
FlashExtract: A Framework for Data Extraction by Examples

Vu Le ∗

University of California at Davis
vmle@ucdavis.edu

Sumit Gulwani
Microsoft Research Redmond

sumitg@microsoft.com

Abstract
Various document types that combine model and view (e.g., text
files, webpages, spreadsheets) make it easy to organize (possibly
hierarchical) data, but make it difficult to extract raw data for any
further manipulation or querying. We present a general framework
FlashExtract to extract relevant data from semi-structured docu-
ments using examples. It includes: (a) an interaction model that
allows end-users to give examples to extract various fields and to re-
late them in a hierarchical organization using structure and sequence
constructs. (b) an inductive synthesis algorithm to synthesize the
intended program from few examples in any underlying domain-
specific language for data extraction that has been built using our
specified algebra of few core operators (map, filter, merge, and pair).
We describe instantiation of our framework to three different do-
mains: text files, webpages, and spreadsheets. On our benchmark
comprising 75 documents, FlashExtract is able to extract intended
data using an average of 2.36 examples in 0.84 seconds per field.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; I.2.2 [Artificial Intelligence]:
Program Synthesis

General Terms Languages, Algorithms, Human Factors

Keywords Program Synthesis, End-user Programming, Program-
ming by Examples

1. Introduction
The IT revolution over the past few decades has resulted in two
significant advances: the digitization of massive amounts of data
and widespread access to computational devices. However, there is
a wide gap between access to rich digital information and the ability
to manipulate and analyze it.

Information is available in documents of various types such as
text/log files, spreadsheets, and webpages. These documents offer
their creators great flexibility in storing and organizing hierarchical
data by combining presentation/formatting with the underlying data
model. However, this makes it extremely hard to extract the underly-
ing data for several tasks such as data processing, querying, altering
the presentation view, or transforming data to another storage format.

∗Work done during two internships at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
PLDI ’14, June 09 - 11 2014, Edinburgh, United Kingdom.
Copyright c© 2014 ACM ACM 978-1-4503-2784-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2594291.2594333

This has led to development of various domain-specific technologies
for data extraction. Scripting languages like Perl, Awk, Python have
been designed to support string processing in text files. Spreadsheet
systems like Microsoft Excel allow users to write macros using a
rich built-in library of string and numerical functions, or to write
arbitrary scripts in Visual Basic/.NET programming languages. Web
technologies like Xquery, HTQL, XSLT can be used to extract data
from webpages, but this has the additional burden of knowing the
underlying document structure.

Existing programmatic solutions to data extraction have three
key limitations. First, the solutions are domain-specific and require
knowledge/expertise in different technologies for different document
types. Second, they require understanding of the entire underlying
document structure including the data fields that the end user is
not interested in extracting and their organization (some of which
may not even be visible in the presentation layer as in case of
webpages). Third, and most significantly, they require knowledge
of programming. The first two aspects create challenges for even
programmers, while the third aspect puts these solutions out of reach
of the vast majority of business end users who lack programming
skills. As a result, users are either unable to leverage access to rich
data or have to resort to manual copy-paste, which is both time-
consuming and error prone.

In this paper, we address the problem of developing a uniform
end-user friendly interface to support data extraction from semi-
structured documents of various types. Our methodology includes
two key novel aspects: a uniform user interaction model across
different document types, and a generic inductive program synthesis
framework.

Uniform and End-user Friendly Interaction Model Our extrac-
tion interface supports data extraction via examples. The user ini-
tiates the process by providing a nested hierarchical definition of
the data that he/she wants to extract using standard structure and
sequence constructs. The user then provides examples of the various
data fields and their relationships with each other. An interesting
aspect is that this model is independent of the underlying docu-
ment type. This is based on our observation that different document
types share one thing in common: a two-dimensional presentation
layer. We allow users to provide examples by highlighting two-
dimensional regions on these documents. These regions indicate
either the fields that the user wants to extract or structure/record
boundaries around related fields.

Inductive Program Synthesis Framework To enable data extrac-
tion from examples, we leverage inductive program synthesizers
that can synthesize scripts from examples in an underlying domain-
specific language (DSL). The key technical contribution of this
paper is an inductive program synthesis framework that allows easy
development of inductive synthesizers from mere definition of DSLs
(for data extraction from various document types). We describe an
expressive algebra containing four core operators: map, filter, merge,
and pair. For each of these operators, we define its sound and com-
plete generic inductive synthesis algorithms parameterized by the

Figure 1: Extracting data from a text file using FlashExtract.

operator’s arguments. As a result, the synthesis designer simply
needs to define a DSL with two features: (a) It should be expressive
enough to provide appropriate abstractions for data extraction for the
underlying document type, (b) It should be built out of the operators
provided by our core algebra. The synthesis algorithm is provided
for free by our framework. This is a significant advance in the area
of programming by examples, wherein current literature [11, 12] is
limited to domain-specific synthesizers.

This paper makes the following contributions:
• We present a uniform and end-user friendly interaction model

for data extraction from examples (§3). This eliminates the
need to learn domain-specific scripting technologies for various
document types. It also eliminates the need to understand the
document’s internal data model and its representation.
• We present a rich algebra of operators for data extraction DSLs

and a modular inductive synthesis strategy (which is sound,
complete, and practically efficient) for each of these operators
(§4). This allows development of inductive synthesizers for data
extraction from various document types from a mere definition
of an appropriate DSL using these operators. This eliminates the
need to develop specialized program synthesis algorithms.
• We present three useful instantiations of our framework to the

domains of text files, webpages, and spreadsheets (§5). Each
of these improves the state of the art for data extraction from
respective document types.
• We present detailed experimental evaluation that illustrates the

effectiveness of the three instantiations of our general framework
on 25 documents each (§6). Each of these instantiations were
able to synthesize the desired extraction script using an average
of 2.36 examples in 0.84 seconds per field.
We start out with motivating examples for data extraction from

various document types and illustrate our user interaction model.

2. Motivating Examples
In this section, we motivate some data extraction tasks across
different document types and illustrate how FlashExtract can be
used to automate the various tasks from examples.

Text Extraction
EXAMPLE 1. Consider the text file in Fig. 1 (taken from a help fo-
rum thread1) that contains a sequence of sample readings, where
each sample reading lists various “analytes” and their characteris-
tics (analyte intensities). The user wants to extract the highlighted

1 http://www.excelforum.com/excel-programming/608284-read-txt-file.html

Figure 2: Extracting data from a Google Scholar webpage.

fields into an Excel spreadsheet in order to perform some analysis.
Accomplishing this task by creating a one-off Perl script appears
daunting, especially for a non-programmer.

Suppose the user only wants to extract the analyte names
(magenta regions starting with instance “Be”) and their mass (violet
regions starting with instance “9”). The user starts with the analyte
names. She highlights the first two regions “Be” and “Sc” as
examples in magenta color. FlashExtract synthesizes an extraction
program and uses it to highlight all other analyte instances. The user
inspects and approves the highlighted result because it matches the
intended sequence. She then moves to the mass field and repeats the
process with violet color. FlashExtract can now automatically relate
the respective instances from the magenta sequence and the violet
sequence, and can generate a two-column Excel table if desired.

Now suppose the user also wants to extract the conc. mean
(blue regions including instance “0.070073”). After one example,
FlashExtract mistakenly includes the string “,""ug/L„,404615.043”
to the result (this should be null). To exclude this region, the user
draws a red line through it to mark it as a negative example, and
FlashExtract refines the learning with the new information. It then
produces the correct result and the user stops providing any further
examples. Although the third sequence contains fewer regions,
FlashExtract is still able to relate it to the other two automatically
because it is the only sequence containing null regions.

In case FlashExtract cannot relate different field regions, or does
so incorrectly, the user can intervene by marking a structure bound-
ary around related regions. For instance, the user may highlight the
first yellow region as the structure boundary for the intensity of the
first analyte. FlashExtract is able to infer similar yellow regions
that group other intensities. If the user wants to further organize the
analyte intensities into different samples, she creates the outer green
regions. The user can then add the sample ID (orange field, such as
“5007-01”) to these green structures.

Once the highlighting process has been completed, the user can
obtain the data (in different formats such as XML file or Excel table)
and its associated data extraction program. The user may run the
program on other similar files to extract data in the same output
format without giving any additional examples.

Note that the user can extract data in any field order (we only
demonstrated one such order). For example, the green regions
can be highlighted before the yellow regions, which in turn can
be highlighted before the violet regions. The top-down order is
generally recommended and has higher chance of success (because
an inner field knows who is its parent). Furthermore, the highlighting
does not necessarily need to follow the actual file structure; it just
needs to be consistent. For instance, the user may want the green
structures to begin at “"Sample ID”, or the yellow structures to end
in the middle of the lines, say before “ug/L”.

We can combine FlashExtract with existing end-user program-
ming technologies to create new user experiences. For instance,
integration of FlashExtract with FlashFill [10] allows users to both
extract and transform the highlighted fields using examples, and
possibly push the changes back to the original document. As an
example, after highlighting using FlashExtract, the user can easily

http://www.excelforum.com/excel-programming/608284-read-txt-file.html

Figure 3: Extracting data from a semi-structured spreadsheet.

change the precision of conc. mean (blue field) or the casing of
analytes (magenta field) using FlashFill.

Webpage Extraction
EXAMPLE 2. Google Scholar website (http:// scholar.google.com) has
author pages containing list of all publications. A publication
consists of its title, list of authors, venue, number of citations,
and year of publication. Fig. 2 shows an excerpt from a page of a
researcher Mandana Vaziri.

Suppose the user wants to find all publication titles in which
Dr. Vaziri is the first author. She can use FlashExtract to extract the
publication title (blue) and just the first author (magenta) fields into
an Excel spreadsheet, where she can utilize the native spreadsheet
functionality to sort by first author field. A key design principle
behind FlashExtract is to provide a uniform interaction model
independent of the underlying document type. The user interacts
with webpages exactly as with text files. That is, the user gives
examples for the desired fields by using colored highlighting over the
rendered webpage. She does not need to understand the underlying
structure of the webpages (as is required in the case of querying
languages such as XPath, XQuery).

Now suppose the user wants to extract publication titles along
with the list of all authors. Extracting list of all authors is technically
challenging because the comma separated list of all authors is
represented as a string in a single div tag. However, FlashExtract
can be used to highlight each author individually. Its underlying
DSL is expressive enough to allow extracting list of regions in a text
field of a single HTML node.

FlashExtract can be used to group a publication and all its authors
together. The user may make this relation explicit by highlighting
green regions. The same applies to the yellow regions that group
author sequences. Once FlashExtract has produced the program, the
user may run it on other scholar pages to perform the same task for
other authors.

Spreadsheet Extraction
EXAMPLE 3. Consider the semi-structured spreadsheet "Funded -
February#A835C.xlsx" from the EUSES benchmark [15] shown
in Fig. 3. Suppose the user wants to (a) add up the values in the
Amount column (excluding the values in the subtotal rows), and (b)
plot values in the Amount column grouped by department name.

The user highlights few examples of the amount field (ma-
genta), department field (yellow), and the record boundaries (green).
FlashExtract is then able to highlight all other similar instances and
creates a new relational table view. For task (a), the user can now
simply add up all the values in the amount column by using the na-
tive spreadsheet SUM function over the new relational view (instead

Schema M = S | T
Structure T = Struct (identifier : E1, . . . , identifier : En)

Element E = f | S
Sequence S = Seq(f)

Field f = [color] τ | [color] T

Figure 4: The language of schema for extracted data.

of having to write a complicated conditional arithmetic macro over
the original semi-structured spreadsheet view). Task (b) is easily
accomplished using the popular “Recommended Charts” feature in
Excel 2013, wherein Excel automatically suggests relevant charts
over user’s data. Note that this feature only works when the data is
properly formatted as a single relational table—it does not work on
the original semi-structured spreadsheet.

If the user later decides to also extract the investigator name
(blue), she can simply provide an example. As before, once all
interactions are recorded, the output view can be automatically
updated if the user continues to edit and maintain the original ad-
hoc format consistently.

3. User Interaction Model
Our user interaction model for data extraction requires the user to
provide an output data schema and highlight examples of regions
(in the document) that contain the desired information. The final
result is a schema extraction program that extracts the desired data
from the document as an instance of the output schema. We next
define these aspects in more detail.

Output Schema
The final product of an extraction task is a nested organization of
the extracted data using standard structure and sequence constructs.
Fig. 4 defines the language for the output schema. The output schema
is either a sequence S over some field f , or a structure T with named
elements E1, . . . , En. Each element E corresponds to either a field
f or to a sequence S. Each field f is either an atomic type τ (also
referred to as a leaf field) or a structure T . Each field f is associated
with a unique color (denoted f.Color).

For example, the schemas for the two extraction tasks discussed
in Ex. 1 are presented below. The first one represents a sequence of
yellow structures, each of which contains a magenta Analyte field
and a violet Mass field. The second one represents organization of
many more fields referenced in the task illustrated in Fig. 1.

(1) Seq
(
[yellow] Struct(Analyte : [magenta] Float,

Mass : [violet] Int)
)

(2) Seq
(
[green] Struct(SampleID : [orange] String,

Intensities : Seq([yellow] Struct(
Analyte : [magenta] String,
Mass : [violet] Int,
CMean : [blue] Float)))

)
Note that the schema language does not allow a sequence to

be directly nested inside another sequence. It requires a colored
structure construct in between them. The structure serves as the
boundary for the learning of the inner sequence.

DEFINITION 1 (Ancestor). We say that a field f1 is an ancestor of
field f2 if f2 is nested inside f1. For notational convenience, we say
that ⊥, which stands for the top-level data schema definition, is an
ancestor of every field. Additionally, f1 is a sequence-ancestor of f2
if there is at least one sequence construct in the nesting between f1
and f2. Otherwise, f1 is a structure-ancestor of f2. We say that ⊥ is
an ancestor of every other field.

In the second schema above, the yellow structure is the structure-
ancestor of leaf fields Analyte, Mass, and CMean. The top-level
green structure is the sequence-ancestor of the yellow structure.

http://scholar.google.com

function Run (schema extraction program Q, schema M , document
D) : schema instance is

1 CR := ∅
2 foreach field f in M in top-down topological order do
3 R̃ := Run(Q(f), D, CR)

4 CR := CR ∪ {(f.Color, R) | R ∈ R̃}
5 if CR is inconsistent with M then return ⊥
6 else return Fill(M,D.Region)

function Run (extraction program (f ′, P) of field f , document D,
highlighting CR): f-regions is

7 R̃′ := (f ′ = ⊥)? {D.Region} : CR[f ′.Color]
8 return

⋃
R′∈R̃′

JP KR′ /* execute P on R′ */

Algorithm 1: Execution semantics of extraction programs.

We categorize ancestral relationship in order to invoke appropriate
synthesis algorithms.

Regions
DEFINITION 2 (Region). A region R of a document is some two-
dimensional portion over the visualization layer of that document
that the user is allowed to highlight in some color. We use the
notation f -region to denote any region that the user highlights in
f.Color. Any region R that is associated with a leaf field (also
referred to as a leaf region) has some value associated with it,
which is denoted by R.Val. For a document D, we use the notation
D.Region to denote the largest region possible in D.

In case of text files, any region is represented by a pair of two
character positions within the file and consists of all characters in
between (these positions may or may not be within the same line).
The value of such a region is the string of all characters in between
those positions.

In case of webpages, a leaf region is represented by either an
HTML node (the value of such a region is the text value associated
with that node) or a pair of character positions within the text
content of an HTML node (the value of such a region is the string
of all characters in between those positions). A non-leaf region is
represented by an HTML node.

In case of spreadsheets, a leaf region is represented by a single
cell (and its value is the cell’s content), while a non-leaf region is
represented by a pair of cells (and consists of the rectangular region
determined by those cells).

DEFINITION 3 (Highlighting). A highlighting CR of a document D
is a collection of colored regions in D. It can also be viewed as a
function that maps a color to all regions of that color in D. We say
that a highlighting CR is consistent with a data scheme M if the
following conditions hold.
• For any two regions (in CR), either they don’t overlap or one is

nested inside the other.
• For any two fields f1 and f2 in M such that f1 is an ancestor of
f2, each f2-region R2 is nested inside some f1-region R1.
• For any two fields f1 and f2 in M such that f1 is a struct-

ancestor of f2, there is at most one f2-region inside a f1-region.
• For every leaf field f in M , the value of any f -region in CR is of

type f .

Schema Extraction Program
FlashExtract synthesizes extraction programs for individual fields
and combines them into a schema extraction program following the
structure imposed by the output schema. FlashExtract also leverages
the schema’s structure to simplify the learning of individual fields. In
particular, it relates a field f to one of its ancestors, whose extraction
program (in case of a non-⊥ ancestor) defines learning boundaries
for f (i.e., each f -region must reside inside one of these boundaries).

Fill
(
Struct (id1 E1, . . . , idn En), R

)
= new

Struct
(
{id1 = Fill(E1, R), . . . , idn = Fill(En, R)}

)
Fill

(
Seq(f), R

)
= new

Seq
(
Map(λR′ : Fill(f,R′), Subregions(R, CR[f.Color])

)
Fill([color] Val, R) = Subregion(R, CR[color]).Val

Fill([color] T,R) = Fill(T, Subregion(R, CR[color]))

Fill(_,⊥) = ⊥

Figure 5: Semantics of Fill.

DEFINITION 4 (Extraction Programs). A schema extraction pro-
gram Q for a given schema M is represented as a map from each
field f in M to a field extraction program, denoted Q(f).

A field extraction program of field f is a pair (f ′, P), where f ′

(possibly⊥) is some ancestor field of f and P is either a SeqRegion
program that extracts a sequence of f -regions from inside a given
f ′-region (in case f ′ is a sequence-ancestor of f), or is a Region
program that extracts a single f -region from inside a given f ′-region
(in case f ′ is a struct-ancestor of f).

The execution semantics of a schema extraction program is
defined in Algorithm 1. FlashExtract executes the field extraction
program corresponding to each field f in a top-down order and
updates the document highlighting CR using the returned list of f -
regions R̃ (lines 2–4). For each field f , it first finds the set of regions
R̃′ determined by the ancestor f ′ (line 7), and then computes all
f -regions by executing the field extraction program on each region
R′ in R̃′ (line 8). Once CR has been fully constructed, it generates a
schema instance from the nesting relationship defined in the output
schema M , using the Fill function (line 6).

Fig. 5 defines the semantics of Fill recursively. Each definition
takes a schema construct and a region corresponding to one of
its ancestor fields, and returns a construct instance by recursively
applying Fill functions on its descendants. CR[c] returns all regions
whose color is c. Subregions(R, R̃) returns the ordered set of
regions from R̃ that are nested inside R. Subregion(R, R̃) returns
the region from R̃ that is nested inside R; if no such region exists,
⊥ is returned. Note that if CR is consistent with M , there is at most
one such region. We assume the presence of an API for checking
the nestedness of two regions.

Example-based User Interaction
Having defined all necessary concepts, we are now ready to discuss
the way a user interacts with FlashExtract to extract their desired
data. The user first supplies the output data schema. Then, for each
field f in the schema (in an order determined by the user), the user
simply provides sufficient number of examples of field instances of
field f by highlighting appropriate regions in the document using
f.Color. Our user interface supports standard mouse click, drag,
and release gestures.

When the user provides examples for a field f , FlashExtract
synthesizes a field extraction program for field f (using Algorithm 2)
that is consistent with the provided examples, and executes it to
identify and highlight other regions in f.Color. (See Def. 5 for a
formal notion of consistency.) If the user is happy with the inferred
highlighting, she can commit the results (the field f is said to
have been materialized at that point of time), and then proceed
to another (non-materialized) field. Otherwise, the user may provide
any additional examples.

We say that a field f has been simplified if there exists a
materialized field f ′ such that f ′ is a structure-ancestor of f . The
examples for a non-simplified field consist of positive instances
and optionally negative instances of regions that lie completely
within the regions of the immediate ancestor field that has been

function SynthesizeFieldExtractionProg (Document D,
Schema M , Highlighting CR, Field f , Regions R̃1, Regions R̃2) is

/* R̃1, R̃2 denote positive, negative instances */

1 foreach ancestor field f ′ of f in schema M do
2 if f ′ isn’t materialized ∧ f ′ 6= ⊥ then continue
3 R̃ := (f ′ = ⊥)? {D.Region} : CR[f ′.Color]
4 if f ′ is a sequence-ancestor of f then
5 ex := ∅
6 foreach R ∈ R̃ s.t. Subregions(R, R̃1 ∪ R̃2) 6= ∅

do
7 ex := ex ∪

{(R, Subregions(R, R̃1), Subregions(R, R̃2))}
8 P̃ := SynthesizeSeqRegionProg(ex)

9 else /* f ′ is a structure-ancestor of f */
10 ex := ∅
11 foreach R ∈ R̃ s.t. Subregion(R, R̃1) 6= ⊥ do
12 ex := ex ∪ {(R, Subregion(R, R̃))}

P̃ := SynthesizeRegionProg(ex)

foreach P ∈ P̃ do
CR′ := CR ∪ {(f.Color, R) | R ∈ JP KR′, R′ ∈ R̃}

13 if CR′is consistent with M then return (f ′, P)

14 return ⊥

Algorithm 2: Synthesize a field extraction program.

materialized. If the user is not happy with the inferred highlighting,
the user provides additional positive instances (of regions that
FlashExtract failed to highlight) or negative instances (of unintended
regions that FlashExtract highlighted) and the synthesis process is
repeated. The examples for a simplified field consist of at most
a single positive instance (possibly null) inside each region of the
immediate ancestor field that has been materialized. If the user is not
happy with the inferred highlighting, the user provides additional
examples and the synthesis process is repeated.

The example-based interaction is enabled by the procedure Syn-
thesizeFieldExtractionProg described in Algorithm 2, which
takes as input a document D, a schema M , a highlighting CR of
the document that is consistent with M , a non-materialized field
f , a set of positive instances R̃1, and a set of negative instances
R̃2 (which is empty in case field f has been simplified). The pro-
cedure SynthesizeFieldExtractionProg returns a program P
such that (a) P is consistent with the examples and (b) the updated
highlighting that results from executing P is consistent with the
schema M . Line 2 finds a suitable ancestor f ′ from CR that forms
the learning boundary for f . The loops at lines 6 and 11 group the in-
put examples into boundaries imposed by f ′-regions. Depending on
the relationship between f and f ′, FlashExtract invokes an appropri-
ate API provided by our inductive synthesis framework. In particular,
it invokes SynthesizeSeqRegionProg (line 8) to learn a program
for extracting a sequence of f -regions in an f ′-region (if f ′ is a
sequence-ancestor of f), or SynthesizeRegionProg (line 12) to
learn a program for extracting a single f -region in an f ′-region (if
f ′ is a structure-ancestor of f). Both SynthesizeSeqRegionProg
and SynthesizeRegionProg actually return a sequence of pro-
grams of the right type. The loop at line 12 selects the first program
P in this sequence (if it exists) that ensures that the updated high-
lighting that results from executing P is consistent with the schema
M . We describe this framework and its APIs in the next section.

An interesting aspect of the above-mentioned interaction is the
order in which the user iterates over various fields. FlashExtract is
flexible enough to let users extract various fields in any iteration
order. This is especially useful when the user dynamically decides
to update the data extraction schema (e.g., extract more fields).
Iterating over fields in a bottom-up ordering offers an interesting

advantage. It allows FlashExtract to guess the organization of leaf
field instances by looking at their relative order (thereby obviating
the need to provide examples for any non-leaf field.) While this
is successful in most cases, it may not be able to deal with cases
where field instances may be null. On the other hand, iterating
over fields in a top-down topological order requires the user to
provide examples for each field (including non-leaf fields), but it
offers three advantages: (a) it provides an easy visualization for
the user to inspect the results of the organization of various non-
leaf field instances, (b) it provides greater chance of success since
the synthesis task for a field can now be enabled relative to any
ancestor field as opposed to the entire document, (c) it may also
entail having to provide fewer examples for any field that is nested
inside another field whose instances have all been identified. Hence,
if the leaf field instances are never null and the user does not need
help with identifying representative examples, the user may simply
provide few examples for each leaf field and FlashExtract may be
able to automatically infer the organization of the various leaf field
instances. Otherwise, we recommend that the user iterates over fields
in a top-down topological order.

4. Inductive Synthesis Framework
In this section, we describe a general framework for developing the
inductive synthesis APIs (namely, SynthesizeSeqRegionProg
and SynthesizeRegionProg) that enable the example-based user
interaction model discussed in the previous section. We build this
framework over the inductive synthesis methodology proposed by
Gulwani et.al. [12] of designing appropriate DSLs and developing
algorithms to synthesize programs in those DSLs from examples.
However, we go one step further. We identify an algebra of core
operators that can be used to build various data extraction DSLs for
various document types (§4.2). We also present modular synthesis
algorithms for each of these operators in terms of the synthesis
algorithms for its (non-atomic) arguments (§4.3)—this enables
automatic generation of synthesis algorithms for any DSL that is
constructed using our algebra of core operators. We start out by
formalizing the notion of a data extraction DSL.

4.1 Data Extraction DSLs
A data extraction DSL is represented by a tuple (G,N1, N2). G
is a grammar that defines data extraction strategies. It contains
definitions for various non-terminals N . Each non-terminal N is
defined as a ranked collection of rules (also referred to as N.RHSs)
of the same type. The type of a non-terminal is the type of its rules.
A rule consists of a fixed expression or an operator applied to other
non-terminals of appropriate types or fixed expressions. The type of
a rule is the return type of the fixed expression or the operator that
constitutes the rule.

We say a non-terminal is synthesizable if each of its rules
either (a) involves an operator from our core algebra applied to
fixed expressions or synthesizable non-terminals, or (b) involves an
operator that is equipped with an inductive synthesis algorithm of
its own (i.e., domain-specific operators), or (c) fixed expressions.
N1 is a distinguished (top-level) synthesizable non-terminal of
type sequence of regions. N2 is another distinguished (top-level)
synthesizable non-terminal of type region.

An expression generated by a non-terminal of type T can be
viewed as a program with return type T . Note that the expressions
generated by N1 represent SeqRegion programs and expressions
generated by N2 represent Region programs. The DSL expressions
may involve one distinguished free variableR0 (of type Region) that
denotes the input to the top-level SeqRegion or Region programs.
Any other free variable that occurs in a DSL expression must be
bound to some lambda definition that occurs in a higher level
expression.

A state σ of a program P is an assignment to all free variables in
P . We use the notation {x← v} to create a state that maps variable
x to value v. We use the notation σ[v/x] to denote setting the value
of variable x to value v in an existing state σ. We use the notation
JP Kσ to denote the result of executing the program P in state σ.

Next, we discuss the core operators in our algebra that can be
used to build data extraction DSLs.

4.2 Core Algebra for Constructing Data Extraction DSLs
Our core algebra is based around certain forms of map, filter,
merge, and pair operators. The pair operator (which returns a scalar)
constitutes a scalar expression, while the other operators (which
return a sequence) constitute a sequence expression.

Decomposable Map Operator A Map operator has two arguments
λx : F and S, where S is a sequence expression of type List〈T 〉
and F is some expression of type T ′ and uses an additional free
variable x. The return type of Map is List〈T ′〉. Map(λx : F, S)
has the standard semantics, wherein it applies function F to each
element of the sequence produced by S to construct the resultant
sequence.

JMap(λx : F, S)Kσ = [t0, . . . , tn], where

n = |Y ′ − 1|, ti = JF K(σ[Y ′[i]/x]), Y ′ = JSKσ

We say that a Map operator is decomposable (w.r.t. the underlying
DSL, which defines the language for F and S) if it has the following
property: For any input state σ and a sequence Y , there exists a
sequence Z such that
∀F, S : Y v JMap(F, S)Kσ =⇒ Z v JSKσ ∧ JMap(F,Z)Kσ = Y

where v denotes the subsequence relationship. Let Decompose be
a function that computes such a witness Z, given σ and Y . It has
the following signature:

Map.Decompose : (Region× List〈T ′〉)→ List〈T 〉
The Decompose function facilitates the reduction of examples for
Map operator to examples for its arguments F and S, thereby
reducing the task of learning the desired Map expression from
examples to the sub-tasks of learning F and S expressions from
respective examples.

Filter Operators Our algebra allows two kinds of filter operators
over sequences, one that selects elements based on their properties
(FilterBool), and the other one that selects elements based on
their indexes (FilterInt).

A FilterBool operator has two arguments λx : B and
S, where S is a sequence expression of type List〈T 〉 and B
is a Boolean expression and uses an additional free variable x.
The return type of FilterBool is List〈T 〉. FilterBool(λx :
F, S) has the standard filtering semantics: it selects those el-
ements from S that satisfy B. For example, if S is the set
of all lines in Ex. 1, then the expression FilterBool(λx :
EndsWith([Number, Quote], x), S) selects all yellow lines. The
predicate EndsWith([Number, Quote], x) returns true iff the string
x ends with a number followed by a double quote.

A FilterInt operator has three arguments: a non-negative
integer init, a positive integer iter, and a sequence expression S.
Its return value also has the same type as that of S. The FilterInt
operator takes every iter elements from S starting from init as
the first element. Its semantics is as follows:

JFilterInt(init, iter, S)Kσ = let L = JSKσ in
Filter

(
λx : (indexof(L, x)− init)%iter = 0, L

)
For example, FilterInt(1, 2, S) selects all elements at odd indices
from a sequence.

The two kinds of filter operators can be composed to enable
sophisticated filtering operations.

Merge Operator A Merge operator takes as input a set of n
sequence expressions, each of which is generated by the same
non-terminal A (of some type of the form List〈T 〉). The return
value of Merge also has the same type as that of A. The Merge
operator combines the results of these n expressions together—this
is useful when a single expression cannot extract all intended regions.
This operator is a disjunctive abstraction and allows extraction of
multiple-format field instances by merging several single-format
field instances. Its semantics is as follows:

JMerge(A1, . . . , An)Kσ = MergeSeq(JA1Kσ, . . . , JAnKσ)

The MergeSeq operation merges its argument sequences with
respect to the order of their elements’ locations in the original file.

Pair Operator A Pair operator has two arguments A and B and
has the following standard pair operator semantics.

JPair(A,B)Kσ = (JAKσ, JBKσ)

The pair operator allows constructing region representations from
smaller elements. For example, we can create a text region from a
pair of its start and end positions.

4.3 Modular Synthesis Algorithms
The API SynthesizeSeqRegionProg takes as input a set of ex-
amples, each of which consists of a triple (R, R̃1, R̃2), where R
denotes the input region, R̃1 denotes positive instances of the re-
gions that should be highlighted within R, and R̃2 denotes negative
instances of the regions that should not be highlighted within R.
The API SynthesizeRegionProg takes as input a set of examples,
each of which consists of a pair (R,R′), where R denotes the input
region and R′ denotes the output region. Both these APIs return an
ordered set of programs in the DSL, each of which is consistent with
the provided examples. Fig. 6 contains the pseudo-code for these
APIs, which we explain below.

The method SynthesizeSeqRegionProg first learns from only
positive instances by invoking the learn method of the top-level
sequence non-terminal N1 (line 2) and then selects those programs
that additionally satisfy the negative instances constraint (loop at
line 4). The operator :: appends an element to a list. The method
SynthesizeRegionProg simply invokes the learn method of the
top-level region non-terminal N2 (line 10).

The learn method for any non-terminal N simply involves
invoking the learn method associated with its various rules (line 13)
and then returning the ordered union of the sequences of the
programs synthesized from each. The operator ++ performs list
concatenation.

We next briefly describe the key insights behind the learn
methods for the operators that constitute the various rules. The
higher level key idea is to define them in terms of the learn methods
of their arguments. This allows for a free synthesis algorithm for
any data extraction DSL.

Learning Decomposible Map Operator The key idea here is
to first find the witness Zj for each example (σj , Yj) using the
operator’s Decompose method (line 16). This allows us to split the
problem of learning a map expression into two independent simpler
sub-problems, namely learning of a scalar expression F (line 18),
and learning of a sequence expression S (line 20) from appropriate
examples. The returned result is an appropriate cross-product style
composition of the results returned from the sub-problems (line 25).

Learning Merge Operator The key idea here is to consider all
(minimal) partitioning of the examples such that the learn method of
the argument for each partition returns a non-empty result. The set T
(at line 28) holds all such minimal partitions. For each such partition
(loop at line 30), we invoke the learn method of the argument for
each class in the partition (line 31), and then appropriately combine

function SynthesizeSeqRegionProg (
Set〈(Region, List〈Region〉, List〈Region〉)〉 Q) : List〈Prog〉 is

1 Q′ := {({R0 ← R}, R̃1) | (R, R̃1, R̃2) ∈ Q}
/* learn with positive examples */

2 P̃ := N1.Learn(Q′) /* start symbol for sequence */

3 P̃ ′ := []

4 foreach P ∈ P̃ do
5 if (∃(R, R̃1, R̃2) ∈ Q : (JP K{R0 ← R}) ∩ R̃2 6= ∅) then
6 continue /* P violate negative instances */

7 P̃ ′ := P̃ ′ :: P

8 return P̃ ′

function SynthesizeRegionProg (Set〈(Region,Region)〉 Q) :
List〈Prog〉 is

9 Q′ := {({R0 ← R}, R′) | (R,R′) ∈ Q}
10 return N2.Learn(Q′) /* start symbol for region */

function N.Learn(Set〈(State, T)〉 Q) : List〈Prog〉 is
11 P̃ := []
12 foreach C ∈ N.RHSs do
13 P̃ := P̃ ++C.Learn(Q)

14 return P̃

function Map.Learn (Set〈(State, List〈T 〉)〉 Q) : List〈Prog〉 is
/* Let F and S be the function and sequence

arguments of Map. */

Let Q be {(σj , Yj)}1≤j≤m
15 for j := 1..m do /* find witnesses Z */
16 Zj := Map.Decompose(σj , Yj)

17 Q1 := {(σj [Zj [i]/x], Yj [i]) | 0 ≤ i < len(Zj), 1 ≤ j ≤ m}
18 P̃1 := F.Learn(Q1) /* learn Map’s function F */

19 Q2 := {(σj , Zj) | 1 ≤ j ≤ m}
20 P̃2 := S.Learn(Q2) /* learn Map’s sequence S */

21 P̃ := []

22 foreach P1 ∈ P̃1 do
23 foreach P2 ∈ P̃2 do
24 P̃ := P̃ :: “Map(P1, P2)”

25 return CleanUp(P̃ , Q)

function Merge.Learn (Set〈(State, List〈T 〉)〉Q) : List〈Prog〉 is
/* Let A be the non-terminal that forms the

arguments of Merge. */

Let Q be {(σj , Yj)}1≤j≤m
/* X holds all possible subsets of examples */

26 X := {Q′ | Q′ = {(σj , Y ′j)}1≤j≤m,
∀1 ≤ j ≤ m : Y ′j v Yj , A.Learn(Q′) 6= []}

27 Y :=
⋃

(σj ,Yj)∈Q
Yj /* all positive examples */

/* T includes partitions that cover all examples */

28 T :=
{
X′ | X′ is a minimal subset of X s.t.

{Y ′j | (σj , Y ′j) ∈ Q′, Q′ ∈ X′} = Y
}

29 P̃ := []
30 foreach X′ ∈ T ordered by size do

Let Q′1, ..., Q
′
n be the various elements of X′

31 P̃1, . . . , P̃n := A.Learn(Q′1), . . . , A.Learn(Q
′
n)

32 P̃ := P̃ ++ {“Merge(P1, ..., Pn)” | ∀1 ≤ i ≤ n : Pi ∈ P̃i}

33 return CleanUp(P̃ , Q)

function FilterBool.Learn (Set〈(State, List〈T 〉)〉 Q) :
List〈Prog〉 is

/* Let B and S be the predicate and sequence

arguments of FilterBool. */

35 P̃1 := S.Learn(Q) /* learn sequence S */

36 Q′ := {(σ[Y [i]/x], True) | (σ, Y) ∈ Q, 0 ≤ i < len(Y)}
37 P̃2 := B.Learn(Q′) /* learn filter B */

38 P̃ := []

39 foreach P1 ∈ P̃1 do
40 foreach P2 ∈ P̃2 do
41 P̃ := P̃ :: “FilterBool(P1, P2)”

42 return CleanUp(P̃ , Q)

function FilterInt.Learn (Set〈(State, List〈T 〉)〉 Q) :
List〈Prog〉 is

/* Let S be the sequence argument of FilterInt. */

Let Q be {(σj , Yj)}1≤j≤m
43 P̃1 := S.Learn(Q) /* learn sequence S */

44 P̃ := []

45 foreach P1 ∈ P̃1 do
46 init :=∞
47 iter := 0
48 for j := 1 . . .m do
49 Zj := JP1Kσj
50 init := Min(init, indexof(Zj , Yj [0]))
51 for i := 0 . . . |Yj | − 2 do
52 t := indexof(Zj , Yj [i+1])−indexof(Zj , Yj [i])
53 if iter = 0 then iter := t
54 else iter := GCD(iter, t)

55 if iter = 0 then iter := 1

56 P̃ := P̃ :: “FilterInt(init, iter, P1)”

57 return CleanUp(P̃ , Q)

function Pair.Learn (Set〈(State, (T1, T2))〉 Q) : List〈Prog〉 is
/* Let A and B be the two arguments of Pair. */

Let Q be {(σj , (uj , u′j))}1≤j≤m
58 Q1 := {(σj , uj)}1≤j≤m; Q2 := {(σj , u′j)}1≤j≤m
59 P̃1 := A.Learn(Q1)

60 P̃2 := B.Learn(Q2)

61 if P̃1 = ∅ or P̃2 = ∅ then return []

62 P̃ := []

63 foreach P1 ∈ P̃1 do
64 foreach P2 ∈ P̃2 do
65 P̃ := P̃ :: “Pair(P1, P2)”

66 return P̃

function CleanUp(List〈Prog〉 P̃ , Set〈(State, List〈T 〉)〉 Q) :
List〈Prog〉 is

67 P̃ ′ := []

68 foreach i = 1 to |P̃ | do
69 P := P [i]
70 incl := true
71 foreach k = 1 to |P̃ | do
72 if (P̃ [k] subsumes P w.r.t. Q) and ((P does not subsume

P̃ [k] w.r.t. Q) or k < i) then incl := false

73 if (incl = true) then P̃ ′ := P̃ ′ :: P

74 return P̃ ′

Figure 6: Modular inductive synthesis algorithm in FlashExtract.

the results. Although this algorithm is exponential in the size of
the input set, it works efficiently in practice because the number of
examples required for learning is very small in practice.

Learning Filter Operators The key idea in the learn method for
FilterBool is to independently learn an ordered set P̃1 of sequence
expressions (line 35) and an ordered set P̃2 of Boolean expressions
(line 37) that are consistent with the given examples. The returned
result is an appropriate cross-product style composition of the sub-
results P̃1 and P̃2.

The key idea in the learn method for FilterInt is to first learn
an ordered set P̃ of sequence expressions (line 43) that are consistent
with the given examples. Then, for each such program, we learn
the most strict filtering logic that filters as few elements as possible
while staying consistent with the examples. In particular, we select
init to be the minimum offset (across all examples) of the first
element in Yj in the sequenceZj returned by executing the sequence
program in the example state σj (line 50). We select iter to be the
GCD of all distances between the indices of any two contiguous
elements of Yj in Zj (line 54).

Learning Pair Operator The key idea here is to invoke the learn
method of the first (second) argument at line 59 (line 60) to learn
programs that can compute the first (second) element in the various
output pairs in the examples from the respective inputs. The final
result is produced by taking a cross-product of the two sets of
programs that are learned independently (loop at line 63).

CleanUp Optimization An important performance and ranking
optimization employed by the learn methods of various operators
is use of the CleanUp method, which removes those programs that
extract more regions than some retained program. More precisely,
this method removes each of those (lower-ranked) programs from
an ordered set of programs that is subsumed by some unremoved
program (See Def. 6). Note that this does not affect the completeness
property associated with the various learning methods (Th. 3). Fur-
thermore, it implements an important ranking criterion that assigns
higher likelihood to the scenario wherein the user provides consec-
utive examples from the beginning of any immediately enclosing
ancestral region (as opposed to providing arbitrary examples).

4.4 Correctness
We now describe the correctness properties associated with our two
key synthesis APIs: SynthesizeSeqRegionProg and Synthesiz-
eRegionProg. First, we state some useful definitions.

DEFINITION 5. (Consistency) A scalar program P (i.e., a program
that returns a scalar value) is said to be consistent with a set
Q = {(σj , uj)}j of scalar examples if ∀j : uj = JP Kσj . A
sequence program P (i.e., a program that returns a sequence)
is said to be consistent with a set Q = {(σj , Yj)}j of sequence
examples with positive instances if ∀j : Yj ⊆ JP Kσj . A sequence
program P is said to be consistent with a set Q = {(σj , Yj , Y ′j)}j
of sequence examples with positive and negative instances if ∀j :
(Yj ⊆ JP Kσj ∧ Y ′j ∩ JP Kσj = ∅).

DEFINITION 6. (Subsumption) Given a set Q = {(σj , Yj)}j of
sequence examples with positive instances, and two sequence pro-
grams P1, P2 that are consistent with Q, we say that P1 subsumes
P2 w.r.t. Q if ∀j : JP1Kσj ⊆ JP2Kσj .

The following two theorems hold.

THEOREM 1 (Soundness). The programs P returned by Synthe-
sizeSeqRegionProg and SynthesizeRegionProg are consis-
tent with the input set of examples.

The proof of Theorem 1 follows easily by induction (on the structure
of the DSL) from similar soundness property of the learn methods
associated with the non-terminals and core algebra operators.

THEOREM 2 (Completeness). If there exists some program that is
consistent with the input set of examples, SynthesizeSeqRegion-
Prog (and SynthesizeRegionProg) produce one such program.

The proof of Theorem 2 follows from two key observations: (a)
The learn methods associated with the scalar non-terminals and
the (scalar) Pair operator satisfy a similar completeness property.
(b) The learn methods associated with the sequence non-terminals
and the sequence operators of the core algebra satisfy a stronger
completeness theorem stated below (Theorem 3).

THEOREM 3 (Strong Completeness). The learn methods associ-
ated with the sequence non-terminals and the sequence operators
of the core algebra (namely Map, FilterBool, FilterInt, and Merge)
satisfy the following property: “For every sequence program P that
is consistent with the input set of examples, there exists a program
P ′ in the learned set of programs that subsumes P .”

The proof of Theorem 3 follows from induction on the DSL’s
structure. Note that the CleanUp optimization only removes those
(lower-ranked) programs that are subsumed by other programs.

5. Instantiations
We now present instantiations of our general framework to three
different data extraction domains: text files, webpages, and spread-
sheets. For each domain, we define the notion of a region, the do-
main’s underlying data extraction DSL, and discuss the implementa-
tion of its domain-specific learn methods.

5.1 Text Instantiation
A region in this domain is a pair of character positions in the input
text file.

Language Ltext Fig. 7 shows the syntax of Ltext, our data extrac-
tion DSL for this domain. The core algebra operators are in bold.
We name the various Map operators differently in order to associate
different Decompose methods with them. The non-terminal N1 is
a Merge operator over constituent sequence expressions SS. The
non-terminal N2 is defined as a Pair operator over two position
expressions.

The position expression Pos(x, p) evaluates to a position in
string x that is determined by the attribute p (inspired by a similar
concept introduced in [10]). The attribute p is either an absolute
position k, or is the kth element of the position sequence identified
by the regex pair rr which consists of two regexes r1 and r2. The
selection order is from left-to-right if k is positive, or right-to-left if
k is negative. The position sequence identified by (r1, r2) in string
x, also referred to as PosSeq(x, rr), is the set of all positions k
in x such that (some suffix of the substring on) the left side of k
matches with r1 and (some prefix of the substring on) the right side
of k matches with r2. A regex r is simply a concatenation of (at
most 3) tokens. A token T is a pre-defined standard character class
such as alphabets, digits, colon character, etc. (We used 30 such
tokens in our instantiation). We also define some context-sensitive
tokens dynamically based on frequently occurring string literals in
the neighborhood of examples highlighted by the user. For instance,
in Ex. 1, our dynamically learned tokens include the string “DLZ
- Summary Report” (which is useful for learning the green outer
structure boundary) and the string “"Sample ID:,""” (which is useful
to extract the orange sample ID).

The first rule of SS consists of a Map operator LinesMap that
maps each line of a line sequence LS to a pair of positions within
that line. The Decompose method for LinesMap takes as input a
region R and a sequence of position pairs and returns the sequence
of lines from R that contain the corresponding position pairs.

The second (third) rule of SS pairs each position x in a position
sequencePS with a position that occurs somewhere on its right (left)

Disjuctive Pos Pair Seq N1 ::= Merge(SS1, . . . , SSn)

Pos Pair Region N2 ::= Pair(Pos(R0, p1), Pos(R0, p2))

Pair Seq SS ::= LinesMap(λx : Pair(Pos(x, p1), Pos(x, p2)), LS)
| StartSeqMap(λx : Pair(x, Pos(R0[x :], p)), PS)

| EndSeqMap(λx : Pair(Pos(R0[: x], p), x), PS)

Line Seq LS ::= FilterInt(init, iter, BLS)
Bool Line Seq BLS ::= FilterBool(b, split(R0, ‘\n’))

Position Seq PS ::= LinesMap(λx : Pos(x, p), LS)

| FilterInt(init, iter, PosSeq(R0, rr))

Predicate b ::= λx : True

| λx : {Starts,Ends}With(r, x) | λx : Contains(r, k, x)

| λx : Pred{Starts,Ends}With(r, x) | λx : PredContains(r, k, x)

| λx : Succ{Starts,Ends}With(r, x) | λx : SuccContains(r, k, x)

Position Attribute p ::= AbsPos(k) | RegPos(rr, k)
Regex Pair rr ::= (r1, r2) Regex r ::= T{0, 3}

Token T ::= C+ | DynamicToken

Figure 7: The syntax of Ltext, the DSL for extracting text files.

side. The notation R0[x :] (R0[: x]) denotes the suffix (prefix) of
the text value represented by R0 starting (ending) at position x. The
Decompose method associated with StartSeqMap (EndSeqMap)
takes as input a region R and a sequence of positions and maps each
position k in the input sequence to the string R[k :] (R[: k]).

The line sequence non-terminal LS uses a nested combination
of FilterInt and FilterBool. The various choices for predicate
b (used in FilterBool) have the expected semantics. For exam-
ple, StartsWith(r, x) asserts if line x starts with regex r, while
Contains(r, k, x) asserts if line x contains k occurrences of regex
r. We also take hints from preceding and succeeding lines via Pred*
and Succ* predicates. For example, PredStartsWith(r, x) asserts
if the line preceding x in the input text file ends with regex r.

The position sequence non-terminal PS includes expressions
that select a position within each line of a line sequence (using the
LinesMap operator) or that filter positions returned by the PosSeq
operator (using the FilterInt operator).

EXAMPLE 4. Below is a program in Ltext for extracting the yellow
regions in Ex. 1 (from the top-level region of the entire file).

LinesMap(λx : Pair(Pos(x, p1), Pos(x, p2)), LS), where
p1 = AbsPos(0), p2 = AbsPos(−1),
LS = FilterInt(0, 1,

FilterBool(λx : EndsWith([Number, Quote], x), split(R0, ‘\n’)))

The FilterBool operator takes all the lines in the document
and selects only those that end with a number and a quote. The
FilterInt operator does not do any filtering (init = 0, iter = 1);
it simply passes the result of FilterBool to LS. The map function
in LinesMap returns the entire input line (AbsPos (0) denotes the
beginning of the line, while AbsPos (-1) denotes the end of the line).
The LinesMap operator thus returns a sequence identical to LS,
which is the yellow sequence.

EXAMPLE 5. Below is a program for extracting the magenta re-
gions in Ex. 1 (from the top-level region of the entire file).

EndSeqMap(λx : Pair(Pos(R0[: x], p), x), PS), where
p = RegPos

(
([DynamicTok(,"")], ε),−1

)
PS = FilterInt(0, 1, PosSeq(R0, (r1, r2)), and
r1 = [DynamicTok(,""),Word],
r2 = [DynamicTok("",),Number,Comma],

FlashExtract recognizes the prefixes (,"") and suffixes ("",) of
the given examples as frequently occurring substrings and promotes

Disjuctive Seq N1 ::= Merge(NS1, . . . , NSn)

| Merge(SS1, . . . , SSn)

Region N2 ::= XPath | Pair(Pos(R0, p1), Pos(R0, p2))

Node Seq NS ::= XPaths

Pos Pair Seq SS ::=

SeqPairMap(λx : Pair(Pos(x.Val, p1), Pos(x.Val, p2)), ES)
| StartSeqMap(λx : Pair(x, Pos(R0[x :], p)), PS)

| EndSeqMap(λx : Pair(Pos(R0[: x], p), x), PS)

Element Seq ES ::= FilterInt(init, iter, XPaths)
Position Seq PS ::= FilterInt(init, iter, PosSeq(R0, rr))

Figure 8: The syntax of Lweb, the DSL for extracting webpages.
Definitions of p and rr are similar to those in Fig. 7.

them to dynamic tokens. The PosSeq operator returns the sequence
of all end positions of the magenta sequence (since each of these
have an r1 match on the left and an r2 match on the right). Note that
there are other positions that either have an r1 match on the left (such
as the position before the number in "Sample ID:;""5007-01"""), or
have an r2 match on the right (such as the position after the character
L in ""ug/L"",0.0009), but not both; hence, these positions are not
selected by the PosSeq operator. Since FilterInt does not filter
any elements, PS is the same sequence returned by the regex pair.
The map function in EndSeqMap takes each end position in PS
and finds its corresponding start position specified by p, which is
the first position from the right (k = -1) that matches the dynamic
token (,"") on the left side. The result is the magenta sequence.

EXAMPLE 6. If the magenta field is wrapped within the yellow
structure, one of its extraction programs is as follows:

Pair(Pos(R0, p1), Pos(R0, p2)), where
p1 = 〈[DynamicTok(,"")], ε, 1〉, p2 = 〈ε, [DynamicTok("",)], 1〉

Since the yellow field is the structure-ancestor of the magenta
field, FlashExtract learns a Pair operator to extract a magenta
region within a yellow region. The start position of this pair is the
first position from the left (k = 1) that matches (,"") on the left
side (r1), and the end position is the first position from the left that
matches ("",) on the right side (r2). This program is simpler than
the one in Ex. 5, because it exploits the separation determined by
the program for the yellow field.

Domain-Specific Learn Methods The learning of Boolean expres-
sion b is performed using brute-force search. The learning of position
attribute expressions p is performed using the technique described
in prior work [10].

5.2 Webpage Instantiation
A region in this domain is either an HTML node, or a pair of
character positions within the text property of an HTML node.

Language Lweb Fig. 8 shows the syntax of the DSL Lweb for
extracting data from webpages. XPath (XPaths) denote an XPath
expression that returns a single HTML node (a sequence of HTML
nodes) within the input HTML node. Position attribute p and regex
pair rr are similar to those in the text instantiation DSL Ltext. Our
token set additionally includes dynamic tokens that we create for
the various HTML tags seen in the input webpage.

The non-terminal N1 represents expressions that compute a
sequence of HTML nodes or a sequence of position pairs within
HTML nodes. The non-terminal N2 represents expressions that
compute a HTML node or a position pair within a HTML node. The
design of Lweb is inspired by the design of Ltext. HTML nodes
in Lweb play a similar role to that of lines in Ltext. We use XPath
expressions to identify relevant HTML elements instead of using
regular expressions to identify appropriate lines.

Disjuctive Cell Pair Seq N1 ::= Merge(PS1, . . . , PSn)

| Merge(CS1, . . . , CSn)

Cell Pair Region N2 ::= Pair(Cell(R0, c1), Cell(R0, c2))

| Cell(R0, c)

Pair Seq PS ::= StartSeqMap(λx : Pair(x, Cell(R0[x :], c)), CS)

| EndSeqMap(λx : Pair(Cell(R0[: x], c), x), CS)

Cell Sequence CS ::= FilterInt(init, iter, CE)

| CellRowMap(λx : Cell(x, c), RS)

Row Sequence RS ::= FilterInt(init, iter, RE)

Cell Attribute c ::= AbsCell(k) | RegCell(cb, k)
Cell Split Seq CE ::= FilterBool(cb, splitcells(R0))

Row Split Seq RE ::= FilterBool(rb, splitrows(R0))

Cell Boolean cb ::= λx : True | λx : Surround(T{9}, x)
Row Boolean rb ::= λx : True | λx : Sequence(T+, x)

Figure 9: The syntax of Lsps, the DSL for extracting spreadsheets.

The non-terminal SS represents expressions that generate a
sequence of position pairs by mapping each HTML node in a
sequence ES to position pairs (SeqPairMap operator) or by
pairing up each position in a sequence PS of positions with another
position computed relative to it (StartSeqMap and EndSeqMap
operators).

Domain-specific Learn Methods We need to define learn meth-
ods for XPath and XPaths from example HTML nodes. This is a
well-defined problem in the data mining community, called wrapper
induction (see §7). We implemented a learn method that general-
izes example nodes to path expressions by replacing inconsistent
tags at any depth with “*”, and additionally incorporates common
properties of example nodes. These properties include the number
of children, their types, the number of attributes and their types. The
result is a list of XPath expressions, ranging from the most specific
to the most general.

5.3 Spreadsheet Instantiation
A region in this domain is a rectangular region represented by a pair
of cells or a single cell.

Language Lsps Fig. 9 shows the syntax of our DSL. The non-
terminal N1 represents expressions that extract a sequence of cell
pairs or a sequence of cells from a given spreadsheet. The non-
terminalN2 represents expressions that extract a cell pair or a single
cell from a given spreadsheet.
Lsps is inspired by Ltext and Lweb. The notion of a row in

Lsps is similar to that of a line in Ltext and an HTML node in
Lweb. Just as Boolean expressions in Ltext help filter lines by
matching their content against regular expressions, the row Boolean
expression rb in Lsps selects spreadsheet rows by matching contents
of consecutive cells inside a row against some token sequence. In
addition, the cell Boolean expression cb selects cells by matching
contents of the cell and its 8 neighboring cells against some 9 tokens.

As their name suggests, the two functions splitcells and
splitrows split a spreadsheet region into a sequence of cells
(obtained by scanning the region from top to down and left to right)
and into a sequence of rows respectively, on which cell and row
Boolean expressions can be applied.

Domain-specific Learn Methods The learning of Boolean expres-
sion cb and rb is performed using brute-force search. The learning
of cell attribute expressions c is performed in a manner similar to
that of position attribute expressions p in Ltext.

We need to define learn methods for domain-specific top-level
non-terminals c, cb and rb. To learn c, we simply perform brute-

force search to find all matching cell expression cb. Learning the
row expression rb is similar.

6. Evaluation
We implemented FlashExtract framework and its three instantiations
(described in §5) in C#. We conducted all experiments on a machine
running Windows 7 with Intel Core i7 2.67GHz, 6GB RAM. Via
this evaluation, we seek to answer the following questions related to
effectiveness of FlashExtract.
• Can FlashExtract describe DSLs that are expressive enough for

extraction tasks on real world files?
• How many examples are required to extract the desired data?
• How efficient is FlashExtract in learning extraction programs?

Real-world Benchmarks We collected 75 test documents in total,
25 for each of the three domains. The text file domain is very
broad. A text file might be relatively structured such as a log file, or
loosely structured as in text copied and pasted from webpages or
PDF documents. We selected a representative benchmark set that
includes a few files for each kind. Additionally, we also included
some benchmarks from the book “Pro Perl Parsing” [9], which
teaches how to use Perl to parse data.

For the webpage domain, we used the benchmark from [20],
which describes SXPath, an extension of XPath to perform queries
on Web documents. This benchmark includes 25 e-commerce
popular websites with different underlying structures. For each of
the website, they have two test cases corresponding to the HTML
elements of the product name and the product price. In addition
to these, we add a test case for the region covering all product
information, and another test case for the actual price number
(ignoring other texts that may occur in the price element such as
“sale”, “$” or “USD”).

For the spreadsheet domain, we obtained 25 documents from
two sources: benchmark used in previous work on spreadsheet
transformation [13] (we selected those 7 documents from this
benchmark that were associated with non-trivial extraction tasks),
and EUSES corpus [15].

Experimental Setup For each document, we wrote down an ap-
propriate schema describing the type of the hierarchical data inside
the document, and we manually annotated all instances for the vari-
ous fields in that schema to precisely define the extraction task. We
used FlashExtract to learn the extraction programs for each field.
Recall that we can learn the extraction logic for a field f by relating
it to any of its ancestors. Among these, relating to⊥, is typically the
hardest (in contrast, relating to one of the other ancestors can exploit
the separation that has already been achieved by the extraction logic
for that ancestor).

We wrote a script to simulate user interaction with FlashExtract
to measure its effectiveness in the above-mentioned hardest scenario.
Let R̃ denote all manually annotated instances for a field f . The
simulator starts out with an empty set of negative instances and a
singleton set of positive instances that includes the first region in R̃,
and repeats the following process in a loop. In each iteration, the
simulator invokes FlashExtract to synthesize a field extraction pro-
gram from the various examples. If FlashExtract fails to synthesize
a program, the simulator declares failure. Otherwise, the simulator
executes the program to find any mismatch w.r.t. the golden result
R̃. If no mismatch exists, the simulator declares success. Otherwise,
the simulator adds the first mismatched region as a new example:
it is added as a positive instance if the mismatched region occurs
in R̃ but is not highlighted in the execution result of the previous
interaction; otherwise the mismatch is added as a negative example.
Furthermore, the simulator also adds all new highlighted regions
that occur before the new example as positive instances.

0

1

2

3

4

5

6

7
ac
co
u
n
ts

ad
d
re
ss
e
s

sp
lit

ch
ai
rs

aw
k

b
an
ks

co
m
p
an
ie
s

co
u
n
tr
ie
s

h
ad
o
o
p

h
o
rs
e
s

in
st
ru
m
en

ts ls
-l

m
gx

n
am

e
p
h
o
n
e

n
o
zz
le

n
u
m
b
er
te
xt

p
ap
er
s

p
ld
i1
2

p
ld
i1
3

p
o
p
1
3

q
u
o
te
s

sp
e
ec
h
b
e
n
ch

te
ch
fe
st

u
cl
a-
fa
cu
lt
y

u
se
rs

e

xa
m

p
le

s

Text

0

1

2

3

4

5

6

7

ab
t

am
az
o
n

ap
p
le

b
ar
n
es

b
es
tb
u
y

b
ig
tr
ay b
o
l

b
u
y

ca
m
er
aw

o
rd

cn
e
t

co
o
ki
n
g-
b
w

d
ea
lt
im

e

d
ru
gs
to
re

eb
ay

m
gz
o
u
tl
et

m
ed

ia
w
o
rl
d

n
th
b
u
ts
w

p
o
w
e
lls

go
o
gl
e
p
d
ct

ya
h
o
o
sh
o
p

sh
o
p
p
in
g

sh
o
p
zi
lla

ta
rg
e
t

ti
ge
rd
ir
ec
t

ve
n
er
e

e
xa

m
p

le
s

Webpages

0

1

2

3

4

5

6

7

h
g_

ex
1

2

h
g_

ex
1

8

h
g_

ex
2

h
g_

ex
2

6

h
g_

ex
2

9

h
g_

ex
3

h
g_

ex
3

9

_
h

8
d

6
2

ck
1

*

0
3

P
FM

JO
U

*

2
0

0
3

Fa
ll

6
4

0
4

0

an
re

p
9

8
9

9
*

b
al

i

ch
1

5
_e

co
m

p
lia

n
ce

*

D
at

aD
ic

ti
o

n
*

d
el

iv
e

ra
b

le
*

e_
B

u
b

b
le

_
*

fl
ip

_
u

sd
5

Fu
n

d
ed

 -
 F

ge
-r

e
ve

n
u

e
s

H
O

SP
IT

A
L*

p
w

p
Su

rv
ey

*

SO
A

4
-Y

EA
R

*

yo
u

n
g_

ta
b

le

ex
am

p
le

s

Spreadsheet

Figure 10: Average number of examples (solid/white bars represent positive/negative instances) across various fields for each document.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

ac
co

u
n

ts

ad
d

re
ss

e
s

sp
lit

ch
ai

rs

aw
k

b
an

ks

co
m

p
an

ie
s

co
u

n
tr

ie
s

h
ad

o
o

p

h
o

rs
e

s

in
st

ru
m

en
ts ls
-l

m
gx

n
am

e
p

h
o

n
e

n
o

zz
le

n
u

m
b

er
te

xt

p
ap

er
s

p
ld

i1
2

p
ld

i1
3

p
o

p
1

3

q
u

o
te

s

sp
e

ec
h

b
e

n
ch

te
ch

fe
st

u
cl

a-
fa

cu
lt

y

u
se

rs

se
co

n
d

s

Text 3.7 3.7

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

ab
t

am
az

o
n

ap
p

le

b
ar

n
es

b
es

tb
u

y

b
ig

tr
ay b
o

l

b
u

y

ca
m

er
aw

o
rd

cn
e

t

co
o

ki
n

g-
b

w

d
ea

lt
im

e

d
ru

gs
to

re

eb
ay

m
gz

o
u

tl
et

m
ed

ia
w

o
rl

d

n
th

b
u

ts
w

p
o

w
e

lls

go
o

gl
e

p
d

ct

ya
h

o
o

sh
o

p

sh
o

p
p

in
g

sh
o

p
zi

lla

ta
rg

e
t

ti
ge

rd
ir

ec
t

ve
n

er
e

se
co

n
d

s

Webpages 2.3 3.5 3.4

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

h
g_

ex
1

2

h
g_

ex
1

8

h
g_

ex
2

h
g_

ex
2

6

h
g_

ex
2

9

h
g_

ex
3

h
g_

ex
3

9

_
h

8
d

6
2

ck
1

*

0
3

P
FM

JO
U

*

2
0

0
3

Fa
ll

6
4

0
4

0

an
re

p
9

8
9

9
*

b
al

i

ch
1

5
_e

co
m

p
lia

n
ce

*

D
at

aD
ic

ti
o

n
*

d
el

iv
e

ra
b

le
*

e_
B

u
b

b
le

_
*

fl
ip

_
u

sd
5

Fu
n

d
ed

 -
 F

ge
-r

e
ve

n
u

e
s

H
O

SP
IT

A
L*

p
w

p
Su

rv
ey

*

SO
A

4
-Y

EA
R

*

yo
u

n
g_

ta
b

le

se
co

n
d

s

Spreadsheet 4.8 7.1
6.6 9.4

4.7 2.3

Figure 11: Average learning time of the last interaction across various fields for each document.

Expressiveness Each of the three instantiations of FlashExtract
was successfully able to synthesize a desired field extraction pro-
gram for the various tasks in the respective domains. Thus, FlashEx-
tract supports data extraction DSLs that are expressive enough to
describe a variety of real-world data extraction tasks.

Number of Examples FlashExtract required an average of 2.86
examples per field across all documents. Fig. 10 shows the average
number of examples (over all fields in the schema for a given
document), split by positive/negative instances, for each of the
75 documents in our benchmark. We observe that users have to
give more examples to extract data from text files because the
structure of text files is more arbitrary. In contrast, webpages and
spreadsheets are generally more structured (because of HTML tags
and row/column based organization respectively), thus requiring
fewer examples.

Synthesis Time Users interactively give more examples to FlashEx-
tract in order to learn a field extraction program. We measure the
synthesis time required by FlashExtract during the last iteration
before FlashExtract succeeds or fails (since this last iteration has the
most number of examples, and thus typically consumes the longest
synthesis time). FlashExtract required an average of 0.82 seconds
per field across all documents. Fig. 11 reports the average synthesis
time (over all fields in the schema for a given document) from the
last set of examples, for each of the 75 documents in our benchmark.
While most text files and webpages require less than a second per
field, spreadsheets sometimes take a few seconds to complete. This
is because the spreadsheet DSL is richer with a larger search space.

7. Related Work
We survey some recent work on programming by examples, and
then discuss work related to each of our instantiation domains.

DSL Programming by Examples Programming by Example
(PBE) techniques often construct a program in an underlying DSL
from a set of input/output examples [11]. This area has been gaining
renewed interest because recent advances in PBE can help improve
the productivity of millions of end-users [12]. For instance, Gulwani
et al. have developed techniques that enable end-users to perform
string transformations [10, 21], number transformations [22], and ta-
ble transformations [13] from examples. While prior work addresses
transformations, we address a different problem of extraction. More

significantly, prior synthesis techniques are specialized to an under-
lying DSL, while ours is more general and can be applied to any
DSL that is constructed using our core algebra.

FlashExtract’s extraction capability actually complements the
transformation capability of prior work; in fact, we have combined
them together to provide a better end-to-end user experience. For
example, after using FlashExtract to extract data from a text file, the
user can perform string transformations [10] or number transforma-
tions [22] to modify the extracted fields. Our prototype even allows
in-place editing by examples: FlashExtract is used to highlight re-
gions that need to be edited repetitively, and string transformation
techniques [10] are used to perform transformation on leaf regions
(and these changes are pushed back to the underlying document).

Region Highlighting by Examples LAPIS [18] allows users to
highlight sequences of regions in text files and webpages using a
variety of means including examples (in addition to user-specified
grammars and regular expressions), and then manipulate them using
a region algebra. However, LAPIS is limited in its ability to allow
users to create and manipulate hierarchical structure by examples.
STEPS [24] allows users to color and edit hierarchical regions in
text files using small mock examples. In contrast, we allow the
user to provide examples on the original input document and not
bother about creating mock examples. In particular, we allow the
user to provide us a small number of positive instances of the region
that they want to highlight on the document. (The user-provided
instances need not be a strict prefix of the set of all positive instances.
This flexible interaction is enabled by allowing the user to also
indicate negative instances).

Besides the user interface, another key difference is how the
underlying learning algorithms operate. LAPIS performs light-
weight inference (enumerative search over pre-defined patterns)
that does not even leverage the document decomposition (when
extracting fields with a hierarchical arrangement). STEPS uses
machine learning techniques to identify an appropriate composition
of a given set of components. In contrast, we perform a systematic
search for programs using mostly a divide-and-conquer paradigm
where we reduce the problem of learning expressions with a certain
top-level operator to the problem of learning sub-expressions based
on the properties of that operator. This enables efficient synthesis of
larger and more sophisticated field extraction programs.

Data Extraction from Log Files The PADS project [7] has en-
abled simplification of ad hoc data processing tasks for programmers

by contributing along several dimensions: development of domain
specific languages for describing text structure or data format, learn-
ing algorithms for automatically inferring such formats [8], and a
markup language to allow users to add simple annotations to enable
more effective learning of text structure [23] While PADS supports
parsing of entire files, FlashExtract allows users to extract only parts
of the file thereby avoiding unnecessary complications. PADS’s
learner only supports a fixed line-by-line chunking strategy to split
the records; in contrast, FlashExtract can learn chunking (aka, struc-
ture boundaries) from examples, making it suitable for extracting
data fields and records that have arbitrary length (and might cross
multiple lines). Finally, PADS primarily targets ad hoc text files.
Although one can view webpages and spreadsheet as text files, it
is unclear if the PADS learning algorithm can be adapted to work
effectively for webpages and spreadsheets.

Data Extraction from Webpages Wrappers are procedures to
extract data from Internet resources. Wrapper induction is the
method to automatically construct wrappers [17]. There has been
a wide variety of work in this area, ranging from supervised sys-
tems [14, 17, 19], semi-supervised systems [4], to unsupervised
systems [5]. FlashExtract differs from the above systems in that its
users induce wrappers by interactively giving multiple positive/nega-
tive examples. In that sense, FlashExtract is similar to [3]. However,
the system in [3] only learns XPath expressions to extract HTML el-
ements. By defining other sequence operators to handle non-HTML
text (i.e., text that is within a tag), FlashExtract supports finer grain
extraction (e.g., extracting a substring or a sequence of substrings
from a text tag, as in Fig. 2). Furthermore, we can leverage advances
in wrapper induction research as part of the FlashExtract general
framework to support much more sophisticated extraction tasks.

Data Extraction from Spreadsheets Cunha et al. [6] detect func-
tional dependencies in spreadsheet data in order to automatically
derive even the data schema. However, their technique is not ef-
fective over spreadsheets with hierarchical data. Abraham et al.
identify spreadsheet headers automatically [2] and use that to ex-
tract relational data. In contrast, FlashExtract extracts (data from)
cells based on the properties of the surrounding cells. This allows
FlashExtract to deal with spreadsheets with no headers. Furthermore,
instead of inferring the whole schema at once, FlashExtract allows
users to work in an interactive manner. Users may focus only on
cells of interest–this enables robustness on complex spreadsheets.

OpenRefine [1] and Wrangler [16] help users clean and transform
their spreadsheet data into relational form. While OpenRefine
typically requires users to program, Wrangler automatically infers
likely transformation rules and presents them in natural language.
However, these tools are limited in their extraction capabilities over
spreadsheets with hierarchical data.

8. Conclusion and Future Work
Various common document types such as text files, spreadsheets,
and webpages allow users to be creative in using the underlying rich
layout capabilities to store multi-dimensional and hierarchical data
in a two-dimensional layout. Existing data extraction solutions are
domain-specific and require programming skills. We formalize the
problem of data extraction in a document independent manner and
present an end-user friendly example-based interaction model.

Our synthesis approach advances the state of the art in example
based program synthesis. Instead of designing a DSL and a custom
synthesis algorithm, we define a core algebra of operators and
associate a compositional synthesis strategy with each of them. This
provides a free synthesis algorithm for any DSL that is constructed
using those operators. We give three examples of DSLs for extracting
data from different document types, namely text files, webpages,
and spreadsheets. The respective synthesis algorithms are able to
extract the intended data using very few examples and in real time.

We foresee two interesting directions for future work. (a) Extend-
ing our framework to enable data extraction from more sophisticated
document types such as PDF documents and images. (b) Designing
a good debugging environment that helps users identify potential
discrepancies in what the user intended and the result produced by
the synthesized program. This is especially important in two sce-
narios: (i) when the synthesized program might be executed against
other documents with similar formatting, (ii) when the initial set
of user-provided examples might be used to re-synthesize a new
extraction program in light of formatting changes in the initial doc-
ument (in fact, the potential for robustness to changes in the input
structure might make PBE a more attractive alternative to traditional
programming in the first place!)

References
[1] OpenRefine. http://openrefine.org/.
[2] R. Abraham and M. Erwig. Header and unit inference for spreadsheets

through spatial analyses. In VL/HCC, 2004.
[3] T. Anton. Xpath-wrapper induction by generalizing tree traversal

patterns. In LWA, 2005.
[4] C.-H. Chang and S.-C. Lui. Iepad: information extraction based on

pattern discovery. In WWW, 2001.
[5] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: Towards

automatic data extraction from large web sites. In VLDB, 2001.
[6] J. Cunha, J. Saraiva, and J. Visser. From spreadsheets to relational

databases and back. In PEPM, 2009.
[7] K. Fisher and D. Walker. The pads project: an overview. In ICDT,

2011.
[8] K. Fisher, D. Walker, K. Q. Zhu, and P. White. From dirt to shovels:

fully automatic tool generation from ad hoc data. In POPL, 2008.
[9] C. Frenz, editor. Pro Perl Parsing. APress, 2005.

[10] S. Gulwani. Automating string processing in spreadsheets using input-
output examples. In POPL, 2011.

[11] S. Gulwani. Synthesis from examples: Interaction models and algo-
rithms. In SYNASC, 2012.

[12] S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet data manipulation
using examples. Commun. ACM, 55(8), 2012.

[13] W. R. Harris and S. Gulwani. Spreadsheet table transformations from
examples. In PLDI, 2011.

[14] C.-N. Hsu and M.-T. Dung. Generating finite-state transducers for
semi-structured data extraction from the web. Inf. Syst., 23(9), 1998.

[15] M. F. Ii and G. Rothermel. The euses spreadsheet corpus: A shared
resource for supporting experimentation with spreadsheet dependability
mechanisms. In Workshop on End-User Software Engineering, 2005.

[16] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: interactive
visual specification of data transformation scripts. In CHI, 2011.

[17] N. Kushmerick, D. S. Weld, and R. B. Doorenbos. Wrapper induction
for information extraction. In IJCAI (1), 1997.

[18] R. C. Miller. Lightweight Structure in Text. PhD Dissertation, Carnegie
Mellon University, 2002.

[19] I. Muslea, S. Minton, and C. A. Knoblock. A hierarchical approach to
wrapper induction. In Agents, 1999.

[20] E. Oro, M. Ruffolo, and S. Staab. Sxpath: Extending xpath towards
spatial querying on web documents. Proc. VLDB Endow., 4(2), 2010.

[21] R. Singh and S. Gulwani. Learning semantic string transformations
from examples. PVLDB, 5(8), 2012.

[22] R. Singh and S. Gulwani. Synthesizing number transformations from
input-output examples. In CAV, 2012.

[23] Q. Xi and D. Walker. A context-free markup language for semi-
structured text. In PLDI, pages 221–232, 2010.

[24] K. Yessenov, S. Tulsiani, A. K. Menon, R. C. Miller, S. Gulwani, B. W.
Lampson, and A. Kalai. A colorful approach to text processing by
example. In UIST, 2013.

http://openrefine.org/

	Introduction
	Motivating Examples
	User Interaction Model
	Inductive Synthesis Framework
	Data Extraction DSLs
	Core Algebra for Constructing Data Extraction DSLs
	Modular Synthesis Algorithms
	Correctness

	Instantiations
	Text Instantiation
	Webpage Instantiation
	Spreadsheet Instantiation

	Evaluation
	Related Work
	Conclusion and Future Work

