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Abstract
This paper describes a novel technique for the synthesis of imper-
ative programs. Automated program synthesis has the potential to
make programming and the design of systems easier by allowing
programs to be specified at a higher-level than executable code. In
our approach, which we call proof-theoretic synthesis, the user pro-
vides an input-output functional specification, a description of the
atomic operations in the programming language, and a specifica-
tion of the synthesized program’s looping structure, allowed stack
space, and bound on usage of certain operations. Our technique
synthesizes a program, if there exists one, that meets the input-
output specification and uses only the given resources.

The insight behind our approach is to interpret program synthe-
sis as generalized program verification, which allows us to bring
verification tools and techniques to program synthesis. Our syn-
thesis algorithm works by creating a program with unknown state-
ments, guards, inductive invariants, and ranking functions. It then
generates constraints that relate the unknowns and enforces three
kinds of requirements: partial correctness, loop termination, and
well-formedness conditions on program guards. We formalize the
requirements that program verification tools must meet to solve
these constraint and use tools from prior work as our synthesizers.

We demonstrate the feasibility of the proposed approach by syn-
thesizing programs in three different domains: arithmetic, sorting,
and dynamic programming. Using verification tools that we previ-
ously built in theVS3 project we are able to synthesize programs
for complicated arithmetic algorithms including Strassen’s matrix
multiplication and Bresenham’s line drawing; several sorting algo-
rithms; and several dynamic programming algorithms. For these
programs, the median time for synthesis is 14 seconds, and the ra-
tio of synthesis to verification time ranges between 1× to 92× (with
an median of 7×), illustrating the potential of the approach.

Categories and Subject DescriptorsI.2.2 [Automatic Program-
ming]: Program Synthesis; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs

General Terms Languages, Theory.

Keywords Proof-theoretic program synthesis, verification.
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1. Introduction
Automated program synthesis, despite holding the promise of sig-
nificantly easing the task of programming, has received little atten-
tion due to its difficulty. Being able to mechanically construct pro-
grams has wide-ranging implications. Mechanical synthesis yields
programs that are correct-by-construction. It relieves the tedium
and error associated with programming low-level details, can aid in
automated debugging and in general leaves the human programmer
free to deal with the high-level design of the system. Additionally,
synthesis could discover new non-trivial programs that are difficult
for programmers to build.

In this paper, we present an approach to program synthesis
that takes the correct-by-construction philosophy of program de-
sign [14, 18, 38] and shows how it can be automated. Program ver-
ification tools routinely synthesize program proofs in the form of
inductive invariants for partial correctness and ranking functions
for termination. We encode the synthesis problem as a verifica-
tion problem by encoding program guards and statements as logical
facts that need to be discovered. This allows us to use certain verifi-
cation tools for synthesis. The verification tool infers the invariants
and ranking functions as usual, but in addition infers the program
statements, yielding automated program synthesis. We call our ap-
proachproof-theoretic synthesisbecause the proof is synthesized
alongside the program.

We define the synthesis task as requirements on the output pro-
gram: functional requirements, requirements on the form of pro-
gram expressions and guards, and requirements on the resources
used. The key to our synthesis algorithm is the reduction from the
synthesis task to three sets of constraints. The first set are safety
conditions that ensure the partial correctness of the loops in the pro-
gram. The second set are well-formedness conditions on the pro-
gram guards and statements, such that the output from the verifica-
tion tool (facts corresponding to program guards and statements)
correspond to valid guards and statements in an imperative lan-
guage. The third set are progress conditions that ensure that the
program terminates. To our knowledge, our approach is the first
that automatically synthesizes programs and their proofs, while
previous approaches have either used given proofs to extract pro-
grams [27] or made no attempt to generate the proof. Some ap-
proaches, while not generating proofs, do ensure correctness for a
limited class of finitizable programs [29].

To illustrate our approach, we next show how to synthesize
Bresenham’s line drawing algorithm. This example is an ideal
candidate for automated synthesis because, while the program’s
requirements are simple to specify, the actual program is quite
involved.

1.1 Motivating Example

As a motivating example, we consider a well-known algorithm
from the graphics community called Bresenham’s line drawing
algorithm, shown in Figure 1(a). The algorithm computes (and



(a) Bresenhams(int X, Y ) {
v1:=2Y −X; y:=0; x:=0;
while (x ≤ X)

out[x]:=y;
if (v1 < 0)

v1:=v1+2Y ;
else

v1:=v1+2(Y -X); y++;
x++;

return out;
}

(b) Bresenhams(int X, Y ) {
[]true→ v′1=2Y −X ∧ y′=0 ∧ x′=0

while (x ≤ X)

[]v1 < 0 → out′=upd(out,x,y) ∧ v′1=v1+2Y ∧ y′=y ∧ x′=x+1

[]v1 ≥ 0 → out′=upd(out,x,y) ∧ v′1=v1+2(Y -X) ∧ y′=y+1 ∧ x′=x+1

return out;

}

(c)
Invariantτ :

0 < Y ≤ X ∧ v1 = 2(x+1)Y −(2y+1)X ∧
2(Y −X) ≤ v1 ≤ 2Y ∧
∀k : 0 ≤ k < x ⇒ 2|out[k]−(Y/X)k|≤1

Ranking functionϕ : X − x

Figure 1. (a) Bresenham’s line drawing algorithm (b) The invariant and ranking function that prove partial correctness and termination,
respectively. (c) The algorithm written in transition system form, with statements as equality predicates, guarded appropriately.

writes to the output arrayout) the discrete best-fit line from(0, 0)
to (X,Y ), where the point(X,Y ) is in the NE half-quadrant, i.e.,
0 < Y ≤ X. The best-fit line is one that does not deviate more
than half a pixel away from the real line, i.e.,|y− (Y/X)x| ≤ 1/2.
For efficiency, the algorithm computes the pixel values(x, y) of
this best-fit line using only linear operations, but the computation is
non-trivial and the correctness of the algorithm is also not evident.

The specification for this program is succinctly written in terms
of its preconditionτpre and postconditionτpost:

τpre : 0 < Y ≤ X
τpost : ∀k : 0 ≤ k ≤ X ⇒ 2|out[k]−(Y/X)k|≤1

Notice that in the postcondition, we have written the assertion out-
side the loop body for clarity of presentation, but it can easily
be rewritten, as a quantifier-free assertion, inside. Bresenham pro-
posed the program shown in Figure 1(a) to implement this specifi-
cation. The question we answer is whether it is possible to synthe-
size the program given just the specification and a description of
the available resources (control flow, stack space and operations).
Let us stepwise develop the idea behind synthesis starting from the
verification problem for the given program.

Observe that we can write program statements as equality pred-
icates and acyclic fragments as transition systems. For example, we
can writex := e asx′ = e, wherex′ is a renaming ofx to its out-
put value. We will write statements as equalities between the output
(primed) versions of the variables and the expression (over the un-
primed versions of the variables). Also, guards that direct control
flow in an imperative program can now be seen as guards for state-
ment facts in a transition system. Figure 1(b) shows our example
written in transition system form. To prove partial correctness, one
can write down the inductive invariant for the loop and verify that
the verification condition for the program is in fact valid. The ver-
ification condition consists of four implications for the four paths
corresponding to the entry, exit, and one each for the branches in
the loop. Using standard verification condition generation, with the
preconditionτpre and postconditionτpost, and writing the renamed
version of invariantτ asτ ′, these are

τpre ∧ sentry ⇒ τ ′

τ ∧ ¬gloop ⇒ τpost
τ ∧ gloop ∧ gbody1 ∧ sbody1 ⇒ τ ′

τ ∧ gloop ∧ gbody2 ∧ sbody2 ⇒ τ ′

(1)

where we use symbols for the various parts of the program:

gbody1 : v1 < 0
gbody2 : v1 ≥ 0
gloop : x ≤ X

sentry : v′1=2Y -X ∧ y′=0 ∧ x′=0
sbody1 : out′=upd(out, x, y) ∧ v′1=v1+2Y ∧ y′=y ∧ x′=x+1
sbody2 : out′=upd(out, x, y) ∧ v′1=v1+2(Y -X) ∧ y′=y+1 ∧ x′=x+1

With a little bit of work, one canvalidatethat the invariantτ shown
in Figure 1(c) satisfies Eq. (1). Checking the validity of given in-

variants can be automated using SMT solvers [10]. In fact, pow-
erful program verification tools now exist that can generate fixed-
point solutions—inductive invariants such asτ—automatically us-
ing constraint-based techniques [6, 21, 32], abstract interpreta-
tion [9] or model checking [3]. There are also tools that can prove
termination [7]—by inferring ranking functions such asϕ—and to-
gether with the safety proof provide a proof for total correctness.

The insight behind our paper is to ask the question, if we can
infer τ in Eq. (1), then is it possible toinfer the guardsgi’s and the
statementssi’s at the same time? We have found that we can in-
deed infer guards and statements as well, by suitably encoding pro-
grams as transition systems, asserting appropriate constraints, and
then leveraging program verification techniques to do a systematic
(lattice-theoretic) search for unknowns in the constraints. Here the
unknowns now represent both the invariants and the statements and
guards. It turns out that a direct solution to the unknown guards
and statements may be uninteresting, i.e., it may not correspond
to real programs. But we illustrate that we can impose additional
well-formednessconstraints on the unknown guards and statements
such that any solution to this new set of constraints corresponds
to a valid, real program. Additionally, even if we synthesize valid
programs, it may be that the programs are non-terminating. There-
fore we need to impose additionalprogressconstraints that ensure
that the synthesized programs are ones that we can actually run.
We now illustrate the need for these well-formedness and progress
constraints over our example.

Suppose that the statementssentry, sbody1 and sbody2, are un-
known. A trivial satisfying solution to Eq. (1) may set all these
unknowns tofalse. If we use a typical program verification tool
that computes least fixed-points starting from⊥, then indeed, it will
output this solution. On the other hand, let us make the conditional
guardsgbody1 andgbody2 unknown. Again,gbody1 = gbody2 = false
is a satisfying solution. We get uninteresting solutions because the
unknowns are not constrained enough to ensure valid statements
and control-flow. Statement blocks are modeled as

V
i x

′
i = ei,

with one equality for each output variablex′i and expressionsei

are over input variables. Therefore,false does not correspond to
any valid block. Similarlygbody1 = gbody2 = false does not cor-
respond to any valid conditional with two branches. For example,
considerif (g) S1 else S2 with two branches. Note howS1 and
S2 are guarded byg and¬g, respectively, andg ∨ ¬g holds. For
every valid conditional, the disjunction of the guards is always a
tautology. In verification, the program syntax and semantics en-
sure thewell-formednessof acyclic fragments. In synthesis, we will
need to explicitly constrain well-formedness of acyclic fragments
(Section 3.4).

Next, suppose that the loop guardgloop is unknown. In this case
if we attempt to solve for the unknownsτ and gloop, then one
valid solution assignsτ = gloop = true, which corresponds to
an non-terminating loop. In verification, we were only concerned



with partial correctness and assumed that the program was termi-
nating. In synthesis, we will need to explicitlyencode progressby
inferring appropriate ranking functions, likeϕ in Figure 1(c), to
prevent the synthesizer from generating non-terminating programs
(Section 3.5).

Note that our aim is not to solve the completely general synthe-
sis problem for a givenfunctional specification. Guards and state-
ments are unknowns but they take values from given domains, spec-
ified by the user asdomain constraints, so that a lattice-theoretic
search can be performed by existing program verification tools.
Also notice that we did not attempt to change the number of invari-
ants or the invariant position in the constraints. This means that we
assume a given looping orflowgraph structure, e.g., one loop for
our example. Lastly, as opposed to verification, the set of program
variables is not known, and therefore we need a specification of the
stack spaceavailable and also a bound on the type ofcomputations
allowed.

We use the specifications to construct anexpansionthat is a pro-
gram with unknown symbols and construct safety conditions over
the unknowns. We then impose the additional well-formedness and
progress constraints. We call the new constraintssynthesis condi-
tionsand hope to find solutions to them using program verification
tools. The constraints generated are non-standard, and therefore to
solve them we need verification tools that satisfy certain properties.
Verification tools we developed in previous work [32, 21] indeed
have those properties. We use them to efficiently solve the syn-
thesis conditions to synthesize programs, with a very acceptable
slowdown over verification.

The guards, statements and proof terms for the example in
this section come from the domain of arithmetic. Therefore, a
program verification tool for arithmetic would be appropriate. For
programs whose guards and statements are more easily expressed
in other domains, a corresponding verification tool for that domain
should be used. In fact, we have employed tools for the domains of
arithmetic and predicate abstraction for proof-theoretic synthesis
with great success. Our objective is to reuse existing verification
technology—that started with invariant validation and progressed
to invariant inference—and push it further toprogram synthesis.

1.2 Contributions

This paper makes the following contributions:

• We present a novel way of specifying a synthesis task as a
triple consisting of the functional specification, the domains of
expressions and guards that appear in the synthesized program,
and resource constraints that the program is allowed to use
(Section 2).

• We view program synthesis as generalized program verifica-
tion. We formally define constraints, called synthesis condi-
tions, that can be solved using verification tools (Section 3).

• We present requirements that program verification tools must
meet in order to be used for synthesis of program statements
and guards (Section 4).

• We build synthesizers using verification tools and present syn-
thesis results for the three domains of arithmetic, sorting and
dynamic programming (Section 5).

2. The Synthesis Scaffold and Task
We now elaborate on the specifications that a proof-theoretic ap-
proach to synthesis requires and how these also allow the user to
specify the space of interesting programs.

We describe the synthesis problem using ascaffoldof the form

〈F,D,R〉

The three components are as follows:

1. Functional Specification The first componentF of a scaffold
describes the desired precondition and postcondition of the synthe-
sized program. Let~vin and ~vout be the vectors containing the input
and output variables, respectively. Then a functional specification
F = (Fpre( ~vin), Fpost( ~vin, ~vout)) is a tuple containing the formu-
lae that hold at the entry and exit program locations. For example,
for the program in Figure 1,Fpre(X,Y )

.
= (0 < Y ≤ X and

Fpost(X,Y, out)
.
= ∀k : 0 ≤ k ≤ X ⇒ 2(Y/X)k − 1 ≤

2out[k] ≤ 2(Y/X)k + 1.

2. Domain Constraints The second componentD of the scaffold
describes the domains for expressions and guards in the synthesized
program. The domain specificationD=(Dexp, Dgrd) is a tuple that
constrains the respective components:

2a. Program Expressions:The expressions manipulated by the pro-
gram come from the domainDexp.

2b. Program Guards:The logical guards (boolean expressions)
used to direct control flow in the program come from the do-
mainDgrd.

For example, for the program in Figure 1, the domainsDexp, Dgrd

are both linear arithmetic.

3. Resource Constraints The third componentR of the scaffold
describes the resources that the synthesized program can use. The
resource specificationR = (Rflow, Rstack, Rcomp) is a triple of
resource templates that the user must specify for the flowgraph,
stack and computation, respectively:

3a. Flowgraph TemplateWe restrict attention to structured pro-
grams (those that are goto-less, or whose flowgraphs are re-
ducible [22]). The structured nature of such flowgraphs allows
us to describe them using simple strings. The user specifies a
stringRflow from the following grammar:

T ::= ◦ | ∗(T ) | T ;T (2)

where◦ denotes an acyclic fragment of the flow graph,∗(T )
denotes a loop containing the bodyT and T ;T denotes the
sequential composition of two flow graphs. For example, for
the program in Figure 1,Rflow = ◦;∗(◦).

3b. Stack TemplateA mapRstack : type → int indicating the
number of extra temporary variables of each type available
to the program. For example, for the program in Figure 1,
Rstack = (int, 1).

3c. Computation TemplateAt times it may be important to put an
upper bound on the number of times an operation is performed
inside a procedure. A mapRcomp : op→ int of operationsop
to the upper bound specifies this constraint. For example, for
the program in Figure 1,Rcomp = ∅ which indicates that there
are no constraints on computation.

On the one hand, the resource templates make synthesis tractable
by enabling a systematic lattice-theoretic search, while on the other
they allow the user to specify the space of interesting programs and
can be used as a feature. For instance, the user may wish to reduce
memory consumption at the expense of a more complex flowgraph
and still meet the functional specification. If the user does not care,
then the resource templates can be considered optional and left
unspecified. In this case, the synthesizer can iteratively enumerate
possibilities for each resource and attempt synthesis with increas-
ing resources.

2.1 Picking a proof domain and a solver for the domain

Our synthesis approach is proof-theoretic and we synthesize the
proof terms, i.e., invariants and ranking functions, alongside the



program. These proof terms will take values from a suitably chosen
proof domainDprf. Notice thatDprf will be at least as expressive
asDgrd andDexp. The user chooses an appropriate proof domain
and also picks a solver capable of handling that domain. We will
use program verification tools as solvers and typically, the user will
pick the most powerful verification tool available for the chosen
proof domain.

2.2 Synthesis Task

Given a scaffold〈F,D,R〉, we call an executable programvalid
with respect to the scaffold if it meets the following conditions.

• When called with inputs~vin that satisfyFpre( ~vin) the program
terminates, and the resulting outputs~vout satisfyFpost( ~vin, ~vout).
There are associated invariants and ranking functions that pro-
vide a proof of this fact.

• There is a program loop (with an associated loop guardg)
corresponding to each loop annotation (specified by “∗”) in
the flowgraph templateRflow. The program contains statements
from the following imperative language IML for each acyclic
fragment (specified by “◦”).

S ::= skip | S;S | x := e | if g then S else S

Wherex denotes a variable,e denotes some expression, andg
denotes some predicate. (Memory reads and writes are modeled
using memory variables and select/update expressions.) The
domain of expressions and guards is as specified by the scaffold,
i.e.,e ∈ Dexp andg ∈ Dgrd.

• The program only uses as many local variables as specified by
Rstack in addition to the input and output variables~vin, ~vout.

• Each elementary operation only appears as many times as spec-
ified inRcomp.

EXAMPLE 1 (Square Root).Let us consider a scaffold with func-
tional specificationF = (x ≥ 1, (i− 1)2 ≤ x < i2), which states
that the program computes the integral square root of the inputx
, i.e., i − 1 = b

√
xc. Also, let the domain constraintsDexp, Dgrd

be limited to linear arithmetic expressions, which means that the
program cannot use any native square root or squaring operations.
Lastly, let theRflow,Rstack andRcomp be◦;∗(◦);◦, {(int, 1)} and
∅, respectively. A program that is valid with respect to this scaffold
is the following:

IntSqrt(int x) {
v:=1;i:=1;
whileτ,ϕ(v ≤ x)

v:=v+2i+1;i++;
return i−1;

}

Invariantτ :
v=i2∧x≥(i−1)2∧i ≥ 1

Ranking functionϕ:
x− (i−1)2

where v, i are the additional stack variable and loop iteration
counter (and reused in the output), respectively. Also, the loop
is annotated with the invariantτ and ranking functionϕ as shown,
and which prove partial correctness and termination, respectively.

In the next two sections, we formally describe the steps of
our synthesis algorithm. We first generatesynthesis conditions
(Section 3), which are constraints over unknowns for statements,
guards, loop invariants and ranking functions. We then observe that
they resemble verification conditions, and we can employ verifica-
tion tools, if they have certain properties, to solve them (Section 4).

3. Synthesis Conditions
In this section, we define and constructsynthesis conditionsfor
an input scaffold〈F,D,R〉. Using the resource specificationR,
we first generate a program with unknowns corresponding to the
fragments we wish to synthesize. Synthesis conditions then specify

constraints on these unknowns and ensure partial correctness, loop
termination and well-formedness of control-flow. We begin our
discussion by motivating the representation we use for acyclic
fragments in the synthesized program.

3.1 Using Transition Systems to Represent Acyclic Code

Suppose we want to infer a set of (straight-line) statements that
transform a preconditionφpre to a postconditionφpost, where the
relevant program variables arex andy. One approach might be to
generate statements that assign unknown expressionsex andey to
x andy, respectively:

{φpre}x := ex; y := ey{φpost}
Then we can use Hoare’s axiom for assignment to generate the
verification conditionφpre ⇒ (φpost[y 7→ ey])[x 7→ ex]. However,
this verification condition is hard to automatically reason about
because it contains substitution into unknowns. Even worse, we
have restricted the search space by requiring the assignment to
y to follow the assignment tox, and by specifying exactly two
assignments.

Instead we will represent the computation as a transition system
which provides a much cleaner mechanism for reasoning when pro-
gram statements are unknown. Atransition in a transition system
is a (possibly parallel) mapping of the input variables to the output
variables. Variables have an input version and an output version (in-
dicated by primed names), which allows them to change state. For
our example, we can write a single transition:

{φpre}


x′, y′

�
= 〈ex, ey〉 {φ′post}

Here φ′post is the postcondition, written in terms of the output
variables, andex, ey are expressions over the input variables. The
verification condition corresponding to this tuple isφpre ∧ x′ =
ex ∧ y′ = ey ⇒ φ′post. Note that every state update (assignment)
can always be written as a transition.

We can extend this approach to arbitrary acyclic program frag-
ments. Aguarded transition(written []g → s) contains a state-
ments that is executed only if the quantifier-free guardg holds. A
transition systemconsists of a set{[]gi → si}i of guarded transi-
tions. It is easy to see that a transition system can represent any
arbitrary acyclic program fragment by suitably enumerating the
paths through the acyclic fragment. The verification condition for
{φpre}{[]gi → si}i{φ′post} is simply

V
i(φpre ∧ gi ∧ si ⇒ φ′post).

In addition to the simplicity afforded by the lack of any order-
ing, the constraints from transition systems are attractive for syn-
thesis as the program statementssi and guardsgi are facts just
like the pre- and postconditionsφpre andφ′post. Given the lack of
differentiation, any (or all) can be unknowns in thesesynthesis con-
ditions. This distinguishes them from verification conditions which
can only have unknown invariants, or often the invariants must be
known as well.

Synthesis conditions can thus be viewed as generalizations of
verification conditions. Program verification tools routinely infer
fixed-point solutions (invariants) that satisfy the verification condi-
tions with known statements and guards. With our formulation of
statements and guards as just additional facts in the constraints, it
is possible to use (sufficiently general) verification tools to infer in-
variantsand program statements and guards.Synthesis conditions
serve an analogous purpose to synthesis as verification conditions
do to verification. If a program is correct (verifiable), then its veri-
fication condition is valid. Similarly, if a valid program exists for a
scaffold, then its synthesis condition has a satisfying solution.

3.2 Expanding a flowgraph

We synthesize code fragments for each acyclic fragment and loop
annotation in the flowgraph template as follows:



• Acyclic fragments:For each acyclic fragment annotation “◦”,
we infer a transition system{gi → si}i, i.e., a set of assign-
mentssi, stated as conjunctions of equality predicates, guarded
by quantifier-free first-order-logic (FOL) guardsgi such that the
disjunction of the guards is a tautology. Suitably constructed
equality predicates and quantifier-free FOL guards are later
translated to executable code—assignment statements and con-
ditional guards, respectively—in the language IML .

• Loops:For each loop annotation “∗” we infer three elements.
The first is theinductive loop invariantτ , which establishes
partial correctness of each loop iteration. The second is the
ranking functionϕ, which proves the termination of the loop.
Both the invariant and ranking function take values from the
proof domain, i.e.,τ, ϕ ∈ Dprf. Third, we infer a quantifier-
free FOL loop guardg.

Formally, the output of expanding flowgraphs will be a program
in the transition system language TSL (note the correspondence to
the flowgraph grammar from Eq. 2):

p ::= choose {[]gi → si}i | whileτ,ϕ(g) do {p} | p;p

Here eachsi is a conjunction of equality predicates, i.e.,
V

j (xj =
ej). We will use ~p to denote a sequence of program statements
in TSL. Note that we model memory read and updates using se-
lect/update predicates. Therefore, inx = e the variablex could
be a memory variable ande could be a memory select or update
expression.

Given a string for a flowgraph template, we define an expan-
sion functionExpand : int ×Dprf ×R ×D ×Rflow → TSL that
introduces fresh unknowns for missing guards, statements and in-
variants that are to be synthesized.Expand

n,Dprf

D,R (Rflow) expands a
flowgraphRflow and is parametrized by an integern that indicates
the number of transition each acyclic fragment will be expanded
to, the proof domain and the resource and domain constraints. The
expansion outputs a program in the language TSL.

Expand
n,Dprf

D,R (◦) = choose {[]gi→si}i=1..n gi, si : fresh
unknowns

Expand
n,Dprf

D,R (∗(T )) = whileτ,ϕ (g) { τ, ϕ, g : fresh

Expand
n,Dprf

D,R (T ); unknowns
}

Expand
n,Dprf

D,R (T1;T2) = Expand
n,Dprf

D,R (T1);Expand
n,Dprf

D,R (T2)

Each unknowng, s, τ generated during the expansion has the fol-
lowing domain inclusion constraints.

τ ∈ Dprf|V
g ∈ Dgrd|V
s ∈

V
i xi = ei wherexi ∈ V, ei ∈ Dexp|V

HereV = ~vin ∪ ~vout ∪ T ∪ L is the set of variables: the input~vin
and output ~vout variables, the set of temporaries (local variables)T
as specified byRstack, and the set of iteration counters and ranking
function tracker variables isL (which we elaborate on later), one
for each loop in the expansion. The restriction of the domains by
the variable setV indicates that we are interested in the fragment
of the domain over the variables inV . Also, the set of operations in
ei is bounded byRcomp.

The expansion has some similarities to the notion of a user-
specifiedsketchin previous approaches [31, 29]. However, the un-
knowns in the expansion here are more expressive than the integer
unknowns considered earlier, and this allows us to perform a lattice
search as opposed to the combinatorial approaches proposed ear-
lier. Notice that the unknownsτ, g, s, ϕ we introduce can all be in-
terpreted as boolean formulae (τ, g naturally;s using our transition

modeling; andϕ asϕ > c, for some constantc), and consequently
ordered in a lattice.

EXAMPLE 2. Let us revisit the integral square root computation
from Example 1. Expanding the flowgraph template◦;∗(◦);◦ with
n = 1 yieldsexpsqrt:

choose {[]g1 → s1} ;
whileτ,ϕ (g0) {

choose {[]g2 → s2} ;
};
choose {[]g3 → s3}

τ ∈ Dprf|V
g1, g2, g3 ∈ Dgrd|V
s1, s2, s3 ∈

V
i xi = ei

xi ∈ V, ei ∈ Dexp|V

whereV = {x, i, r, v}. The variablesi andr are the loop iteration
counter and ranking function tracker variable, respectively, and
v is the additional local variable. Also, the chosen domains for
proofsDprf, guardsDgrd and expressionsDexp are FOL facts over
quadratic expressions, FOL facts over linear arithmetic and linear
arithmetic, respectively.

Notice that the expansion encodes everything specified by the do-
main and resource constraints and the chosen proof domain. The
only remaining specification isF, which we will use in the next
section to construct safety conditions over the expanded scaffold.

3.3 Encoding Partial Correctness: Safety Conditions

Now that we have the expanded scaffold we need to collect the
constraints (safety conditions) for partial correctness implied by the
simple paths in the expansion.Simple paths(straight-line sequence
of statements) start at a loop headerFpre and end at a loop header
or program exit. The loop headers, program entry and program exit
are annotated with invariants, preconditionFpre and postcondition
Fpost, respectively.

Let φ denote formulae, that represent pre and postconditions
and constraints. Then we definePathC : φ × TSL × φ → φ
as a function that takes a precondition, a sequence of statements
and a postcondition and outputs safety constraints that encode the
validity of the Hoare triple. Let us first describe the simple cases of
constraints from a single acyclic fragment and loop:

PathC(φpre, (choose {[]gi → si}i ), φpost) =V
i(φpre ∧ gi ∧ si ⇒ φpost

′)
PathC(φpre, (while

τ,ϕ (g) {~pl}), φpost) =
φpre ⇒ τ ′ ∧ PathC(τ ∧ g, ~pl, τ) ∧ (τ ∧ ¬g ⇒ φpost

′)

Hereφpost
′ andτ ′ are the postconditionφpost and invariantτ but

with all variables renamed to their output (primed) versions. Since
the constraints need to refer tooutputpostconditions and invariants
the rule for a sequence of statements is a bit complicated. For sim-
plicity of presentation, we assume that acyclic annotations do not
appear in succession. This assumption holds without loss of gener-
ality because it is always possible to collapse consecutive acyclic
fragments, e.g., two consecutive acyclic fragments withn transi-
tions each can be collapsed into a single acyclic fragment withn2

transitions. For efficiency, it is prudent to not make this assumption
in practice, and the construction here generalizes easily. For a se-
quence of statements in TSL, under the above assumptions, there
are three cases to consider. First, a loop followed by statements
~p. Second, an acyclic fragment followed by just a loop. Third, an
acyclic fragment, followed by a loop, followed by statements~p.
Each of these generates the following, respective, constraints:

PathC(φpre, (while
τ,ϕ (g) {~pl};~p), φpost) =

(φpre ⇒ τ ′) ∧ PathC(τ ∧ g, ~pl, τ) ∧ PathC(τ ∧ ¬g, ~p, φpost)
PathC(φpre, (choose {[]gi → si}i ;whileτ,ϕ (g) {~pl}), φpost) =V

i(φpre ∧ gi ∧ si ⇒ τ ′) ∧ PathC(τ ∧ g, ~pl, τ) ∧ (τ ∧ ¬g ⇒ φpost
′)

PathC(φpre, (choose {[]gi → si}i ;whileτ,ϕ (g) {~pl};~p), φpost) =V
i(φpre ∧ gi ∧ si ⇒ τ ′) ∧ PathC(τ ∧ g, ~pl, τ) ∧ PathC(τ ∧ ¬g, ~p, φpost)



The safety condition for a scaffold with functional specifica-
tion F = (Fpre, Fpost), flowgraph templateRflow, and expansion
exp = Expand

D,R
n,Dprf

(Rflow) is given by:

SafetyCond(exp,F) = PathC(Fpre, exp, Fpost) (3)

EXAMPLE 3. Consider the expanded scaffold (from Example 2)
and the functional specificationF (from Example 1) for integral
square root. The loop divides the program into three simple paths,
which results inSafetyCond(expsqrt,F):

x ≥ 1 ∧ g1 ∧ s1 ⇒ τ ′ ∧
τ ∧ g0 ∧ g2 ∧ s2 ⇒ τ ′ ∧

τ ∧ ¬g0 ∧ g3 ∧ s3 ⇒ (i′ − 1)2 ≤ x′ ∧ x′ < i′2

Notice thatgi, si, τ are all unknown placeholder symbols.

3.4 Encoding Valid Control: Well-formedness Conditions

We next construct constraints to ensure the well-formedness of
choose statements. In the preceding development, we treated each
path through thechoose statement as independent. In any ex-
ecutable program control will always flow through at least one
branch/transition of the statement, and each transition will contain
well-formed assignment statements. We first describe a constraint
that encodes this directly and then discuss an alternative way of
ensuring well-formedness of transition guards.

Non-iterative upper bounded searchDuring the expansion of
a scaffold, we can choosen to be greater than the number of
transitions expected in any acyclic fragment. Any excess transi-
tions will have their guards instantiated tofalse. For any state-
mentchoose {[]gi → si} in the expansion, we impose the well-
formedness constraint:

WellFormTS({[]gi → si}i)
.
=
�V

i valid(si)
�

Valid transition
∧
�W

i gi

�
Covers space

(4)

Here the predicatevalid(si) ensuresone and only one equality
assignmentto each variable insi. This condition ensures that each
si corresponds to a well-formed transition that can be translated to
executable statements. The second term constrains the combination
of the guards to be a tautology. Note that this is important to ensure
that each transition system is well-formed and can be converted to a
valid executable conditional. For example, consider the executable
conditionalif (G) then x := E1 else x := E2. The correspond-
ing transition system is{[]g1 → (x′ = E1), []g2 → (x′ = E2)},
whereg1 = G andg2 = ¬G andg1 ∨ g2 holds. Ineverywell-
formed executable conditional the disjunction of the guards will be
a tautology. The second term imposes this constraint.

Notice that this construction does not constrain the guards to
be disjoint (mutually exclusive). Disjointedness is not required
for correctness [11] because if multiple guards are triggered then
arbitrarily choosing the body for any one suffices. Therefore,
without loss of generality, the branches can be arbitrarily ordered
(thus ensuring mutual exclusivity) in the output to get a valid
imperative program.

Iterative lower bounded search Notice that Eq. (4) is non-
standard, i.e., it is not an implication constraint like typical ver-
ification conditions, and we will elaborate on this in Section 4.
For the case when a program verification tool is unable to handle
such non-standard constraints, we need a technique for ensuring
well-formedness of transitions without asserting Eq. (4).

We first assume thatvalid(si) holds, and we will show in
Section 4.3 the conditions under which it does. Then all we need
to ensure well-formedness is that∨igi is a tautology. Since the
transitions of achoose statement represent independent execution
paths, we can perform an iterative search for the guardsgi. We start

by finding any satisfying guard (and corresponding transition)—
which can even befalse. We then iteratively ask for another guard
(and transition) such that the space defined by the new guard isnot
entirely contained in the space defined by the disjunction of the
guards already generated. If we ensure that at each step the newly
discovered guard covers some more space that was not covered
by earlier guards, then eventually the disjunction of all will be a
tautology.

More formally, supposen such calls result in the transition
system{[]gi → si}i=1..n, and∨i=1..ngi is not already a tautology.
Then for then+1st transition, we assert the constraint¬(gn+1 ⇒
(∨i=1..ngi)). This constraint ensures thatgn+1 will cover some
space not covered by∨i=1..ngi. We repeat until∨igi holds. This
iterative search for the transitions also eliminates the need to guess
the value ofn.

Well-formedness of an Expanded ScaffoldWe constrain the
well-formedness of each transition system in the expanded scaf-
fold exp = Expand

D,R
n,Dprf

(Rflow) using Eq. (4).

WellFormCond(exp) =
^

choose {[]gi→si}i ∈cond(exp)

WellFormTS({[]gi → si}i) (5)

wherecond(exp) recursively examines the expanded scaffoldexp
and returns the set of allchoose statements in it.

EXAMPLE 4. For the expanded scaffold in Example 2, since
each acyclic fragment only contains one guarded transition, the
well-formedness constraints are simple and state that each of
g1, g2, g3 = true andvalid(s1)∧valid(s2)∧valid(s3) holds.

3.5 Encoding Progress: Ranking functions

Until now our encoding has focused on safety conditions that, by
themselves, only ensure partial correctness but not termination.
Next, we add progress constraints to ensure that the synthesized
programs terminate.

To encode progress for a loopl = whileτ,ϕl(g) do {~p}, we
assert the existence of aranking functionas an unknown (numer-
ical) expressionϕl that is lower bounded and decreases with each
iteration of the loop. Becauseϕl is anunknown expressionit is dif-
ficult to encode directly that it decreases. Therefore, we introduce a
tracking variablerl, such thatrl = ϕl. We userl to remember the
value of the ranking function at the head of the loop, and because
it is a proof variable no assignments to it can appear in the body
of the loop. On the other hand,ϕl changes due to the loop body,
and at the end of the iteration we can then check if the new value is
strictly less than the old value, i.e.,rl > ϕl. Without loss of gen-
erality, we pick a lower bound of0 for the tracking variable and
conservatively assume that the termination argument is implied by
the loop invariantτ , i.e,τ ⇒ rl ≥ 0.

Now that we have asserted the lower bound, what remains is
to assert thatϕl decreases in each iteration. Assume, for the time
being, that the body does not contain any nested loops. Then we
can capture the effect of the loop body usingPathC as defined
earlier, with preconditionτ ∧ g and postconditionrl > ϕ. Then,
the progress constraint for loopl without any inner loop is:

prog(l)
.
= (rl = ϕl ∧ (τ ⇒ rl ≥ 0) ∧ PathC(τ ∧ g, ~p, rl > ϕl))

Using the above definition of progress we define the progress
constraint for the entire expanded scaffoldexp = Expand

D,R
n,Dprf

(Rflow):

RankCond(exp) =
^

l∈loops(exp)

prog(l) (6)

where loops(exp) recursively examines the expanded scaffold
exp and returns the set of all loops in it.



EXAMPLE 5. In the expanded scaffold of Example 2 there is only
one loop, whose ranking function we denote byϕl and with tracker
rl. Then we generate the following progress constraint:

rl = ϕl ∧ (τ ⇒ rl ≥ 0) ∧ (τ ∧ g0 ∧ g2 ∧ s2 ⇒ r′l > ϕ′l)

To relax the assumption we made earlier about no nesting of
loops, we need a simple modification to the progress constraint
prog(l). Instead of considering the effect of the entire body~p
(which now contains inner loops), we instead consider the fragment
end(l) after the last inner loop in~p. Also, let τend denote the
invariant for the last inner loop. Then, the progress constraint for
loop l is:

prog(l)
.
= rl = ϕl ∧ (τ ⇒ rl ≥ 0) ∧ PathC(τend, end(l), rl > ϕl)

Notice that because the loop invariants are not decided a priori, i.e.,
we arenotdoing program extraction, we may assert that the invari-
ants should be strong enough to satisfy the progress constraints.
Specifically, we have imposed the requirement that the intermedi-
ate loop invariants carry enough information such that it suffices to
consider only the last loop invariantτend in the assertion.

3.6 Entire Synthesis Condition

Finally, we combine the constraints from the preceding sections to
yield the entire synthesis condition for an expanded scaffoldexp =
Expand

D,R
n,Dprf

(Rflow). The constraintSafetyCond(exp,F) (Eq. 3)
ensures partial correctness of the program with respect to the func-
tional specification. The constraintWellFormCond(exp) (Eq. 5)
restricts the space to programs with valid control-flow. The con-
straint RankCond(exp) (Eq. 6) restricts the space to terminating
programs. The entire synthesis condition is given by

sc = SafetyCond(exp,F)∧WellFormCond(exp)∧RankCond(exp)

Notice that we have omitted the implicit quantifiers for the sake
of clarity. The actual form is∃U∀V : sc. The setV denotes
the program variables,~vin ∪ ~vout ∪ T ∪ L whereT is the set of
temporaries (additional local variables) as specified by the scaffold
andL is the set of iteration counters and ranking function trackers.
Also, U is the set of all unknowns of various types instantiated
during the expansion of scaffold. This includes unknowns for the
invariantsτ , the guardsg and the statementss.

EXAMPLE 6. Accumulating the partial correctness, well-formedness
of branching and progress constraints we get the following synthe-
sis condition (where we have removed the trivial guardsg1, g2, g3
as discussed in Example 4):

x ≥ 1 ∧ s1 ⇒ τ ′ ∧
τ ∧ g0 ∧ s2 ⇒ τ ′ ∧

τ ∧ ¬g0 ∧ s3 ⇒ (i′ − 1)2 ≤ x′ ∧ x′ < i′2 ∧
valid(s1) ∧ valid(s2) ∧ valid(s3) ∧
rl = ϕl ∧ (τ ⇒ rl ≥ 0) ∧ (τ ∧ g0 ∧ s2 ⇒ r′l > ϕ′l)

Here is a valid solution to the above constraints:

τ : v = i2 ∧ x ≥ (i− 1)2 ∧ i ≥ 1
g0 : v ≤ x
ϕl : x− (i− 1)2

s1 : v′ = 1 ∧ i′ = 1 ∧ x′ = x ∧ r′l = rl

s2 : v′ = v + 2i+ 1 ∧ i′ = i+ 1 ∧ x′ = x ∧ r′l = rl

s3 : v′ = v ∧ i′ = i ∧ x′ = x ∧ r′l = rl

(7)

Notice how each of the unknowns satisfy their domain constraints,
i.e., τ is from FOL over quadratic relations,ϕl is a quadratic
expression,s1, s2, s2 are conjunctions of linear equalities andg0 is
from quantifier-free FOL over linear relations. In the next section
we show how such solutions can be computed using existing tools.

Input : Scaffold〈F,D,R〉, maximum transitionsn,
proof domainDprf

Output : Executable program or FAIL
begin

exp := Expand
n,Dprf

D,R (Rflow);
sc := SafetyCond(exp,F) ∧

WellFormCond(exp) ∧
RankCond(exp);

π := Solver(sc);

if (unsat(π)) then
return FAIL;

return Exeπ(exp);
end

Algorithm 1 : The entire synthesis algorithm.

Under the assumption [13] that every loop with a pre- and post-
condition has an inductive proof of correctness, and every termi-
nating loop has a ranking function, and that the domains chosen are
expressive enough, we can prove that the synthesis conditions, for
the case of non-iterative upper bounded well-formedness, model
the program faithfully:

THEOREM 1 (Soundness and Completeness).The synthesis con-
ditions corresponding to a scaffold are satisfiable iff there exists a
program (with a maximum ofn transitions in each acyclic frag-
ment wheren is the parameter to the expansion) that is valid with
respect to the scaffold.

Additionally, for the alternative approach to discovering guards
(Section 3.4), we can prove soundness and relative completeness:

THEOREM 2 (Soundness and Relative Completeness).(a) Sound-
ness:If there exists a program that is valid with respect to the
scaffold then at each step of the iteration the synthesis conditions
generated are satisfiable.(b) Relative completeness:If the iterative
search for guards terminates then it finds a program that is valid
with respect to the scaffold.

4. Solving Synthesis Conditions
In this section we describe how the synthesis conditions for an
expanded scaffold can be solved using fixed-point computation
tools (program verifiers).

Suppose we have a procedureSolver(sc) that can generate
solutions to a synthesis conditionsc. Algorithm 1 is our synthesis
algorithm, which expands the given scaffold toexp, constructs
synthesis conditionssc, usesSolver(sc) to generate a solutionπ
to the unknowns that appear in the constraints and finally generates
concrete programs (whose acyclic fragments are from the language
IML from Section 2) using the postprocessorExeπ(exp).

The concretization functionExeπ(exp) takes the solutionπ
computed bySolver(sc) and the expanded scaffoldexp, and
outputs a program whose acyclic fragments are from the language
IML . The function defines a concretization for each statement in
TSL and annotates each loop with its loop invariant and ranking
function:

Exeπ(p;~p) = Exeπ(p);Exeπ(~p)
Exeπ(whileτ,ϕ(g) do {~p}) =

whileπ(τ),π(ϕ)(π(g)) { Exeπ(~p) }
Exeπ(choose {[]g → s}) =

if (π(g)) {Stmt(π(s))} else {skip}
Exeπ(choose {[]gi → si}i=1..n) = (wheren > 1)

if (π(g1)) {Stmt(π(s1))}
else {Exeπ(choose {[]gi → si}i=2..n)}



whereπ maps eachs to a conjunction of equalities and the con-
cretization functionStmt(s) expands the equality predicates to
their corresponding state updates:

Stmt(
^

i=1..n

xi = ei)
.
=

(t1 := e1; . . ;tn := en);
(x1 := t1; . . ;xn := tn)

The above is a simple translation that uses additional fresh tem-
porary variablest1 . . tn to simulate parallel assignment. Alterna-
tively, one can use data dependency analysis to generate code that
uses fewer temporary variables.

4.1 Basic Requirement forSolver(sc)

Our objective is to use verification tools to implementSolver(sc),
but we realize that not all tools are powerful enough. For use as
a solver for synthesis conditions, verification tools require certain
properties.

Let us first recall [32] the notion of the polarity of unknowns
in a formula. Letφ be a FOL formula with unknowns whose
occurrences are unique. Notice that all the constraints we gen-
erate have unique occurrences as we rename appropriately. We
can categorize unknowns as eitherpositiveor negativesuch that
strengthening (weakening) the positive (negative) unknowns makes
φ stronger. Structurally, the nesting depth under negation—in the
boolean formula written using the basic operators (∨,∧,¬,∃,∀)—
defines whether an unknown is positive (even depth) or negative
(odd depth). For example, the formula(a ∨ ¬b) ∧ ¬(¬c ∨ d) has
positive unknowns{a, c} and negative unknowns{b, d}.

In program verification we infer loop invariants given verifica-
tion conditions with known program statements. Let us reconsider
the verification condition in Eq. (1) with known program statements
and guards. Notice that the constraints can be categorized into three
forms,τ ∧ f1 ⇒ τ ′, τ ∧ f2 ⇒ f3 andf4 ⇒ τ ′, wherefi’s de-
note known formulae. Also, observe that these three are the only
forms in which constraints in verification conditions can occur.
From these, we can see that the verification conditions contain at
most one positive and one negative unknown (using the disjunctive
translation of implication), depending on whether the correspond-
ing path ends or starts at an invariant. Program verification tools
implementing typical fixed-point computation algorithms are spe-
cialized to work solely with constraints with one positive and one
negative unknown because there is no need to be more general.

In fact, traditional iterative fixed-point computation is even
more specialized in that it requires support for either just one pos-
itive unknown or just one negative unknown. Traditional verifiers
work either in a forward (computing least fixed-point) or back-
wards (computing greatest-fixed point) direction starting with the
approximation⊥ or>, respectively, and iteratively refining it.

A backwards iterative data flow analyzer always instantiates the
positive unknown to the current approximation and uses the result-
ing constraint (with only one negative unknown) to improve the
approximation. For example, suppose the current approximation to
the invariantτ is f5, then a backwards analyzer may instantiateτ ′

in the constraintτ ∧ f1 ⇒ τ ′ to get the formulaτ ∧ f1 ⇒ f ′5 (with
one negative unknownτ ). It will then use the formula to improve
the approximation by computing a new value forτ that makes this
formula satisfiable.

Similarly, a typical forwards iterative data flow analyzer in-
stantiates the negative unknown to the current approximation and
uses the resulting constraint (with only one positive unknown) to
improve the approximation. For example, suppose the current ap-
proximation to the invariantτ is f6, then a forwards analyzer may
instantiateτ in the constraintτ ∧ f1 ⇒ τ ′ to get the formula
f6 ∧ f1 ⇒ τ ′ (with one positive unknownτ ). It will then use the
formula to improve the approximation by computing a new value
for τ ′ that makes this formula satisfiable.

In contrast, let us consider the components (from Section 3)
of the synthesis condition. The componentSafetyCond(exp)
(Eq. (3)), in addition to the unknowns due to the invariantsτ ,
contains unknowns for the program guardsg and program state-
ments s. These unknowns appear exclusively as negative un-
knowns, and there can be multiple such unknowns in each con-
straint. For example, in Eq. (1), the guards and statement unknowns
appear as negative unknowns. On the other hand, the component
WellFormCond(exp) (Eq. (5)) contains the well-formedness con-
dition on the guards∨igi that is a constraint with multiple positive
unknowns. Therefore we need a verifier that satisfies the following.

REQUIREMENT 1. Support for multiple positive and multiple neg-
ative unknowns.

Notice this requirement is more general than that supported by
typical verifiers we discussed above.

Now consider, an example safety constraint such asτ ∧g∧s⇒
τ ′ with unknownsτ , g ands, that can be rewritten asτ ⇒ τ ′ ∨
¬g∨¬s. Also, let us rewrite an example well-formedness constraint
∨gi astrue ⇒ ∨gi. This view presents an alternative explanation
for Requirement 1 in that we need a tool that can infer the right
case split, which in most cases would not be unique and would
require maintaining multiple orthogonal solutions. Intuitively, this
is related to a tool’s ability to infer disjunctive facts.

In the above we implicitly assumed the invariant to be a con-
junction of predicates. In the general case, we may wish to infer
more expressive (disjunctive) invariants, e.g., of the formu1 ⇒ u2

or ∀k : u3 ⇒ u4, whereui’s are unknowns. In this case, multi-
ple negative and positive unknowns appear even in the verification
condition and therefore the verification tool must satisfy Require-
ment 1, which matches the intuition that disjunctive inference is
required.

4.2 Constraint-based Verifiers asSolver(sc)

Constraint-based fixed-point computation is a relatively recent ap-
proach to program verification that has been successfully used for
difficult analyses [32]. In previous work, we designed efficient
constraint-based verification tools for two popular domains, pred-
icate abstraction [32, 20] and linear arithmetic [21]. The tools for
both domains satisfy Requirement 1.

Constraint-based verification tools reduce a verification condi-
tion vc (with invariant unknowns) to a boolean constraintψ(vc)
such that a satisfying solution to the boolean constraint corresponds
to valid invariants. The property they ensure is the following:

PROPERTY1. The boolean constraintψ(vc) is satisfiable iff there
exists a fixed-point solution for the unknowns corresponding to the
invariants.

The reduction can also be applied to synthesis conditionsc to get
boolean constraintsψ(sc) and a similar property holds. That is, the
boolean constraintψ(sc) is satisfiable iff there exist statements,
guards and invariants that satisfy the synthesis condition.

4.3 Iterative Verifiers asSolver(sc)

Let us now consider the case where the verification tool cannot han-
dle non-standard constraints, such as Eq. (4). This is the case for
typical iterative program verification tools that compute increas-
ingly better approximations to invariants. We show that despite this
lack of expressivity it is still possible to solve synthesis conditions
as long as the tool satisfies an additional requirement.

The only non-implication constraint in the synthesis condition
sc is WellFormCond(sc). In Section 3.4, we discussed how an it-
erative lower-bounded search can discover the transitions{[]gi →
si}i without asserting Eq. (5). There we had left the question of
ensuringvalid(si) unanswered. Consider now the case where a



valid solutiongi, si exists (i.e.,si is notfalse or thatvalid(si)
holds) that satisfies the constraint set. As an instance, in Example 6,
we have a synthesis condition for which a valid solution exists as
shown by Eq. (7). Notice that this solution isstrictly weaker than
another solution that assigns identical values to other unknowns
but assignsfalse to any ofs2, s2 or s3. In fact, we can observe
that if the tool only generates maximally weak solutions then be-
tween these two solutions (which are comparable as we saw), it
will always pick the one in which it does not assignfalse to state-
ment unknowns. Therefore, it will always generatesi such that
valid(si) holds unless no suchsi exists. Therefore, if the pro-
gram verification tool satisfies the following requirement, then we
can omit Eq. (5) from the synthesis condition and still solve it using
the tool.

REQUIREMENT 2. Solutions are maximally weak.

This requirement corresponds to the tool’s ability to compute
weakest preconditions. The typical approach to weakest precon-
ditions (greatest fixed-point) computation propagates facts back-
wards, but this is considered difficult and therefore not many tools
exist that do this. However, although traditional iterative data flow
verifiers fail to meet Requirements 1 and 2, there do exist some iter-
ative tools [32] that compute maximally weak solutions and there-
fore satisfy the requirements.

We have argued that maximally weak solutionsfor statement
unknownssi ensurevalid(si), but this comes at the cost of de-
graded performance because maximally weak solutions are gener-
ated for guard and invariant unknowns too. We require maximally
weak solutions only for the statement unknowns, while for syn-
thesis we are interested inany solution to the guard and invari-
ant unknowns that satisfy the synthesis condition. In our trials, the
constraint-based scheme [21, 32] (which computes any fixed-point
in the lattice rather than the greatest fixed-point) outperformed the
iterative scheme [32]. In fact, our tool based on iterative approxi-
mations does not terminate for most benchmarks, and we therefore
perform the experiments using our constraint-based tool.

5. Experimental Case Studies
To evaluate our approach, we synthesized examples in three cate-
gories: First, easy to specify but tricky to programarithmeticpro-
grams; second,sorting programs, which all have the same spec-
ification but yield different sorting strategies depending on the
resource constraints; third,dynamic programmingprograms for
which naive solutions yield exponential runtimes, but which can
be computed in polytime by suitable memoization.

5.1 Implementation

We augmented our constraint-based verification tools from prior
work to build more powerful verifiers that we use as solvers for
synthesis conditions. In this section, we summarize the capabilities
of these tools and our extensions to them. The description here
is necessarily brief due to lack of space, and more details can be
found in the companion technical report [35]. We also describe a
technique we use to simplify user input by expanding flowgraphs
to be more expressive as required sometimes.

Verification Tools Our synthesis technique relies on an underly-
ing program verification tool. For this work, we used tools that are
part of theVS3 project [33]. We used two tools: an arithmetic verifi-
cation tool [21], which we callVS3

LIA here; and a predicate abstrac-
tion verification tool [32, 34, 20], which we callVS3

PA here.
CapabilitiesBoth verification toolsVS3

LIA andVS3
PA are based on

the idea of reducing the problem of invariant generation to satisfia-
bility solving. Each tool takes as input a C program (annotated with
assertions, typically the postcondition; and assumptions, typically

the precondition) and hints about the form of the invariants. The
tool then generates invariants that suffice to prove the assertions. If
the tool fails to generate the invariants, then either the assertions in
the program do not hold or no invariants exist that are instantiations
of the given template form.

• VS3
LIA works over the theory of linear arithmetic and discovers

(quantifier-free) invariants in DNF form with linear inequali-
ties over program variables as the atomic facts. As hints, it
expects three integer parameters,maxdsj , maxcnj , maxbv. The
parametersmaxdsj andmaxcnj limit the maximum number of
disjuncts and conjuncts (in each disjunct) in the invariants. Ad-
ditionally, maxbv is a integer pair(b1, b2) for the size in bits
of invariant coefficientsb1 and intermediate computationsb2.
None of our synthesized benchmarks required disjunctive in-
variants (maxdsj = 1), and we choose appropriate values for
maxcnj andmaxbv for different benchmarks. For example, sup-
posex, y, z are the program variables andx ≤ y ∧ z = x + 1
is the unknown program invariant. The user will specify some
valuev1 for maxcnj and(v2, v3) for maxbv. VS3

LIA will setup and
solve constraints for a conjunctive invariant with atoms of the
form c0 + c1x+ c2y + c3z ≥ 0. It will search for solutions to
each coefficientci assumed to havev2 bits and usev3 bits for
any intermediate values in the constraints. In this example, any
v1 ≥ 3 and anyv2 ≥ 2 (one bit for the sign) will work, and we
can choose a large enoughv3 to avoid overflows.

• VS3
PA works over a combination of the theories of equality

with uninterpreted functions, arrays, and linear arithmetic and
discovers (possibly) quantified invariants.VS3

PA expects the
boolean structure of the invariants, i.e., quantification and dis-
junctions, to be made explicit as a template. As hints, it expects
a boolean templateT (with holes for conjunctive facts) and a
set of predicatesP . VS3

PA infers the subset of predicates from
P—the atoms of the conjunct—that populate the holes inT .
For example, ifx ≥ 0 ∧ ∀k : 0 ≤ k ≤ x⇒ A[k] ≤ A[k + 1]
is the invariant, thenVS3

PA would discover it when run with any
T that is at least([−] ∧ ∀k : [−] ⇒ [−]) and anyP that is a
superset of{x ≥ 0, k ≥ 0, x ≥ k,A[k + 1] ≥ A[k]}, where
[−] denotes a conjunctive hole.

ExtensionsThese tools are powerful and can infer expressive
invariants such as those requiring quantification and disjunction,
but for some of the benchmarks, the reasoning required was beyond
even their capabilities. We therefore extended the base verifiers
with the following features.

• Quadratic expressions for arithmeticFor handling quadratic ex-
pressions in the proofs, we implemented a sound but incom-
plete technique that renames quadratic expressions to fresh vari-
ables and then uses linear arithmetic reasoning, already built
into VS3

LIA. This suffices for most of our benchmarks, except
when linear relations need to be lifted to quadratic relations,
e.g.,a ≥ b ≥ 0 ⇒ a2 ≥ b2 ≥ 0. This happens in one isolated
step in the integral square root binary search case, which we
circumvent by explicitly encoding an assumption. We call this
augmented solverVS3

QA.

• AxiomatizationProposals exist for extending verification tools
with axioms for theories they do not natively support, e.g., the
theory of reachability for lists [26]. We take such axiomatiza-
tion a step further and allow the user to specify axioms over
uninterpreted symbols that define computations. We implement
this in VS3

PA to specify the meaning of dynamic programming
programs, e.g., the definition of Fibonacci. We call this aug-
mented solverVS3

AX.



(a)
Strassens(int aij , bij) {

v1:=(a11+a22)(b11+b22)
v2:=(a21+a22)b11
v3:=a11(b12-b22)
v4:=a22(b21-b11)
v5:=(a11+a12)b22
v6:=(a21-a11)(b11+b12)
v7:=(a12-a22)(b21+b22)
c11:=v1+v4-v5+v7

c12:=v3+v5

c21:=v2+v4

c22:=v1+v3-v2+v6

return cij;
}

(c)
Fib(int n) {

v1:=0;v1:=1;i1:=0;
whileτ,ϕ(i1 ≤ n)

v1:=v1+v2;swap(v1, v2);
i1++;

return v1;
}

Ranking functionϕ:
x− s

Invariantτ :
v1 = Fib(i1) ∧ v2 = Fib(i1+1)

(b)
SelSort(int A[], n) {

i1:=0;
whileτ1,ϕ1(i1 < n− 1)

v1:=i1;
i2:=i1+1;
whileτ2,ϕ2(i2 < n)

if (A[i2]<A[v1])
v1:=i2;

i2++;
swap(A[i1], A[v1]);
i1++;

return A;
}

Ranking functions:
ϕ1 : n− i1 − 2
ϕ2 : n− i2 − 1

Invariantτ1:
∀k1, k2 : 0 ≤ k1 < k2 < n
∧ k1 < i1 ⇒ A[k1] ≤ A[k2]

Invariantτ1:
i1 < i2 ∧ i1 ≤ v1 < n
∀k1, k2 : 0 ≤ k1 < k2 < n
∧ k1 < i1 ⇒ A[k1] ≤ A[k2]

∀k : i1 ≤ k < i2 ∧ k ≥ 0
⇒ A[v1] ≤ A[k]

Figure 2. Illustrative examples from each of the domains. (a)
Arithmetic: Strassen’s Matrix Multiplication (b) Sorting: Selec-
tion Sort (c) Dynamic Programming: Fibonacci. For simplifying
the presentation, we omit degenerate conditional branches, i.e.
true/false guards, We name the loop iteration countersL =
{i1, i2, . .} and the temporary stack variablesT = {v1, v2, . .}.

Note that these extensions are to facilitate verification and not syn-
thesis. The synthesis solver is exactly the same as the verification
tool. Without the extensions most of our benchmarks cannot even
be verified, and thus their verification can be seen as an independent
contribution.

Flowgraphs with Init/Final Phases In practice a fair number of
loops have characteristicinitialization andfinalizationphases that
exhibit behavior different from the rest of the loop. In theory, ver-
ifiers should be able to infer loop invariants that capture such se-
mantically different phases. However, this requires disjunctive rea-
soning, which is fairly expensive if at all supported by the verifier.
Instead we use an alternate expansionExpand

n
(T ) that introduces

acyclic fragments for the initialization and finalization if synthesis
without them fails. For instance, for Example 1, the the user only
needs to specify the flowgraph∗(◦) instead of the more compli-
cated◦;∗(◦);◦. Except for the expansion of loops,Expandn

(T )
expands all other statements exactly likeExpandn(T ) does. For
loops, it builds an initialization and finalization phase as follows.

Expand
n
(∗(T ))=Expandn(◦); → Added initialization

whileτ (g) {Expandn
(T );}

Expandn(◦); → Added finalization

5.2 Algorithms that use arithmetic

For this category, we pickDprf to be quadratic arithmetic and use
as our solver theVS3

QA tool. We chose a set of arithmetic benchmarks
with simple-to-state functional specifications but each containing
some tricky insight that human programmers may miss.

Swapping without Temporaries Consider a program that swaps
two integer-valued variableswithout using a temporary. The pre-
condition and postcondition to the program are specified asFpost

.
=

(x = c2∧y = c1) andFpre
.
= (x = c1∧y = c2), respectively. We

specify an acyclic flowgraph templateRflow
.
= ◦ and a computa-

tion templateRcomp
.
= ∅ that imposes no constraints. To ensure that

no temporaries are used we specifyRstack
.
= ∅. The synthesizer

generates various versions of the program, e.g., one being

Swap(int x, y){x := x+ y; y := x− y;x := x− y; }

Strassen’s2× 2 Matrix Multiplication Consider Strassen’s ma-
trix multiplication, which computes the product of twon × n ma-
trices inΘ(n2.81) time instead ofΘ(n3). The key to this algorithm
is an acyclic fragment that computes the product of two2×2 input
matrices{aij , bij}i,j=1,2 using 7 multiplications instead of the ex-
pected 8. Used recursively, this results in asymptotic savings. We
do not attempt to synthesize the full matrix multiplication proce-
dure because it contains no significant insight. Instead, we synthe-
size the crucial acyclic fragment, which is shown in Figure 2(a).
Here the preconditionFpre is true and the postconditionFpost is
the conjunction of four equalities as (over the outputs{cij}i,j=1,2):�

c11 c12
c21 c22

�
=

�
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

�

The synthesizer also generates many alternate versions that are
functionally equivalent to Figure 2(a).

As a side note, we also attempted synthesis using 6 multipli-
cations, which failed. This suggests that possibly no asymptoti-
cally faster solution exists using simple quadratic computations—
theoretical results up ton2.376 are known, but use products that
cannot be easily be captured in the simple domains considered here.

Integral Square Root Consider computing the integral square
root b

√
xc of a positive numberx using only linear or quadratic

operations. The precondition isFpre
.
= x ≥ 1 and the postcon-

dition, involving the outputi, is Fpost
.
= (i − 1)2 ≤ x < i2.

We provide a single loop flowgraph templateRflow
.
= ∗(◦) and

an empty computation templateRcomp
.
= ∅. The synthesizer gen-

erates different programs depending on the domain constraints and
the stack template:

• Rstack
.
= {(int, 0)} and we allow quadratic expressions in

Dexp, Dgrd. The synthesized program does a sequential search
downwards starting fromi = x by continuously recomputing
and checking(i− 1)2 againstx.

• Rstack
.
= {(int, 1)} and we only allow linear expressions in

Dexp, Dgrd. The synthesized program does a sequential search
but uses the additional local variable rather surprisingly to track
the value of(i−1)2 using only linear updates. The synthesized
program is Example 1, from earlier.

• Rstack
.
= {(int, 2)} and we allow quadratic expressions in

Dexp, Dgrd. The synthesized program does a binary search for
the value ofi and uses the two additional local variables to hold
the low and high end of the binary search space. To restrict
reasoning to linear arithmetic we modelm = b(s1 + s2)/2c
as the assumptions1 ≤ m ≤ s2. Additionally, because of the
incompleteness in the handling of quadratic expressions, our
solver cannot derive(s2 + 1)2 ≤ s21 from s2 + 1 ≤ s1. Thus
we provide the quadratic inequality as another assumption.

Bresenham’s Line Drawing Algorithm Consider Bresenham’s
line drawing algorithm, as we discussed in Section 1.1. For effi-
ciency, the algorithm only uses linear updates, which are non-trivial
to verify [16] or even understand (let alone discover from scratch).

We specify the preconditionFpre
.
= 0 < Y ≤ X. The post-

condition can be written as a quantified assertion outside the loop
or as a quantifier-free assertion inside the loop, as mentioned in
Section 1.1. We choose to annotate the flowgraph with the simpler
quantifier-free2|y − (Y/X)x| ≤ 1 at the loop header and addi-
tionally specify that the loop iterates overx = 0 . . X. This simpli-



fication in the implementation allowed us to useVS3
QA, which only

supports quantifier-free facts.
We specify a single loop flowgraphRflow

.
= ∗(◦) and empty

stack and computation templatesRstack
.
= ∅, Rcomp

.
= ∅. The

synthesizer generates multiple versions, one of which is exactly
as shown in Figure 1(b) and can be translated to the program in
Figure 1(a).

5.3 Sorting Algorithms

For this category, we pickDprf to be the theory supported by
VS3

PA, which we use as our solver. The current version of our
tool works with a user-supplied set of predicates. We are working
on predicate inference techniques—in the style of CEGAR-based
model checkers [23]—but for now, we give the tool a candidate set
of predicates.

The sortedness specification consists of the preconditionFpre
.
=

true and the postconditionFpost
.
= ∀k : 0 ≤ k < n ⇒ A[k] ≤

A[k + 1]. The full functional specification would also ensure that
the output array is a permutation of the input, but verifying—and
thus, synthesizing—the full specification is outside the capabilities
of most tools today.

We therefore use a mechanism to limit the space of programs to
desirable sorting algorithms, while still only usingFpost. We limit
Dexp to those that only involve operations that maintain elements—
for example,swappingelements ormovingelements to unoccupied
locations. Using this mechanism, we ensure that invalid algorithms
(that replicate or lose array elements) are not considered.

Non-recursive sorting algorithms Consider comparison-based
sorting programs that are composed of nested loops. We specify a
flowgraph templateRflow

.
= ∗(∗(◦)) and a computation template

Rcomp that limits the operations to swapping of array values.

• Rstack
.
= ∅: The synthesizer produces two sorting programs

that are valid with respect to the scaffold. One corresponds to
Bubble Sort and the other is a non-standard version of Insertion
Sort. The standard version of Insertion Sort uses a temporary
variable to hold the inserted object. Since we do not provide a
temporary variable, the synthesized program moves the inserted
element by swapping it with its neighbor, while still performing
operations similar to Insertion Sort.

• Rstack
.
= {(int, 1)}: The synthesizer produces another sorting

program that uses the temporary variable to hold an array index.
This program corresponds to Selection Sort and is shown in Fig-
ure 2(b). Notice the non-trivial invariants and ranking functions
that are synthesized alongside for each of the loops.

Recursive divide-and-conquer sortingConsider comparison-
based sorting programs that use recursion. We make a few simple
modifications to the system to specify recursive programs. First, we
introduce a terminal string “~” to the flowgraph template language
(Eq. 2), representing a recursive call. Let(Fpre( ~vin), Fpost( ~vout))
denote the functional specification. Then we augment the expan-
sion (Section 3.2) to handle the new flowgraph string as follows:

Expandn(~) = choose{[]true→ srecur}
wheresrecur = sargs∧(Fpre( ~vin

′) ⇒ Fpost( ~vout
′′))∧sret sets val-

ues to the arguments of the recursive call (usingsargs), assumes the
effect of the recursive call (usingFpre( ~vin

′) ⇒ Fpost( ~vout
′′), with

the input arguments renamed to~vin′ and the return variables re-
named to ~vout′′) and lastly, outputs the returned values into program
variables (usingsret). The statementssargs, sret take the form:

sargs =
V

i xi = ei wherexi ∈ ~vin
′, ei ∈ Dexp|Vars

sret =
V

i xi = ei wherexi ∈ Vars, ei ∈ Dexp| ~vout′′

HereVars denote the variables of the procedure (the input, output
and local stack variables). We also tweak the statement concretiza-

tion function (Section 4) to output a recursive call statementrec:

Stmt(Fpre( ~vin
′)⇒Fpost( ~vout

′′)) = ~vout
′′ := rec( ~vin

′)

We specify a computation template that allows only swapping or
moving of elements. We then try different values of the flowgraph
and stack templates:

• Rflow
.
= ~;~;◦ (two recursive calls followed by an acyclic

fragment) andRstack
.
= ∅: The synthesizer produces a program

that recursively sorts subparts and then combines the results.
This corresponds to Merge Sort.

• Rflow
.
= ◦;~;~ (an acyclic fragment followed by two recursive

calls) andRstack
.
= {(int, 1)}: The synthesizer produces a

program that partitions the elements and then recursively sorts
the subparts. This corresponds to Quick Sort.

5.4 Dynamic Programming Algorithms

For this category, we pickDprf to be the theory supported byVS3
AX,

which we use as our solver. As in the previous section, since our
tool does not currently infer predicates, we give it a candidate set.
We choose all the textbook dynamic programming examples [8]
and attempt to synthesize them from their functional specifications.

The first hurdle (even for verification) for these algorithms is
that the meaning of the computation is not easily specified. To
address this issue, we need support for axioms, which are typically
recursive definitions.

Definitional Axioms The verification tool allows the user to de-
fine the meaning of a computation as an uninterpreted symbol, with
(recursive) quantified facts defining the semantics of the symbol ax-
iomatically. For example, the semantics of Fibonacci are defined in
terms of the symbolFib and the three axioms:

Fib(0) = 0 ∧ Fib(1) = 1
∀k : k ≥ 0 ⇒ Fib(k + 2) = Fib(k + 1) + Fib(k)

The tool passes the given symbol and its definitional axioms to the
underlying theorem prover (Z3 [10]), which assumes the axioms
before every theorem proving query. With this interpretation of the
symbolFib known to the theorem prover, the verifier can now pose
theorem proving queries involving the symbolFib. For instance,
the iterative program for Fibonacci maintains an invariant of the
form x = Fib(i), which the verifier can now infer. This allows the
tool to verify dynamic programming programs that are typically
iterative, relating them to the recursive definitional axioms.

Even with verification in place, automatic synthesis of these
programs involves three non-trivial tasks for the synthesizer. First,
the synthesizer needs to automatically discover a strategy for
translating the recursion (in the functional specification) tonon-
recursive iteration(for the actual computation). The functional
specifications do not contain this information, e.g., in the specifica-
tion for Fibonacci above, the iteration strategy for the computation
is not evident. Second, the synthesizer needs to take the (non-
directional) equalities in the specifications andimpose directional-
ity such that elements are computed in the right order. For example,
for Fibonacci the synthesizer needs to automatically discover that
Fib(k) andFib(k + 1) should be computed beforeFib(k + 2).
Third, the synthesizer needs to discover anefficient memoization
strategy for only those results needed for future computations, to fit
the computation in the space provided—which is one of the bene-
fits of dynamic programming algorithms. For example, Fibonacci
can be computed using only two additional memory locations by
suitable memoization. Fortunately, just by specifying the resource
constraints and using our proof-theoretic approach the synthesizer
is able to perform these tasks and synthesize dynamic programming
algorithms from their recursive functional specifications.

Also, as in the case of sorting, we want to disallow completely
arbitrary computations. In sorting, we could uniformly restrict the



expression language to only swap and move operations. For dy-
namic programming, the specification of the operations is problem-
specific. For instance, for shortest path, we only want to allow the
path matrix updates that correspond to valid paths, e.g., disallow
arbitrary multiplication of path weights.Rcomp specifies these con-
straints by only permitting updates through certain predicates.

Dynamic programming solutions typically have an initialization
phase (init-loop) and then a phase (work-loop) that fills the appro-
priate entries in the table. Therefore, we chose aRflow with an init-
loop (∗(◦)) followed by a work-loop.

By specifying a flowgraph templateRflow
.
= ∗(◦);∗(◦) and a

stack template with no additional variables (except for the case of
Fibonacci, where the synthesizer requiredRstack

.
= {(int, 2)}),

we were able to synthesize the following four examples:

Fibonacci Consider computing thenth Fibonacci number from
the functional specification as above. Our synthesizer generates
a program that memoizes the solutions to the two subproblems
Fib(i1) andFib(i1 +1) in thei1th iteration. It maintains a sliding
window for the two subproblems and stores their solutions in the
two additional stack variables. The synthesized program along with
its invariant and ranking function is shown in Figure 2(c).

Checkerboard Consider computing the least-cost path in a rec-
tangular grid (with costs at each grid location), from the bottom
row to the top row. The functional specification states the path cost
for a grid location in terms of the path costs for possible previous
locations (i.e., below left, below or below right). Our synthesizer
generates a program that finds the minimum cost paths.

Longest Common Subsequence (LCS)Consider computing the
longest common substring that appears in the same order in two
given input strings (as arrays of characters). The recursive func-
tional specification relates the cost of a substring against the cost
of substrings with one fewer character. Our synthesizer generates a
program for LCS.

Single Source Shortest PathConsider computing the least-cost
path from a designated source to all other nodes where the weight
of edges is given given as a cost function for each source and
destination pair. The recursive functional specification states the
cost structure for all nodes in terms of the cost structure of all nodes
if one fewer hop is allowed. Our synthesizer generates a program
for the single source shortest path problem.

For the following two examples, synthesis failed with the sim-
pler work-loop, but we synthesize the examples by specifying a
flowgraph template∗(◦);∗(∗(◦)) and no additional stack variables:

All-pairs Shortest Path Consider computing all-pairs shortest
paths using a recursive functional specification similar to the one
we used for single source shortest path. Our synthesizer times out
for this example. We therefore attempt synthesis by (i) specifying
the acyclic fragments and synthesizing the guards, and (ii) spec-
ifying the guards and synthesizing the acyclic fragments. In each
case, our synthesizer generates the other component, corresponding
to Floyd-Warshall’s algorithm.

Matrix Chain Multiply Consider computing the optimal way to
multiply a matrix chain. Depending on the bracketing, the total
number of multiplications varies. We wish to find the bracketing
that minimizes the number of multiplications. E.g., if we use the
simplen3 multiplication for two matrices, thenA10×100B100×1C1×50

can either takes 1,500 multiplications for(AB)C or 55,000 mul-
tiplications forA(BC). The functional specification defines the
cost of multiplying a particular chain of matrices in terms of the
cost of a chain with one fewer element. Our synthesizer generates
a program that computes the optimal matrix bracketing.

Benchmark maxcnj maxbv Assumes
Swap two 0 2, 6 0
Strassen’s 0 2, 6 0
Sqrt (linear search) 4 2, 6 0
Sqrt (binary search) 3 2, 8 2
Bresenham’s 6 2, 5 0

Table 1. Parameters used for synthesis usingVS3
QA. For each bench-

mark, we list the maximum number of conjuncts in any invariant
(maxcnj) and bit vector sizes (maxbv, for constants and for bit-
blasting), respectively. The last column lists any assumes we man-
ually specified.

Benchmark
Number of

Defn. Templates, Annot. or
Axioms Predicates Assumes

Bubble Sort 0 3, 17 1
Insertion Sort 0 3, 16 1
Selection Sort 0 3, 20 1
Merge Sort 0 4, 16 3
Quick Sort 0 3, 15 0

Fibonacci 3 1, 12 0
Checkerboard 5 2, 8 0
Longest Common Subseq. 6 2, 13 0
Matrix Chain Multiply 7 2, 18 0
Single-Src Shortest Path 3 3, 16 0
All-pairs Shortest Path 10 4, 19 0

Table 2. Parameters used for synthesis usingVS3
AX. For each bench-

mark, we list the number of definitional axioms required to specify
the meaning of the computation. Additionally, we list the number
of invariant templates and size of predicate set given toVS3

AX. The
last column lists any annotations or assumes we manually specified.

5.5 Performance

Parameters forVS3
QA and VS3

AX Table 1 lists the parameters re-
quired to runVS3

QA over our arithmetic benchmarks. The second
column lists the maximum number of conjuncts (maxcnj) expected
in each invariant. The third column lists the bit vector sizes (maxbv)
used for invariant coefficients and intermediate values. The last col-
umn lists the assumptions we manually provided.

We guessed reasonable values formaxcnj for the programs with
loops. We started with a small value and iteratively increased it if
synthesis failed. For the bit-vector sizes, we choose two bits for
the coefficients since we were not expecting large coefficients in
the invariants. We then chose reasonable values (5–8) for the bit-
vector size for intermediate computations. There was only one case,
square root using binary search, where we had to specify a manual
assertion, as discussed earlier. In all, little user effort was required.

Table 2 lists the parameters required to runVS3
AX over our sort-

ing and dynamic programming benchmarks. The second column
lists the number of definitional axioms required for specifying the
meaning of the computation and are required even for verification.
The third column lists the number of templates and predicates used.
The last column lists the number of annotations or assumptions that
were manually provided.

The templates contain conjunctive holes and explicit quantifica-
tion and disjunction. For each benchmark, there is one quantifier-
free, disjunction-less, template and the remaining are universally
quantified with a form almost identical to the postcondition, and
therefore easy to write out. All invariants are conjunctions of the
templates with their holes instantiated with a subset (conjunction)
of the predicate set. The predicates are atomic relations between
linear and array expression over program variables and constants.
We specify a suitable predicate set for each benchmark. We start
with a candidate set and then iteratively added predicates when syn-



Benchmark Verif. Synthesis Ratio
A

rit
h.

(V
S
3 Q
A
) Swap two 0.11 0.12 1.09

Strassen’s 0.11 4.98 45.27
Sqrt (linear search) 0.84 9.96 11.86
Sqrt (binary search) 0.63 1.83 2.90
Bresenham’s 166.54 9658.52 58.00

S
or

tin
g

(V
S
3 P
A
) Bubble Sort 1.27 3.19 2.51

Insertion Sort 2.49 5.41 2.17
Selection Sort 23.77 164.57 6.92
Merge Sort 18.86 50.00 2.65
Quick Sort 1.74 160.57 92.28

D
yn

am
ic

P
ro

g.
(VS

3 A
X
) Fibonacci 0.37 5.90 15.95

Checkerboard 0.39 0.96 2.46
Longest Common Subseq. 0.53 14.23 26.85
Matrix Chain Multiply 6.85 88.35 12.90
Single-Src Shortest Path 46.58 124.01 2.66

All-pairs Shortest Path1 112.28
(i) 226.71

(ii) 750.11
(i) 2.02

(ii) 6.68

Table 3. (a) Arithmetic (b) Sorting (c) Dynamic Programming. For
each category, we indicate the tool used both for verification and
synthesis. For each benchmark, we indicate the time in seconds to
solve the verification conditions and the synthesis conditions, and
the slowdown for synthesis compared to verification.

thesis failed. We needed at most 20 predicates, which were easily
found for each benchmark. In the interest of space, we omit the
exact templates and predicates used for each benchmark, but they
can be found in the companion technical report [35]. For each of
the sorting programs with a nested loop structure (Bubble, Inser-
tion and Selection Sort), the outer loop invariant is redundant given
the inner loop invariant. Therefore, we tag the outer loop—the one
annotation each case—and the solver does not to attempt to gener-
ate its invariant, improving performance. For Merge Sort, synthe-
sis fails unless we reduce the search space by manually specifying
three simple quantifier-free atomic facts of the invariant. In all, little
user effort was required.

Runtimes Table 3 presents the performance of a constraint-based
synthesizer over arithmetic, sorting and dynamic programming
benchmarks using the parameters from Tables 1 and 2. All run-
times are median of three runs, measured in seconds. We measure
the time for verification and the time for synthesis using the same
tool. The total synthesis time varies between 0.12–9658.52 sec-
onds, depending on the difficulty of the benchmark, with a median
runtime of 14.23 seconds. The factor slowdown for synthesis varies
between 1.09–92.28 with a median of 6.68.

The benchmarks we used are considered difficult even for veri-
fication. Consequently the low average runtimes for proof-theoretic
synthesis are encouraging. Also, the slowdown for synthesis com-
pared to verification is acceptable, and shows that we can indeed
exploit the advances in verification to our advantage for synthesis.

5.6 Limitations and Future Work

Our synthesis system borrows the limitations of the underlying ver-
ifiers. Specifically, we added assumptions for two cases, binary
search square root and merge sort, to compensate for the incom-
plete handling of quadratic expressions byVS3

QA and inefficiency
of VS3

AX, respectively. Similarly, we have to specify a set of can-
didate predicates forVS3

AX—an overhead that can be alleviated us-
ing predicate inference techniques. For our experiments, this meant
that at times, our guesses were not sufficient, and synthesis only
succeeded after a first few failed attempts which were used to iter-
atively refine the set of predicates, akin to a manual run of CE-

1 These timings are for separately (i) synthesizing the loop guards, and for
(ii) synthesizing the acyclic fragments.

GAR [4]. Aside from these avoidable incompleteness issues of
verifiers, there are two major concerns for any synthesis system,
namelyscalabilityandrelevance.

Scalability The synthesis conditions we generate are tractable for
current solvers, even though these benchmarks are considered some
of the most difficult even to verify. Yet, the synthesis conditions
are not trivial, as illustrated by the need to annotate three of the
sorting benchmarks to omit invariants for their outer loops. With
the current system we expect to be able to synthesize programs that
have more lines of code, but for which the reasoning involved is not
as complicated as in our benchmarks. But to synthesize programs
that are largerand involve more complicated reasoning, more
efficient verifiers are needed.

Relevance Any solution to the synthesis conditions is a valid
terminating program that satisfies the scaffold specification. But
there may be multiple valid ones that may differ, for instance, in
cache behavior, runtime performance, or readability. Currently, we
do not prioritize the synthesized programs in any manner, but for
completeness we let the solver enumerate solutions. To get another
solution, we assert the negation of a solution generated in a step
and iteratively ask for the next solution. Notice though that the
synthesis times reported in Table 3 are for generating the first
of those solutions. We envision that in the future, we can either
augment synthesis conditions with constraints about relevance or
use a postprocessing step to prioritize and pick relevant solutions
from those enumerated.

6. Related Work
Proof-theoretic program synthesisDijkstra [14], Gries [18] and
Wirth [38] advocated that programmers write program that are
correct-by-construction by manually developing the proof of cor-
rectness alongside the program. Because techniques for efficient
invariant inference were unavailable in the past, synthesis was con-
sidered intractable [12]. Recently, scheme-guided synthesis [17]
has been proposed but specialized to the arithmetic domain [5].
Categorizations of approaches as constructive/deductive synthesis,
schema-guided synthesis and inductive synthesis are presented in
a recent survey [1]. Our approach can be seen as midway be-
tween constructive/deductive synthesis and schema-guided synthe-
sis. Some researchers proposed heuristic techniques for automa-
tion, but they cater to a very limited schematic of programs are
limited in their applicability [15]. In this paper, we have shown that
verification has reached a point whereautomaticsynthesis is feasi-
ble.

Extracting program from proofs The semantics of program
loops is related to mathematical induction. There, an inductive
proof of the theorem induced by a program specification can be
used to extract a program [27]. Using significant human input, the-
orems proved interactively in the Coq have a computational analog
that can be extracted [2]. The difficulty is that the theorem is of
the whole program, and proves that an output exists for the spec-
ification. Such a theorem is much more difficult than the simple
theorem proving queries generated by the verification tool.

Sketching Instead of a declarative specification of the desired
computation as we use, combinatorial sketching [29, 30, 31] uses
an unoptimized program as the specification. A model checker
eliminates invalid candidate programs that the synthesizer gener-
ates. Loops are handled in a novel but incomplete manner, by un-
rolling, or by using a predefined skeleton, or by using domain spe-
cific loop finitization tricks [29] that are not applicable when syn-
thesizing true unbounded loops (which our approach synthesizes
naturally using safety and liveness constraints). Sketching does not



inherently generate the proof, although postprocessing steps can
ensure correctness [30], while our approach produces the program,
and the proof.

Model checking-based synthesis of automataSeminal work
on model checking [3] proposed synthesizing synchronization
skeletons—a problem that has recently seen renewed interest [36,
37]. Synthesis from LTL specification has also been consid-
ered [28]. For the case of reactive systems, proposals exist that
reduce the synthesis problem to a game between the environment
and the synthesizer where the winning strategy corresponds to the
synthesized program. Recently, this approach has also been ap-
plied to program repair [25, 19], which can be seen as restricted
program synthesis. Despite optimizations [24], the practicality of
these approaches for complete program synthesis remains unclear.

7. Conclusions
We have presented a principled approach to synthesis that treats
synthesis as a generalized verification problem. The novelty of
our approach lies in generating synthesis conditions, which are
composed of safety conditions, well-formedness conditions, and
progress conditions, such that a satisfying solution to the syn-
thesis conditions corresponds to a synthesized program. We have
been able to use verification tools to synthesize programs, and, si-
multaneously, their proof (invariants, ranking functions). We have
demonstrated the viability of our approach by synthesizing diffi-
cult examples in the three domains of arithmetic, sorting, and dy-
namic programming, all in very reasonable time. We believe the
reason for the practicality of our approach is the interplay between
the proof (invariants) and the statements. Specifically, by setting
up constraints with both statement and proof unknowns together,
statements that do not have a corresponding proof are efficiently
eliminated. We believe this is the first proposal that leverages this
insight for efficient and automatic program synthesis.
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