
Automating Repetitive Tasks for the Masses

Sumit Gulwani
Microsoft Research

sumitg@microsoft.com

Abstract
The programming languages (PL) research community has tradi-
tionally catered to the needs of professional programmers in the
continuously evolving technical industry. However, there is a new
opportunity that knocks our doors. The recent IT revolution has re-
sulted in the masses having access to personal computing devices.
More than 99% of these computer users are non-programmers and
are today limited to being passive consumers of the software that is
made available to them. Can we empower these users to more ef-
fectively leverage computers for their daily tasks? The formalisms,
techniques, and tools developed in the PL and the formal methods
research communities can play a pivotal role!

Categories and Subject Descriptors D.1.2 [Software]: Program-
ming Techniques—Automatic Programming; K.3.1 [Computing
Milieux]: Computers and Education—Computer Uses in Education

Keywords End-user Programming; Computer-aided Education;
Programming by Examples; Programming by Natural Language;
Program Synthesis; Domain-specific Languages; Search Algo-
rithms

What do masses struggle with?
There are several domains of repetitive tasks that large popula-
tions of people (with access to computational devices) struggle with
in their daily lives. These can be identified via study of help fo-
rums [6], analyzing search engine query logs [9], conducting user
studies, or partnering with domain experts. Following are two broad
areas with great need to automate repetitive tasks.

End-user Programming: Empowering IT workers
End users of computational devices, most of whom are non-
programmers, often need to create small (and perhaps one-off)
scripts to automate repetitive tasks. These users can easily specify
their intent using examples and/or natural language. The opportu-
nity here is to develop program synthesis techniques [3] that can
translate the user’s specification in the form of examples or natural
language (which is often imprecise or ambiguous) into intended
scripts. While program synthesis has been an old area of study, its
application to end-user programming is very timely now, given the
increased significance of this application, and the recent advances

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright is held by the owner/author(s).
ACM 978-1-4503-3300-9/15/01.
http://dx.doi.org/10.1145/2676726.2682621

in computational power and algorithms to address the associated
technical challenges.

Programming by Examples (PBE) Several data manipulation
tasks, including extraction [7], transformation [6] and format-
ting [10], are amenable to programming by examples. The IT rev-
olution has resulted in digitization of massive amounts of data.
Data is available in documents of various types, e.g., text/log files,
spreadsheets, webpages, xml, pdf, and images. These documents
offer great flexibility in storing and organizing hierarchical data by
combining presentation/formatting with the underlying data model.
However, this makes it hard to manipulate and reason about the un-
derlying data. PBE has the potential to convert data wrangling into
a delightful experience, thereby enabling users to discover new
actionable insights about their data.

Programming by Natural Language (PBNL) Natural language
is a good fit for describing actions with side-effects as is the case in
smartphone automation scripts [8]. Some data manipulation tasks
such as filtering and summarization, are also best communicated
using natural language [5].

Computer-aided Education: Empowering teachers & students
Education has been one of the least technically impacted sectors.
With recent disruption in the form of online educational platforms,
blended classrooms, and one-tablet-per-child programs, technol-
ogy stands to play a transformative role. For instance, technology
can assist with repetitive tasks in Education like problem genera-
tion and feedback generation, for a variety of subjects including
programming, algorithms, logic, mathematics, and language learn-
ing [4]. This can facilitate interactive and adaptive pedagogies in
both standard and online classrooms.

Problem generation Generating fresh problems that have specific
solution characteristics (e.g., difficulty level, use of a certain set
of concepts) is a tedious task for the teacher. Automating it can
enable personalized workflows for students and also help prevent
plagiarism (each student can be provided with a different problem
with the same characteristics).

Feedback generation This involves identifying whether the stu-
dent’s solution is incorrect and, if so, the nature of the error and
potential fix. Automating it can save teachers time, and enable con-
sistency in grading. It can also be used to provide immediate feed-
back to students thereby improving student learning.

What role can PL technologies play?
Domain-specific languages (DSL) The classic problem (in the
PL community) of designing an appropriate domain-specific lan-
guage is relevant to both End-user programming and Education do-
mains. Several PBE and PBNL systems involve an underlying DSL
that describes the space of programs to which the user’s specifica-
tion is mapped. Such a DSL is based on abstractions that can be



used to succinctly describe the various tasks that the users hope to
accomplish. On one hand, the DSL should be expressive enough to
describe real-world tasks in the domain, while, on the other hand, it
should be restricted enough to enable efficient synthesis. In case of
problem generation, declarative DSLs allow for describing various
kinds of (syntactic or solution-based) features associated with the
problems that the teacher aims to generate.

Symbolic reasoning and Search techniques Various symbolic
reasoning and search techniques have been developed in the PL
community as part of research on invariant generation and con-
straint solving. Such techniques can be brought to bear to deal with
the challenging problem of searching for programs in a DSL that
match the user’s specification (in case of both PBE and PBNL).
Such techniques can also be useful for generating models to queries
expressed in declarative languages (in case of both End-user pro-
gramming and Education domains).

Test input generation techniques Automated test input genera-
tion is a well-studied topic in the PL community with great practi-
cal utility. Interestingly, these techniques can be useful in both End-
user programming and Education domains. In End-user program-
ming, they can drive an active learning user interface that prompts
the user about behavior on distinguishing inputs that differentiate
the multiple programs learned from the user’s imprecise specifica-
tion [3]. In Education, they can be used to generate counterexam-
ple based feedback for solutions to conceptual problems including
constructions (of automata, grammars, programs) and proofs (in
algebra, geometry). These techniques can also be used to gener-
ate practice problems for procedural content such as mathematical
procedures taught in middle/high school (e.g., addition, long divi-
sion, Gaussian elimination) and algorithmic procedures taught in
undergraduate computer science, where students are expected to
demonstrate their understanding of certain classic algorithms on
specific inputs (e.g., breadth-first search, insertion sort, or regular
expression to automaton conversion) [4]. For instance, the various
concepts in teaching the addition procedure (such as adding single
digits, adding numbers without carry, with a single carry, or with a
double carry) correspond to specific sets of paths inside the loopy
procedure for adding two numbers represented as arrays of digits—
test input generation techniques can be used to generate inputs that
traverse such a given set of paths.

What are some future directions?
Meta-frameworks Developing a robust end-to-end experience
for a given domain often requires critical domain knowledge and
non-trivial implementation effort. A key future direction is to de-
velop general frameworks that can enable easy implementation of
domain-specific technologies (for related domains in PBE, PBNL,
problem generation, or feedback generation), say from a declara-
tive specification of the domain knowledge. For instance, can we
develop frameworks that allow construction of efficient synthesiz-
ers from a mere description of the underlying DSL, similar to how
declarative parsing frameworks allow compiler writers to construct
a parser from a mere description of the syntax of the underly-
ing language. The SyGuS [1], Rosette [11], and FlashExtract [7]
frameworks are great initial efforts in this direction.

Data-driven research Leveraging large-scale field data to im-
prove the robustness of systems is another key aspect. For instance,
in case of Education domains, the student data can be leveraged to
obtain different correct solutions to a problem (which in turn can
be used to generate feedback [2]), or to discover effective learning
pathways to guide problem selection. In case of End-user program-
ming domains, the knowledge of common idiomatic computations
(obtained from a large collection of programs constructed by end

users) can be used to guide ranking of programs learned from user’s
imprecise or ambiguous specification.

Multi-modality and Interactivity Another useful direction is to
develop multi-modal systems that take as input various forms of
specifications such as examples, logical specifications, natural lan-
guage, and speech. An orthogonal challenge is to develop interac-
tive systems that support debugging and allow the user to split the
task into multiple steps in case of failure to completely automate
the task. There is good inspiration to be drawn from work on inter-
active theorem proving and work that combines different modes of
analysis such as static/deductive and dynamic/inductive.

Acknowledgments
I thank Rishabh Singh and Ben Zorn for feedback on this article.
I thank all my collaborators on projects in End-user programming
and Education for believing in and driving the shared vision men-
tioned in this article.

References
[1] R. Alur, R. Bodı́k, G. Juniwal, M. M. K. Martin, M. Raghothaman,

S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa.
Syntax-guided synthesis. In FMCAD, 2013.

[2] E. Fast, C. Lee, A. Aiken, M. S. Bernstein, D. Koller, and E. Smith.
Crowd-scale interactive formal reasoning and analytics. In UIST,
2013.

[3] S. Gulwani. Dimensions in program synthesis. In PPDP, 2010.
[4] S. Gulwani. Example-Based Learning in Computer-Aided STEM

Education. CACM, 2014.
[5] S. Gulwani and M. Marron. NLyze: Interactive programming by

natural language for spreadsheet data analysis and manipulation. In
SIGMOD, 2014.

[6] S. Gulwani, W. Harris, and R. Singh. Spreadsheet data manipulation
using examples. CACM, 2012.

[7] V. Le and S. Gulwani. FlashExtract: A framework for data extraction
by examples. In PLDI, 2014.

[8] V. Le, S. Gulwani, and Z. Su. Smartsynth: Synthesizing smartphone
automation scripts from natural language. In MobiSys, 2013.

[9] O. Polozov and S. Gulwani. LaSEWeb: Automating search strategies
over semi-structured web data. In KDD, 2014.

[10] M. Raza, S. Gulwani, and N. Milic-Frayling. Programming by exam-
ple using least general generalizations. In AAAI, 2014.

[11] E. Torlak and R. Bodı́k. A lightweight symbolic virtual machine for
solver-aided host languages. In PLDI, 2014.

Biography
Sumit Gulwani is a principal researcher at Microsoft Research,
Redmond. He has expertise in formal methods and automated pro-
gram analysis and synthesis techniques. His recent research in-
terests lie in the cross-disciplinary areas of automating end-user
programming (for systems like spreadsheets, smartphones, and
robots), and building intelligent tutoring systems (for various sub-
ject domains including computer science, mathematics, and lan-
guage learning). His programming-by-example work led to the
Flash Fill feature in Microsoft Excel 2013 that is used by hundreds
of millions of people. He was awarded the ACM SIGPLAN Robin
Milner Young Researcher Award in 2014. He obtained his PhD in
Computer Science from UC-Berkeley in 2005, and was awarded
the ACM SIGPLAN Outstanding Doctoral Dissertation Award. He
obtained his BTech in Computer Science and Engineering from IIT
Kanpur in 2000, and was awarded the President’s Gold Medal.


