synchronization. The discrete information exchange
provided by a service and subscription subsystem allows
distributed application entities to keep state between
themselves and provides the necessary abstractions for
setting state on adjacent nodes and being updated with
their states when other nodes’ states change.

The service and subscription component must pro-
vide an extensible application programming interface.
The component must also be able to scale with respect to
the number of applications using the subsystem and the
size of data being transferred between applications. The
speed with which remote services are called and with
which subscription updates are propagated is also inte-
gral to the evaluation.

A service and subscription subsystem we have dis-
cussed previously in this paper, UPnP, is really only
mediocre at message passing and has limited function-
ality allowing extensibility. UPnP’s scalability is also

limited to a single network subnet without resorting to
complex bridging technology. Context Toolkit [13]
provides a service and subscription component as well as
some basic context reasoning ability but it has many of
the same limitations of UPnP in its inefficiency. Web-
Service implementations vary greatly, but many provide
very efficient messaging and fairly extensible application
programming interfaces.

3.3 Data storage and streaming

Beyond the simple message passing described above,
many UbiComp applications, especially those geared
toward multimedia capture and access, require signifi-
cant, ordered data transfer. The second UbigStack pil-
lar, data storage and streaming, allows distributed
applications to share large amounts of data in a struc-
tured manner. For multimedia streaming, structure
might emerge in the ordering of video frame delivery,
while other applications might require the structure
necessary to address, request and change a single value
in very large data structure. A data storage and
streaming component must be capable of handling sig-
nificant structured data movement between distributed
nodes. This data movement might involve streaming
multimedia from a media provider to a media consumer
or it might encompass more complex requirements for
data archival and retrieval.

Streaming middleware subsystems like MediaBroker
[2], GnuStream [4], Indiva [14] and D-Stampede [5] al-
low distributed nodes to ship streams of data to each
other, while other subsystems like serverless file systems
[15] and Coda [6] provide distributed access to common
file systems. Infrastructures like T-Spaces [7] or Java-
Spaces [16] provide more generic shareable network
memory. All of these classes provide access to large
amounts of data in a structured manner.

Measuring the performance of a data storage and
streaming subsystem might be difficult if we only take
into account efficiency at providing quality of service.
Many data storage and streaming subsystems provide
varied types of functionality including different delivery
or data set management schemes.

3.4 Computation sharing

The third UbiqStack pillar, computation sharing allows
a running application to make use of remote computa-
tional resources on demand. For example, a surveillance
application running on a sensor network may decide to
offload complicated vision tracking components onto
more capable high performance computing resources
(HPC) strategically placed throughout the ubiquitous
infrastructure. Furthermore, in order to accommodate
mobile clients to deliver required quality of service, such



computation must be allowed to move from one HPC
resource to another. In order to support such unfettered,
yet highly-specialized access to computing cycles, a
mechanism for discovering unclaimed CPU time and
dynamically scheduling computations on the HPC re-
sources is essential.

Many tools for enabling distribution of compute-
intensive tasks have emerged over the years. The scien-
tific computing community is largely responsible for this
variety. Regrettably, the focus has often been on batch
processing, which alone is insufficient to support rich
ubiquitous computing applications we envision. Only
recently, the grid computing [17, 18] community has
started to focus on applications that require capabilities
beyond batch processing. Grid computing allows con-
trolled sharing of computation resources across many
different physical organizations in order to deliver a
quality of service. Open grid service infrastructure
(OGSI) [18] has extended WebServices by providing
standard mechanism for creating, naming and discov-
ering grid services, providing virtualization through
location transparency, and supporting integration with
underlying native platform facilities. The Globus Tool-
kit [19] built on OGSI model, provides the middleware
support needed to build grid computing applications.

MPI [20], PVM [21] are some of the other tools that
can be used for resource sharing within the set of con-
nected computers. These tools provide libraries for
building scientific computing applications and running
them on multiple computers at once. However, the
capabilities of these tools don’t extend very well for
streaming applications. Moreover, they don’t provide
capabilities for dynamically asking additional resources
or dynamic joining of computational entities.

Facilities for computation sharing must be dynamic
enough to provide for application, thread or even
function migration across multiple distributed entities.
Applications might want to dynamically move through
the environment in order to physically follow a user.
Applications might also simply want to spread compu-
tationally intensive processes to more capable elements
in the environment. The tools for computation sharing
should also support dynamism in terms of the resources
being allocated, the computation being performed as
well as the mobility of the user.

3.5 Context management

A context management subsystem defines a common
language to describe the context of an environment and
also defines a language to discuss described context
state. This middleware subsystem is built on both the
service and subscription components as well as the data
sharing and streaming components as it will commonly
differentiate streaming sensor data into discrete values.
While this differentiation will happen at the ubiquitous
application level, the differentiation process can be rep-
resented inside the context state.
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Much of UbiComp relies on having access to a con-
sistent view of the world so that applications might
correctly actuate themselves according to the environ-
ment and those in the environment. This common con-
text management subsystem component allows
applications to keep current on the state of the world by
communicating with each other in a language common
to all possible applications in the space.

Important in the realm of context management,
synonym and unique naming management have been
studied fairly thoroughly by multiple projects under the
SemanticWeb [22] umbrella and also by projects like
OntoWeb [23] and Context ToolKit [13].

4 Compartmentalizing security with UbiqStack

The difficulty in deploying ubiquitous computing infra-
structure components to enable application level com-
munication is compounded by the need to provide
secure apparati for this communication. Envisioned
ubiquitous computing applications require capture,
transmission and analysis of extremely sensitive infor-
mation. With video cameras capturing our every move,
large data sets describing what each of us is doing, and
computers ready and willing to help less capable com-
puting devices with calculations, system security be-
comes paramount. Following from the traditional “CIA
model” [24] of ensuring confidentiality, integrity and
availability, a secure ubiquitous computing infrastruc-
ture would demand that all communication remained
secure and authentic.

Similarly, to how the UbiqStack taxonomy allows
description of complex infrastructures in terms of com-
ponents, we believe security is best described as a per
component responsibility. While an orthogonal set of
security policy standards will enable each infrastructure
component to consult access control lists or key servers
in a standard way, each infrastructure component re-
quires unique security procedures which an over-arching
security layer cannot handle. Each infrastructure com-
ponent will implement a common security policy in some
verifiable way that is meaningful to that component, but
such that the composition of all the components will still
retain the properties of the model and access control
policy.

4.1 Questioning security

The UbiqStack component categories each require that
specific security concerns be addressed. Here we examine
hypothetical security questions and analyze why these
questions are unique to each of the UbiqStack categories.

4.1.1 Registration and discovery: can I know if a service
or resource exists?

An infrastructure component providing secure registra-
tion and discovery scaffolding must address the very
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specific needs of applications attempting to register and
later discover a service or resource online. Often simply
acknowledging that you are interested in knowing
something can reveal details best kept private: “Does
anyone know where I can refill my prescription for heart
medication?”

4.1.2 Service and subscription: can I call this service?

Where the registration and discovery infrastructure
component had the specific duty to ensure only legiti-
mate parties could communicate, the service and sub-
scription infrastructure component must protect all
communications related to the discrete message inter-
change of remote service calls and subscription delivery.
Beyond securing the messages passed between applica-
tions, a service and subscription component must ensure
that all messages are legitimate and form legitimate
entities.

4.1.3 Data storage and streaming: can I see this stream or
access this store?

While similar to the question for the service and sub-
scription component, it is inherently different because of
the semantics of the data being traded/addressed. Where
a service might be able to authenticate or exchange keys
for each message traded back and forth, the sheer vol-
ume traded by data streaming and storage infrastructure
components require different access rights management.
The data volume also means that multiple consumers
will probably be consuming the same data where the
service and subscription data can be encrypted and tai-
lored specifically for each caller.

4.1.4 Computation sharing: can I run this code here?

Establishing trust between applications running a com-
putation sharing infrastructure component is possibly
the most critical in terms of security for ubiquitous
computing. Here alone in the UbiqStack taxonomy is
actual, possibly destructive, logic being moved between
applications. Secure computation sharing components
must ensure that logic is verified for safety, and appro-
priately corralled to prevent malicious code from caus-
ing destruction.

4.1.5 Context management. can I know where someone
is?

The context management infrastructure component
must provide security that is no longer specifically
technical. With the UbiqStack concepts in mind, we
expect an application to consult a secure context man-
agement resource only after finding it with a secure
registration and discovery component and establishing a
connection over a secure service and subscription

infrastructure component. Here a technically secure
connection has been establishing between querier and
queried and what remains to be established is a socially
secure connection. The context management UbiqStack
component must again use common access control lists
and public key server to verify that personal and social
facts are accessible.

4.2 Building security

This discussion of security relies on the separation of
each infrastructure component’s security concerns.
Allowing each component to manage its own security
will step toward portable, extensible systems. The
redundancy of security might also allow for better
technical security. In a similar manner, modern wireless
and web technologies use compartmentalized security to
establish secure wireless communication (via WEP or
other) before establishing a secure application layer SSL
channel to perform what would finally be called a secure
credit card transaction [25]. Here the SSL communica-
tion channel secures the application layer communica-
tion while the WEP encryption secures network packet
transmission. The two security apparati are unaware of
each other, but as each does it’s best to secure the
communication, the system is more resilient.

With UbiqStack component category security, we
first expect a device to establish some secure network
connection. With network connection in place, the de-
vice would proceed to authenticate to registration and
discovery peers where self-registration and peer discov-
ery would occur. After discovering an interesting mul-
timedia stream, the device would authenticate to the
owner/carrier of the multimedia stream before the
stream would be accessible. Through compartmentaliz-
ing security within each UbigStack component, secure
applications can be built on secure infrastructure com-
ponents.

5 Conclusion

In this paper we have presented a comprehensive Ubi-
Comp middleware taxonomy, UbiqStack, to ease dis-
cussion and facilitate the process of building both
ubiquitous middleware subsystems as well as ubiquitous
applications. We also discussed where in UbigStack
existing middleware subsystems fit and how security
questions are best addressed by each individual subsys-
tem. In our experience, the sampling of industrial and
academic experience and the combination of knowledge
across groups allows better middleware construction
and this paper hopes to further these interactions
through the creation of a common language for mid-
dleware discussion. We are not entirely sure about the
feasibility of creating complex infrastructures by picking
and choosing subsystems from each taxonomy category,
but we look to examine it. Much research is still to be



done at the intersections of these UbiqStack categories
to explain the gaps that exist and also to examine their
interactions. Research can also be directed to survey
entire UbiqStack middleware categories; learning from
the state of the art and designing and building new class-
complete infrastructures.
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