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Abstract

Modern programming frameworks provide enormous libraries ar-
ranged in complex structures, so much so that a large part of mod-
ern programming is searching for APIs that “surely exist” some-
where in an unfamiliar part of the framework. We present a novel
way of phrasing a search for an unknown API: the programmer
simply writes an expression leaving holes for the parts they do not
know. We call these expressions partial expressions. We present an
efficient algorithm that produces likely completions ordered by a
ranking scheme based primarily on the similarity of the types of the
APIs suggested to the types of the known expressions. This gives
a powerful language for both API discovery and code completion
with a small impedance mismatch from writing code. In an auto-
mated experiment on mature C# projects, we show our algorithm
can place the intended expression in the top 10 choices over 80%
of the time.

Categories and Subject Descriptors D.2.6 [Software Engineer-

ing]: Programming Environments—Integrated Environments; D.2.13

[Software Engineering]: Reusable Software—Reuse Models; 1.2.2
[Artificial Intelligence]: Automatic Programming—Program syn-
thesis

General Terms Languages, Experimentation

Keywords program synthesis, partial expressions, code comple-
tion, type-based analysis, ranking

1. Introduction

Modern programming frameworks such as those found in Java
and .NET consist of a huge number of classes organized into
many namespaces. For example, the NET Framework 4.0 has over
280,000 methods, 30,000 types, and 697 namespaces. Discovering
the right method to achieve a particular task in this huge frame-
work can feel like searching for a needle in a haystack. Program-
mers often perform searches through unfamiliar APIs using their
IDE’s code completion, for example Visual Studio’s Intellisense,
which requires the programmer to either provide a receiver or it-
erate through the possible receivers by brute force. Fundamentally,
today’s code completion tools still expect programmers to find the
right method by name (something that implicitly assumes they will
know the right name for the concept, which may not be true [4])
and to fill in all the arguments.
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Our approach: We define a language of partial expressions, in
which programmers can indicate in a superset of the language’s
concrete syntax that certain subexpressions need to be filled in or
possibly reordered. We interpret a partial expression as a query
that returns a ranked list of well-typed completions, where each
completion is a synthesized small code snippet. This model is sim-
ple, general, and precisely specified, allowing for a variety of uses
and extensions. We developed an efficient algorithm for generating
completions of a partial expression. We also developed a ranking
scheme primarily based on (sub)typing information to prefer more
precise expressions (e.g., a method taking AVerySpecificType
rather than Object).

Code-completion problems addressed: We have used our partial
expression language and its implementation for finding comple-
tions to address three code-completion problems:

1. Given k arguments and without distinguishing one as the object-
oriented receiver, predict a method call including these and
possibly other arguments. Note that the name of the method
being called is not given; the method name, along with the order
of arguments to it, is the output of our system.

2. Given a method call with missing arguments, predict these ar-
guments (with simple expressions such as variables or field and
propertyﬂlookups of variables).

3. Given an incomplete binary expression such as an assignment
statement, predict field and property lookups (i.e., given e pre-
dict e. f) on the left or right side of the operation.

Results: 'We demonstrate that our approach ranks the correct re-
sult highly most of the time and often outperforms or complements
existing widely deployed technologies like Intellisense. To collect
a large amount of empirical data, we have chosen to leave IDE in-
tegration and user studies to future work. Instead, we take existing
codebases and run our tool after automatically replacing existing
method calls, assignments, and comparisons with appropriate par-
tial expressions. On our corpus of programs, results include:

e For over 80% of method calls (and over 90% if we know the
call’s return type), there are two or fewer arguments to the call
such that with only those arguments, our system will rank the
intended method name within the top 10.

o If a simple argument (e.g., a variable) is omitted from a method
call, our system can fill it back in correctly (the top-ranked
choice) 55% of the time.

e When a field or property lookup is omitted from an expression,
we can use surrounding type context to rank the missing prop-
erty in the top 10 over 90% of the time.

Overall, our work demonstrates that IDEs could use already-
available type information to help programmers find methods they
want and save keystrokes much more than they do today.

! Properties are syntactic sugar for writing getters and setters like fields.
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Figure 1. Workflow

Contributions This paper includes the following contributions:

o Identification of the need for a search facility based on partial
expressions which we have detailed using illustrative examples
in Section2

e Design of the partial expressions language and how partial ex-
pressions relate to complete expressions as formally defined in
Section[3l

e An efficient algorithm for completing partial expressions and
ranking the results described in Section[d which integrates the
ranking procedure and off-line indexing of large libraries.

e A large experimental evaluation of the quality and performance
of our algorithm on real code presented in Section[3}

e An evaluation of the relative and absolute importance of each
ranking feature detailed in Section[5.4]

Section[f]reviews related work and Section [7]concludes the paper.

2. Illustrative Examples

This section describes three examples that use partial expressions
in our system and then considers performing the same tasks using
prior work. Section[2.T]describes how our system handles these ex-
amples. Section[2.2]discusses normal code completion. Section[2.3]
covers the closest related work, the Prospector tool[[10]].

2.1 Our system
Synthesizing Method Names

Suppose you are writing code using an image editing API (specif-
ically, the Paint.NET image editor%) and want to figure out how
to make an image smaller. Your first instinct may be to write
img.Shrink(size). Unfortunately, that API does not exist; the
actual API for shrinking an image is

public static Document ResizeDocument (

Document document, Size newSize,
AnchorEdge edge, ColorBgra background)

We will step through how our tool handles this example, using
Figure [I| which shows the workflow of our tool. For this example,
you would write the query “?({img, size})” in the partial ex-
pression language described in Section [3] The query is passed to
the algorithm represented by the large box described in Section [4]
which also has access to the code context which says that img and
size are local variables of types Document and Size, respectively.
The first ten elements of the ranked result set are shown in Figure[2]
The static ResizeDocument method is the first choice.

Synthesizing Method Arguments

Suppose you already know there is a method Distance that returns
the distance between two Point objects, but are not sure where one

Zhttp://www.getpaint .net/

PaintDotNet.Actions.CanvasSizeAction
.ResizeDocument (img, size, ©, ©)
PaintDotNet.Functional.Func.Bind(¢, size, img)
PaintDotNet.Pair.Create(size, img)
PaintDotNet.Quadruple.Create(size, img, ©, ©)
PaintDotNet.Triple.Create(size, img, ©)
PaintDotNet.PropertySystem
.StaticListChoiceProperty
.CreateForEnum(img, size, ¢)
System.Drawing.Size.Equals(size, img)
System.0Object.ReferenceEquals(size, img)
PaintDotNet.Document.OnDeserialization(img, size)
PaintDotNet.PropertySystem.Property
.Create(¢, size, img)

Figure 2. The first ten results generated and ranked by our system
for the query ?({img, size}).

point

this.BeginLocation

this.Center

this.EndLocation
DynamicGeometry.Math.InfinitePoint
shapeStyle.GetSampleGlyph ()
.RenderTransformOrigin
this.shape.RenderTransformOrigin
this.ArcShape.Point
this.Figure.StartPoint
this.Shape.RenderTransformOrigin

Figure 3. The first ten results generated and ranked by our system
for the 7 in the query Distance (point, 7).

of the endpoints is defined. The query “Distance(point, ?7)”
produces a list of Points that could be filled in as the second argu-
ment. This includes any locals, fields, or static fields or methods or
recursively any fields of those of type Point. For example, Figure[3]
shows the results of that query in the context of the E11ipseArc
class of the DynamicGeometry library. There, point is the only
local variable of type Point. In this case, the actual argument was
this.Center which appears third in the list.

Synthesizing Field Lookups

For a more targeted version of the above, the search can be nar-
rowed by specifying the base object to look under. We will consider
synthesizing field lookups in the context of a comparison operator.
The query “point.?*m >= this.?*m” includes point and this
along with zero or more field lookups or zero-argument instance
method calls after them. The top ten ranked completions for this
query are listed in Figure 4] Note that by completing both holes si-
multaneously, only completions where the two sides have fields of
compatible types are shown.

2.2 Code Completion

Today, programmers can use code completion such as Intellisense
in Visual Studio to try to navigate unfamiliar APIs. Intellisense
completes code in sections separated by periods (““.”) by using the
type of the expression to the left of the period and textually search-
ing through the list for any string the programmer types. If there
is no period, then Intellisense will list the available local variables,
types, and namespaces. This often works well, particularly when
the programmer has a good idea of where the API they want is or
if there are relatively few choices. On the other hand, it performs
poorly on our examples.
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point.X >= this.P1.X

point.X >= this.P2.X

point.X >= this.Midpoint.X

point.X >= this.FirstValidValue().X
point.Y >= this.P1.Y

point.Y >= this.P2.Y

point.Y >= this.Midpoint.Y

point.Y >= this.FirstValidValue().Y
point.X >= this.Length

point.Y >= this.Length

Figure 4. The first ten results generated and ranked by our system
for the query point.7*m >= this.?*m.

Synthesizing Method Names

Using Intellisense to find the nonexistent Shrink method, a pro-
grammer might type “img.shr”, see that there is no “Shrink”
method, and then skim through the rest of the instance methods.
As that will also fail to find the desired method, the program-
mer might continue by typing in “PaintDotNet.” and use Intel-
lisense to browse the available static methods, eventually finding
PaintDotNet.Actions.CanvasSizeAction where the method
is located. Hopefully documentation on the various classes and
namespaces shown by Intellisense’s tooltip will help guide the pro-
grammer to the desired method, but this is dependent on the API
designer documenting their code well and the documentation us-
ing terminology and abstractions that the programmer understands.
A programmer would likely search through many namespaces and
classes before happening upon the right one.

Synthesizing Method Arguments

2

If the user has already entered “Distance(point, ~ and then
triggers Intellisense, Intellisense will list of every namespace, type,
variable, and instance method in context even though many choices
will not type-check (as the programmer may intend to call a method
or perform a property lookup on one of those objects). When the
list is brought up, the most recently used local variable of type
Point, which would be point in this case, will be selected. The
programmer will have to read through many unrelated options to
locate the other values of type Point.

Note that Eclipse’s code completion is actually significantly
different in this scenario. It will list all of the local variables valid
for the argument position along with common constants like null.
If a more complicated expression is desired, the user has to cancel
out and request the normal code completion which is similar to
Visual Studio’s.

Synthesizing Field Lookups

Given “point.”, Intellisense will list all fields and methods of that
object. The listing will go only one level deep: if the user wants a
field of a field, they have to know which field to select first.

2.3 Prospector

The Prospector tool by Mandelin et al.[10] is an API discovery
tool which constructs values using mined “jungloids” which con-
vert from one input type to one output type and are combined into
longer jungloids. The tool uses a local variable to construct a value
of the output type. The motivating example in this prior work is
converting an IFile to an ASTNode in the Eclipse API which re-
quires a non-obvious intermediate step involving a third type:
IFile file = ...;
ICompilationUnit cu =
JavaCore.createCompilationUnitFrom(file) ;
ASTNode ast = AST.parseCompilationUnit(cu, false);

(@ e x=call|varName | e. fieldName | e:=e | e<e

call ::= methodName(e1, ... ,en)
b)) ex=al?|o
aux=ecl|a.?f|a.?*f|a.?m|a.?*n | call
| e:=€ | e<e
call :=7({€e1,...,en}) | methodName(e, ... ,exn)

Figure 5. (a) Expression language (b) Partial expression language

The Prospector UI triggers queries only at assignments to vari-
ables, but that is a minor implementation detail.

Synthesizing Method Names

As Prospector can consider only one type as input, a program-
mer might query for a conversion from Size to Document or from
Document to Document, which does not quite match the program-
mers intuition of wanting to resize the document. Prospector will
return methods with arguments it cannot fill in. It prefers fewer un-
known arguments, so ResizeDocument would likely be rather far
down in the list of options for either query.

Synthesizing Method Arguments

Queried for type Point, Prospector would give a similar list to
the one our tool creates, although it does not consider globals as
possible inputs to its algorithm. Specifically, Prospector would give
any locals of the proper type and recursively find any fields of the
proper type. It may also find chains that involve downcasts found
to work elsewhere in the codebase, which our tool would not find.

Synthesizing Field Lookups

Prospector does not take suggestions of starting points from the
user, although its Ul could theoretically be modified to do so. On
the other hand, Prospector has only one target type and cannot
make more complicated expressions like the one above with a >=
operator. The closest corresponding use of Prospector would be to
guess the type for either side of the comparison and have Prospector
find fields of that type.

3. Partial expression language

Queries in our system are partial expressions. A partial expression
is similar to a normal (or “complete”) expression except some
information may be omitted or reordered. A partial expression can
have many possible completions formed by filling in the holes and
reordering subexpressions in different ways.

Complete expression syntax

Before defining partial expressions, we first define a simple ex-
pression language given by the e and call productions in Fig-
ure [5f(a), which models features found in traditional programming
languages. Our simple language has variables, field lookups, as-
signments, a comparison operator, and method calls. (Other opera-
tors are omitted from the formalism.) Also, the receiver of a method
call is considered to be its first argument in order to simplify nota-
tion as when reordering arguments, an argument other than the first
may be chosen as the receiver.

Partial expression syntax

Partial expressions are defined by the €, a, and call productions
in Figure [5[b). Partial expressions support omitting the following
classes of unknown information:

¢ Entire subexpressions. ? gives no information about the struc-
ture of the expression, only that it is missing and should be filled
in. On the other hand, ¢ should not be filled in: it indicates a
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Figure 6. Semantics of partial expressions. The final result must
type-check in the context of the query, treating ¢ as having any

type.

subexpression to ignore due to being independent of the current
query (so making it a ? would only add irrelevant results) or
simply being a subexpression the programmer intends to fill in
later, perhaps due to working left-to-right.

e Field lookups. The @ production defines a series of four . ? suf-
fixes which are slightly different ways of saying that an expres-
sion is missing one or more field lookups or the desired expres-
sion is actually the result of a method call on the expression.
The ‘£’ suffix is short for “field” and can be completed as a sin-
gle field lookup or nothing. The . 7* suffixes complete as the . ?
versions repeated as many times as needed.

e Simple method calls. The .7m suffix is like the .7f suffix.
The ‘m’ is short for “zero-argument method call” and can be
completed as a call to an instance method with zero additional
arguments or also as a field lookup or nothing.

e Which method to call. 7({€1,¢é2}) represents a call to some

unknown method with two known arguments, which may them-

selves be partial expressions.

Number and ordering of arguments to a method. For un-

known methods, there may also be additional arguments missing

or the arguments may be out of order, which is represented by
the use of set notation for the arguments in ? ({€1,€2}).

Partial expression semantics

Figure[6] gives the full semantics of the partial expression language.
The |} judgement nondeterministically takes a partial expression to
a complete expression with the exception that any ¢ subexpressions
remain. With the exception of the . 7* rules, each rule removes or
refines some hole, making the partial expression one step closer to
a complete expression. The bottom rule allows for the composition
of other rules. The top leftmost rule allows any of the . ? suffixes to
be omitted. For type checking, ¢ is treated as a wildcard: as long as
some choice of type for the ¢ works, the expression is considered to
type check. The actual algorithm implemented does not use these
rules exactly, although it matches their semantics.

The partial expressions language semantics never add opera-
tions like multiplication or new method calls (other than to zero-
argument methods). The idea is that any place where computation

is intended should be explicitly specified, and the completions sim-
ply list specific APIs for the computations. The exception for zero-
argument methods is made because they are often used in place of
properties for style reasons or due to limitations of the underlying
language.

Examples

The first example from Section [2} 7 ({img, size}), is a method
call with an unknown name and two complete expressions as
arguments. It can be expanded to any method that can take
those two variables in any two of its argument positions, so
Triple.Create(o, size, img) isa valid completion. Note that
no attempt is made to fill in the extra argument. This is done to
reduce the number of choices when recommending methods; for
other applications fully completing the expression may be useful.
The user may afterward decide to convert the ¢ to 7 or some other
partial expression.

Our second example from Section [2| Distance (point, 7)
can take one step to one of

e Distance(point, point.?*m),
e Distance(point, this.?*m),
e Distance(point, shapeStyle.?*m)

or many other possibilities. Any local in scope or global (static field
or zero-argument static method) could be chosen to appear before
the . 7*m. Whatever is selected is completed to some expression of
type Point. Any .7 suffix can be omitted when completing an ex-
pression, so point.7*m can be completed as point which is the
first option in Figure [3] this.?*m can also become one or more
lookups by going to this. ?m. 7*min one step and the . ?m becomes
some field. For ArcShape, this.ArcShape. 7*m is further com-
pleted to this.ArcShape.Point. Any of the completions men-
tioned so far would have been valid for . 7f instead of . ?m as well.
On the other hand, for shapeStyle.7+*m, the first . ?m from the
.7xm is completed with an instance method . GetSampleGlyph ()
that returns an object with a field RenderTransformOrigin of
type Point which the remaining . 7*m can complete to.

An unknown method’s arguments may themselves be partial
expressions. For example, ? ({strBuilder.?+*m,e.?*m}) could
expand to Append (strBuilder, e.StackTrace) (which would
normally be written as strBuilder.Append(e.StackTrace)).

The third example from Section 2| point.?*m >= this.7#*m,
also uses . 7*m, so the completions work as above, but, as there are
two of them in the expression related by the >=, there must be a def-
inition of >= which is type compatible with the two completions. In
this example, all the comparable fields have types int or double.
But suppose Point had a field Timestamp of type DateTime; then
Point.Timestamp >= this.P1.Timestamp would be a valid
completion, but Point.X >= this.P1.Timestamp would not.

4. Algorithm

This section describes an algorithm (represented by the boxed sec-
tion of Figure[I)) for completing partial expressions. The algorithm
takes a partial expression and an integer n as input and returns an
ordered list of n proposed completions. The algorithm has access
to static information about the surrounding code and libraries: the
types of the values used in the expression, the locals in scope, and
the visible library methods and fields. Bounding n is important be-
cause some partial expressions have an infinite list of completions.
What constitutes a valid completion is defined by Figure[f]

The algorithm described in this section does completion finding
and ranking simultaneously in order to compute the top n comple-
tions efficiently. Section [4.1] describes the ranking function. Sec-
tion describes the completion finder and the integrated algo-
rithm whose design is informed by the ranking function.
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+ 2 scouberps(eapr) td(type(s) , type(param(s)))
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scorecmp(expri, expra) = score(expri < erprsa)
+ 3-(name(expri) # name(exprz))

nsArgs(call) = {a € subexps (call) | type(a) is not primitive }

Figure 7. The ranking function. Note that boolean values are con-
sidered 1 if true and O if false and that abstract types (abstype(-))
are considered not equal if both are unde fined.

4.1 Ranking

This section defines a function that maps completed expressions
that may contain ¢ subexpressions to integer scores. This function
is used to rank the results returned by the completion finder in
ascending order of the ranking score (i.e., a lower score is better).
The function is defined such that each term is non-negative, so if
any subset of the terms are known, their sum is a lower bound on
the ranking score and can be used to prune the search space.

The computation is a sum of various terms summarized in Fig-
ure score(+) applies to all expressions while scorec(-) is a spe-
cialized version with tweaks for method calls and scorecmp(-, -)
is a specialized version with a tweak for comparisons. The com-
putation is defined recursively, so for methods or operators with
arguments, the sum of the scores of their arguments is added to
the score. The scoring function incorporates several features we
designed based on studying code examples and our own intuition.
This section explains these features in detail. Section[5.4]evaluates
each feature’s contribution to our empirical results.

Type distance The primary feature in the ranking function is
“type distance”, for example from a method call argument’s type
to the type of the corresponding method parameter. Informally, it
is the distance in the class hierarchy, extended to consider prim-
itive types, interfaces, etc. For example, if Rectangle extends
Shape which extends Object, td(Rectangle, Shape) = 1 and
td(Rectangle, Object) = 2. Far away types are less likely to be
used for each other, so method calls and binary operations where
the arguments have a higher type distance are less likely to be what
the user wanted.

Formally, the type distance from a type « usable in a position of
type [ to that type 3, td(«, 3), is defined as follows:

unde fined no implicit conversion of « to 3
td(a, B) = 0 ifa=4
Y1 if o and 3 are primitive types

1+ td(s(e), B) otherwise

s(a) is the explicitly declared immediate supertype of « which to
minimizes td(s(«), 8). Note that td(c, 3) is used by the ranking
function only when it is defined as that corresponds to the expres-
sion being type correct.

The type distance term is the sum of the type distances from the
type of each argument arg to the type of the corresponding formal
parameter param(arg). For method calls this is well-defined; bi-
nary operators are treated as methods with two parameters both of

the more general type, so the type distance between the two argu-
ments to the operator is used.

Depth The next term prefers expressions with fewer subexpres-
sions. The ranking scheme prefers shorter expressions by comput-
ing the complexity of the expression which is approximated by the
number of dots in the expression and multiplying that value by 2 to
weight it more heavily. For example, dots(“this.fo0”) = 1 so it
would get a cost of 2 while dots(“this.bar.ToBaz()”) = 2 so
it would get a cost of 4. To avoid double counting, any dots which
are part of subexpressions are not counted here and instead are in-
cluded via the subexpressions score term.

In-scope static methods Instance method calls will tend to have
a type distance of zero for the receiver, so type distance has an
implicit bias against static method calls. Noting that static methods
of the enclosing type can be called without qualification, just like
instance methods with this as the receiver, our ranking algorithm
should similarly not disfavor such in-scope static methods. This
is fixed by adding a cost of 1 if either the method is an instance
method or the method is a static method that is not in scope.

Common namespace As related APIs tend to be grouped into
nearby namespaces, the algorithm prefers calls where the types of
all the arguments with non-primitive types and the class contain-
ing the method definition are all in the same namespace. Primitive
types, including string, are ignored in this step because they are
used with varying semantics in many different libraries. Further-
more, deeper namespaces tend to be more precise so a deep com-
mon namespace indicates the method is more likely to be related
to all of the provided arguments. Specifically, the algorithm takes
the set of all namespaces of non-primitive types among the argu-
ments, treats them as lists of strings (so “System.Collections”
is [“System”, “Collections”]), finds the (often empty) common
prefix, and uses its length to compute the “namespace score”. To
avoid this boosting the scores of instance calls with only one non-
primitive argument, the similarity score is O in that case.

In order to have the namespace similarity term be non-negative,
namespace similarities are capped at 3, and 3 minus the length of
the common prefix is used as the common namespace term.

Same name Comparisons are often made between correspond-
ing fields of different objects. Whether two fields have corre-
sponding meanings can be approximated by checking if they have
the same name. That is, p.X is more likely to be compared to
this.Center.X than to this.Center.Y. To capture this, a 3
point penalty is assigned to comparisons where the last lookups on
the two sides do not have the same name. The value is intentionally
chosen to be greater than the cost of a lookup, so a slightly longer
expression that ends with a field of the right name is considered
better than a shorter one that does not.

Abstract type inference

We now introduce an important refinement to the basic ranking
function that partitions types into “abstract types” based on us-
age, which is particularly important for commonly used types like
string. Abstract types may have richer semantics than string
such as “path” or “font family name”. Our approach is based on the
Lackwit tool that infers abstract types of integers in C[11].

Abstract types are computed automatically using type inference.
An abstract type variable is assigned to every local variable, formal
parameter, and formal return type, and a type equality constraint
is added whenever a value is assigned or used as a method call
argument. As all constraints are equality on atoms, the standard
unification algorithm can be implemented using union-find.

In order to avoid merging every abstract type .ToString() or
.GetHashCode () is called on, methods defined on Object are



treated as being distinct methods for every type. All other methods
have formal parameter and formal return type terms associated with
their definition which are shared with any overriding methods. A
more principled approach might involve a concept of subtyping for
abstract types, but that would greatly complicate the algorithm for
what would likely be minimal gain.

For example, consider the following code from Family.Show

string appLocation = Path.Combine (

Environment.GetFolderPath(
Environment.SpecialFolder.MyDocuments),

App.ApplicationFolderName) ;

if (!Directory.Exists(appLocation))
Directory.CreateDirectory(appLocation);

return Path.Combine(appLocation,

Const.DataFileName) ;

Directory.Exists, Directory.CreateDirectory, and
Path.Combine take appLocation as their first argument, so
the analysis concludes their first arguments are all the same
abstract type. Furthermore, from the first statement, that must
also be the abstract type of the return values of Path.Combine
and Environment.GetFolderPath. On the other hand, there
is no evidence that would lead the analysis to believe the sec-
ond argument of Path.Combine is of that abstract type, instead
App.ApplicationFolderName and Const.DataFileName are
believed to both be of some other type. Intuitively, a programmer
might call those two types “directory name” and “file name”.

In the ranking function, the type distance computation is refined
by adding an additional cost of 1 if the abstract types do not match.

4.2 Completion finder

This section presents a general algorithm for computing the top n
ranked completions of a partial expression, first giving a naive im-
plementation and then discussing optimizations. The main logic is
Algorithm [T] which returns a generator that returns all completions
of a partial expression in order by score. The yield return state-
ment returns a single completion, and when the next completion is
requested, execution continues on the next statement. The first n el-
ements of A11Completions (€) are the top n ranked completions
of €.

Note that for any partial expressions containing . ?*f or . 7#*m,
this generator will usually continue producing more completions
forever, but can be called only n times to get just the top n comple-
tions. It may be easier to first read the algorithm while ignoring the
score variable, which is necessary to handle the unbounded result
set for . 7*£ or . 7*m. Then it is a simple recursive algorithm which
computes every possible completion of its subexpressions and uses
those completions to generate every possible completion of the en-
tire expression (e.g. all methods that can take those arguments).

Note that 7 is interpreted as vars. 7*m where vars is a special
subexpression whose list of completions is every local and global
variable in scope.

‘We now discuss various useful optimizations.

Cache subexpression scores

A subexpression’s score will be needed for every completion it
appears in. To compute it only once, the algorithm is redefined such
that it returns a set of pairs of completions and their scores.
Compute completions not in score order

In the algorithm given above, completions with a score not equal
to score are discarded and regenerated later. To avoid that work,

3http://www.vertigo.com/familyshow.aspx

Algorithm 1: A11Completions (€)

input :¢: a partial expression
output : a generator of all completions in order by score
subexps « the list of immediate subexpressions of €;
Let subcomps be a map from subexps to completions;
foreach s < subezps do
| subcomps[s] < AllCompletions(s);
end
foreach score < [0, 00) do
foreach concreteSubs < all choices of exactly one
completion for each subexpression from subcomps
whose score(concreteSubs) < scoredo
foreach type-correct completion c of € using
subexpressions concreteSubs where
score(c) = scoredo
| yield return c;

end
end
end
ArrayList ICloneable Object
2299 methods 2211 methods 2210 methods
BinarySearch Clone | Equals
Reverse ,' GetHashCode
IList r Registry.SetValue
2257 methods Array.IndexOf
Add IList.Add
Remove

Console.WriteLine

Figure 8. The method index. The supertypes of IList other than
Object are omitted for brevity.

completions with a score greater than score can be saved to be out-
put later. For most partial expressions, it makes sense to compute all
of the completions for a given value of concreteSubs at once. In
the case of . 7*f and . 7*m queries, the algorithm will never be done
computing every possible completion, but foo . 7*f can be thought
of as the union of .?7f queries first on foo, then on the results of
foo.7f, etc. Then each completion set is finite and the basis for the
future completions. In pseudocode, this is implemented as inserting
each completion c into subcomps.

Indexing

As written, how the algorithm iterates over possible completions is
unspecified. This is especially a problem for unknown methods as
simply iterating over all methods in a huge framework would take
too long. An index is maintained that maps every type to a set of
methods for which at least one of the arguments may be of that type.
Then, given a query like ? ({e1, e2}), each of the argument types is
looked up to see how many methods would have to be considered
for that type and the smallest set is chosen. That set will almost
always be orders of magnitude smaller than the set of all methods.

Part of a method index is shown in Figure [§] In order to save
memory, the method index is organized such that looking up a type
T gets a set of methods which have parameters of the exact type 7
along with pointers to the method indexes for the immediate super-
types of 7. Due to the type distance part of the ranking algorithm
explained in Section .1} each method index visited will give pro-
gressively worse ranked results.
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Methods are a prime candidate for indexing as there are many
methods and few that take a specific type. Although the current
implementation does not do so, queries for multiple field lookups
could also be made more efficient using an index that indicates for
each type which types are reachable by a . 7*£f or . ?*m query, how
many lookups are needed, and which lookups can lead to a value
of that type. For example, a Line type with Point fields p1 and
p2 and a GetLength () method would have an entry denoting that
the type double is reachable in > 2 lookups using a . 7*f query
with the next lookup being one of p1 or p2 while it is reachable in
> 1 lookup using a . 7*m query with the next lookup being one of
GetLength(), p1, or p2.

Avoid computing type-incorrect completions

If the possible valid types for the completions were known, then the
type reachability index would be more useful: otherwise results of
every type have to be generated anyway for completeness. At the
top level, the context will often provide a type unless the expression
being completed is the initial value for a variable annotated only
as var. On the recursive step of the algorithm, the possible types
may not be known or may not be precise enough to be useful:
there are methods that take multiple arguments of type Object,
so even knowing one of the argument types does not narrow down
the possibilities for the rest. On the other hand, binary operators
and assignments are relatively restrictive on which pairs of types
are valid, so enumerating the types of the completions for one side
could significantly narrow down the possibilities for the other side.

Grouping computations by type

Which completions are valid is determined solely by the types
of the expressions involved. Hence, instead of considering every
completion of every subexpression separately, the completions of
each subexpression can be grouped by type after grouping by score
to reduce the number of times the algorithm has to check if a given
type is valid in a given position. This also allows type distance
computations to be done once for all subexpressions of the same
types. Any remaining ranking features are computed separately for
each completion as grouping by them is no faster than computing
their terms of the ranking function.

5. Evaluation

We implemented the algorithm described using the Microsoft Re-
search Common Compiler Infrastructure (CCI)E] CCI reads .NET
binaries and decompiles them into a language resembling C#. Un-
fortunately, we were unable to work on actual source code because
at the time the experiments were performed, no tools for analyzing
the source code of C# programs existed—and even if they did exist,
open source C# programs are relatively rare.

We performed experiments where our tool found expressions
in mature software projects, removed some information to make
those expressions into partial expressions, and ran our algorithm
on those partial expressions to see where the real expression ranks
in the results.

All experiments were run on a virtual machine allocated one
core of a Core 2 Duo E8400 3GHz processor and 1GB of RAM.

One minor issue is that any precomputation, specifically ab-
stract type inference, would see the expression we are trying to re-
create when in actual practice the expression would not yet exist.
To avoid this situation, we re-run abstract type inference for each
expression, eliminating the expression and all code that follows it
in the enclosing method—we do consider the rest of the program.

We describe three case studies whose significance we have
previously discussed in Section[2]and show that the ranking scheme

“https://cciast.codeplex.com/

Table 1. Summary of quality of best results for each call

Program # calls #top 10  #top 10..20
Paint.Net” 3188 2288 525
wix? 13192 11430 512
GNOME Do* 208 167 22
Banshee? 91 82 2
.NET* 2801 2345 145
Family.Show' 586 510 23
LiveGeometry® 1110 1072 3
Totals 21176 17894 (84.5%) 1232 (5.8%)

¢http://wuw.getpaint.net/—image editor (main .exe)
bhttp://wix.codeplex.com/—Windows Installer XML
‘http://do.davebsd.com/—application launcher
dhttp://banshee.fm/—media player
¢ NET Framework v3.5 libraries System.Core.dll, mscorlib.dll
fhttp://www.vertigo.com/familyshow.aspx—WPF
example application
8http://livegeometry.codeplex.com/—geometry
visualizer
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Figure 9. The proportion of calls of each type with the best rank
of at least the given value

is effective and the algorithm is efficient. After that, we analyze
the importance of the individual ranking features in Section
Finally, we discuss threats to validity in Section 5.5}

5.1 Predicting Method Names

Our first experiment shows that queries consisting of one or two
arguments can effectively find methods. We ran our analysis on
21,176 calls across parts of seven C# projects listed in Table[T} We
generated queries by finding all calls with > 2 arguments (including
the receiver, if any) and giving one or two of the call’s arguments to
the algorithm. We evaluated the algorithm on where in the results
list the actual method appeared. While putting the correct result
as the first choice is ideal, we do not consider it necessary for
usefulness since users can quickly skim several plausible results.

Figure[D]shows the results overall and partitioned between static
and instance calls. Almost 85% of the time, the algorithm is able to
give the correct method in the top 10 choices. An additional 5% of
the time, the correct method appears in the next 10 choices out of a
total of hundreds of choices on average.

Notably, the algorithm fares significantly better on instance calls
than static calls. This is not too surprising as the search space is
much larger for static calls. This might also indicate that the current
heuristics prefer instance calls more strongly than they should.

Unfortunately, we cannot algorithmically determine which ar-
gument subset a user would use as their search query. Instead, we
show that usually for some set of no more than 2 arguments the
correct method being highly ranked. Our intuition, which would
need a user study to validate fully, is that evaluating our approach
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Figure 10. Each bar represents all calls analyzed with the number
of arguments. The sections of the bar correspond to how many of
those arguments the algorithm needed to put the original call in the
top 20 results.
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Figure 11. Difference in rank between our algorithm and Intel-
lisense

by choosing for the best possible subset of arguments is reasonable
because programmers are capable of identifying the most useful ar-
guments (e.g., PreciseLibraryType instead of string or Pair).

Figure shows that a single argument is often enough for
the algorithm to determine which method was desired, in this case
defined as putting the method in the top 20 choices. Not shown in
the graph is that adding a third argument leads to only negligible
improvement in these results; note that even knowing all of the
arguments to a method might not be enough to place it in the top
20 choices. Above the bars is the percentage of calls the algorithm
was able to guess using only two arguments, which is high for any
number of arguments. The intuition is that most of the arguments
are not important, although there are also more opportunities for
an argument to be of a rarely used type. The low value for 10
argument calls is due to there being very few such calls and most
of them being from a large family of methods which all have the
same method signature.

Comparison to code completion

Figure [TI] compares our ranking algorithm to Intellisense. The y-
axes are read as the left side measuring the proportion of calls our
system did better on and the right side measuring the proportion of
calls Intellisense did better on.

We modeled Intellisense as being given the receiver (or receiver
type for static calls) and listing its members in alphabetic order.
Intellisense knows which argument is the receiver but is not using
knowledge of the arguments. It was considered to list only instance
members for instance receivers and only static members for static
receivers. Given this ordering, we were able to compute the rank
in the alphabetic list of the correct answer. We then subtracted that
rank from the rank given by our algorithm, so negative numbers
mean our algorithm gave the correct answer a higher rank.
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Figure 12. Difference in rank between our algorithm filtering its
results for those matching the correct return type and Intellisense

About 45% of the time, our position is at least 10 higher than it
is with Intellisense. Since Intellisense displays at most 10 results at
a time, this means it is not initially displayed by Intellisense.

Subtracting the ranks is oversimplifying the comparison. First,
the different tools have different inputs. Our tool does not require
the receiver but is helped by being provided a second argument.
Second, the Intellisense results are listed in alphabetic order which
is likely easier to skim through than the results from our tool which
will be ordered by their ranking scores. The take-away is not that
our tool is “better” than Intellisense; they serve different purposes.
Instead, we wanted to show that our tool is often able to greatly
reduce the number of choices a user would have to sift through
compared to Intellisense even if the user knew the correct receiver.

Figure [T2] shows a similar comparison to the one in Figure [T1]
except that our algorithm additionally knew the desired return type
(or void) and only suggested methods whose return type matched.

The assumption of a known return type is not used elsewhere
both because, in the context of API discovery, the user may often
not know what return type to use, and the var keyword in C# and
equivalents in other languages allow a user to omit return types.

Speed For 98.9% of the calls analyzed, the query with the best re-
sult ran in under half a second, which is fast enough for interactive
use.

As a caveat, these times do not include running the abstract type
inference algorithm. That could take as long as several minutes for
a large codebase but can be done incrementally in the background.

These times were measured using CCI reading binaries as op-
posed to getting the information from an IDE’s incremental com-
piler. How that affects performance is unclear, but any such effects
were minimized by memoizing a lot of the information from CCI,
so the vast majority of the time was spent in our algorithm.

5.2 Predicting Method Arguments

Our second experiment investigated how often arguments to a
method could be filled in by knowing their type.

Looking at the same method calls as the previous experiment,
for each argument in each call, a query was generated with that
argument replaced with 7. There were a total of 69,927 arguments
across the 21,176 calls. 23,927 were considered not guessable due
to having an expression form that our partial expression completer
does not generate like an array lookup or a constant value.

Figure shows how well our algorithm is able to predict
method arguments, with the lower line ignoring the low-hanging
fruit of local variables. Over 80% of the time, the algorithm is able
to suggest the intended argument as one of the top 10 choices given
out of an average of hundreds of choices.

Use of expressions other than local variables in argument posi-
tions is common as shown in Figure[T4] Programmers must some-
how discover the proper APIs for these expressions: Intellisense
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Figure 14. The types of expressions found in argument positions,
showing which ones are considered guessable

only suggests local variables given an argument position. The “not
guessable” expressions are those that involve constants or computa-
tion like an addition or a non-zero argument method call that could
be guessed by neither our technique nor Intellisense. Our partial ex-
pression language captures more of the expressions programmers
use as arguments including field/property lookups which are rela-
tively common and require browsing to find using Intellisense.

As our experiments are on decompiled binaries and not the orig-
inal source, these arguments may not be exactly what the program-
mer wrote. In particular, expressions might be stored in temporary
variables that they did not write or temporaries they did write might
be removed, putting their definition in an argument position.

Speed Our tool is capable of enumerating suggested arguments in
under a tenth of a second 92% of the time and under half a second
over 98% of the time, which is fast enough for an interactive tool.

5.3 Predicting Field Lookups

Our third experiment determines how often field/property lookups
could be omitted in assignments and comparisons (on either side).

Our corpus includes 14,004 assignments where the target ends
with a field lookup, 7,074 where the source does, and 966 where
both do. For those assignments, Figure [I5] shows the rank of the
correct answer when our algorithm was given the assignment with
the final field lookups removed and . ?m added to the end of both
sides of the assignment. The correct answer was in the top 10
choices over 90% of the time when one field lookup was removed,
but only about 59% of the time when a field lookup was removed
from both sides, going up to 75% when considering the top 20
choices. There were a total of dozens of choices on average.

Our corpus includes 620 comparisons where the left side ends
in a lookup, 162 of which end in two lookups; 620 comparisons
where the right side ends in a lookup, 174 of which end in two
lookups; and 125 where both sides end in a lookup. Of those,
Figure [T6] shows the ranks our tool gave to the expression in the

Figure 15. Proportion of assignments where a field lookup could
be removed from one or both sides and guessed with a given rank
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Figure 16. Proportion of comparisons where field lookups could
be removed from one or both sides and guessed with a given rank

source given the query containing the original expression with the
lookups removed and . 7m. ?m added to the end of both sides.

The numbers are significantly better than for assignments be-
cause there are fewer possibilities: few types support comparisons.
One lookup can be placed within the top 10 for nearly every in-
stance in our corpus. If we allow 20 choices, then two lookups
where one lookup is on each side can be guessed 89% of the time
while two lookups on the same side can be guessed 85% of the
time if they are are on right and 69% of the time of they are on the
left. The discrepancy between the latter two appears to be that com-
parisons against constants are usually written with the complicated
expression on the left and the constant on the right, and the name
matching feature is not helpful for comparisons to constants.

Speed 99.5% of these queries ran in under half a second.

5.4 Sensitivity analysis of ranking function

To see which parts of the ranking function were most important,
we re-ran the experiments with various modified ranking functions.
Each modified version either included only one of the terms or
left out one of the terms, in addition to versions that left out and
included both the type distance term and the abstract type term.
Table 2] shows the data for the proportion of expressions where the
correct answer was in the top 20 choices for different variants of
the ranking function for each of the experiments.

Methods Type distance and abstract type distance are the only
features that matter. Leaving out the namespace and in-scope static
terms seems to make almost no difference. Furthermore, the two
type distance terms separately are both good, with abstract type
distance alone being a little better, but not quite as good as the two
together, confirming that both are useful.

Arguments 1t seems that only the depth feature seems to matter.
Leaving it out makes the results much worse while leaving any
other term out has almost no effect. In fact, looking at the “+d”



Count | Al| —n —s —-d -—m -t —a —at| +n  +s 4+d +m +t  4a Hat
Methods
All 21176 | 0.90 | 0.90 0.90 - - 085 0.84 043 ] 043 043 - - 084 0.85 0.90
Instance 13904 | 0.96 | 0.96 0.96 - - 087 094 031|031 031 - - 094 087 096
Static 7272 | 0.78 | 0.78 0.78 - - 080 065 0.65 | 0.68 0.65 - - 064 081 0.78
Arguments
Normal 45325 | 0.90 | 0.90 - 072 - 09 090 090 | 0.72 - 090 - 072 072 0.72
No variables | 14925 | 0.77 | 0.77 - 0.65 - 076 077 0.76 | 0.64 - 076 - 065 064 0.65
Assignments
Target 14004 | 0.97 - - 087 - 097 097 097 - - 097 - 081 087 0.87
Source 7074 | 0.89 - - 087 - 090 0.89 0.90 - - 090 - 087 0.89 0.87
Both 966 | 0.75 - - 0.76 - 074 075 0.73 - - 073 - 075 075 0.76
Comparisons
Left 620 | 1.00 - - 023 1.00 1.00 1.00 1.00 - - 1.00 0.65 025 0.68 025
Right 620 | 1.00 - - 051 100 1.00 1.00 1.00 - - 1.00 053 062 085 0.62
Both 125 | 0.89 - - 046 087 088 089 0.88 - - 087 046 042 037 042
2xLeft 162 | 0.69 - - 014 069 070 069 0.70 - - 069 041 0.18 057 0.18
2xRight 174 | 0.85 - - 063 081 081 085 0.81 - - 077 058 071 073 0.71

Table 2. Ranking function term sensitivity. Each cell is the proportion where correct answer was found in the top 20 choices with various
modifications of the ranking function. “All” is the full ranking function. For the rest, — means without certain terms, + means with only
certain terms: ‘n’=namespaces, ‘s’=in-scope static, ‘d’=depth, ‘m’=matching name, ‘t’=normal type distance, and ‘a’=abstract type distance.

column, using just the depth term gives almost exactly the same
results as the full ranking scheme.

Assignments  For just one lookup removed from either side, once
again only depth matters, but when a lookup is missing from both
sides, the type distance computation becomes important. In fact, in
the case of a lookup missing from both sides, leaving out the depth
component improves the results. This is not too surprising as there
are likely many possible assignments which require adding only
one lookup to either side. The interesting part is that apparently
these lookups can be distinguished from the proper one by looking
at more detailed type information (recall that only assignments
which are type correct are even being considered).

Comparisons Depth once again seems to be most important. Ex-
cept on the “2xRight” row, depth appears to be the only significant
feature. The different values for that row vary little, indicating that
each ranking feature is somewhat useful, but there is little gain from
combining them. On average, there were hundreds of type-correct
options, so the ranking function is definitely doing something to
place the correct option in the top 20.

5.5 Threats to validity

As the experiments were run on decompiled code instead of ac-
tual source code, they may not apply to how programmers actually
write code. Particularly, the decompiled code may have simpler ex-
pressions due to a compiler factoring out additional local variables
from complex expressions. This did not appear to be the case from
looking at code being analyzed as non-trivial expressions were vis-
ible like method calls and binary operations in method argument
positions. On the other hand, the decompiled code looked different
across projects (specifically, some projects had local variables with
names like “local0” while others had actual names), so there may
be some compiler-dependence involved.

Working on completed projects as opposed to codebases in
the process of being developed means that abstract type inference
algorithm may have had more information than it would have had in
areal development scenario. Note that since the rest of the features
work only on the current expression, they are unaffected by the
maturity of the codebase. On the other hand, more development
likely corresponds to more APIs existing in the codebase which
could appear in the results of a query.

The subset of the arguments that got the best results was always
used, not the subset of arguments that the programmer would be
most likely to think of when writing a query. Naturally, the latter
is difficult to determine automatically. Looking at the results, the
queries generated tended to seem reasonable. The main reason this
could be a problem is when one of the options to a method is a
type used only as an option to a small number of methods like the
System.I0.FileMode enum which is used only for methods that
open files. Such types seemed to be rare, although no quantitative
analysis was done to confirm that.

More importantly, every single expression in the analyzed code-
bases was used, as opposed to restricting the analysis to only the
ones that the programmer would find difficult to write. Naturally,
the latter is difficult to determine automatically. It seems safe to
assume that the vast majority of API usages in a codebase were
easy for the programmer to write, so the experiment results cannot
be taken as direct evidence that our proposed tool would be effec-
tive in answering queries. Instead, the experiment results should be
taken as an argument that expressions in a program tend to be well
specified by a small subset of the information needed to exactly
define the expression, and therefore the technique of searching for
expressions using a partial expression as a query should tend to
work well in practice.

The experiments worked only on C# code. We expect to obtain
similar results on code written in languages with a rich type system
such as Java.

6. Related Work

Prospector[10] is perhaps the closest related work. With Prospec-
tor, as discussed in Section a user makes a query for a con-
version from one type to another and gets what the authors call a
“jungloid” which is a series of operations including method calls,
field lookups, and downcasts from examples in the code. That pa-
per noted that shorter jungloids tend to be more likely to be correct
and also that jungloids that cross package boundaries are less likely
to be correct, both of which are ideas used by our ranking function.

PARSEWeb[[17] performs the same task as Prospector except it
mines code examples from web searches.

InSynth[6] also produces expressions for a given point in code
using the type as well as the context to build more complicated
expressions using a theorem prover. InSynth’s ranking algorithm



is based on machine learning from examples. It, like Prospector,
differs from our work in that it generates expressions from scratch
with no input from the programmer to guide it. Their evaluation was
on small snippets of Java example code translated to Scala which
is difficult to compare to our evaluation on mature C# projects.

Typsy[1] searches for APIs by generating expressions involving
any number of method and constructor calls and field lookups given
a list of arguments, a return type, and a library package to search
within. Typsy will only return expressions with all arguments filled
in, so it will generate expressions to construct any missing argu-
ments for methods it finds. The expressions are ranked by their size
similar to the depth term in our system, although our depth term
does not count the number of method and constructor calls because
it will not generate new ones not specified by the programmer.

API Explorer[3] supports queries both for methods taking a
given argument and for how to construct a value of a given type.
When querying for methods, a keyword can also be provided, so
the results are filtered to contain only methods with synonyms
of that keyword in the name. The ordering of the results uses a
computation similar to our type distance feature. Both types of
queries can be expressed in our partial expressions language, except
we do not have a way to filter by keywords, and the version used
for our experiments does not generate constructor calls when asked
for an unknown method.

Strathconal/7] and XSnippet[14] both use context to produce
queries which may be helpful to the programmer. In a similar
vein, CodeBroker[18] performs searches for APIs based on the
documentation of the method currently being written in order to
recommend APIs the user may not even be aware of.

Little and Miller[9] propose a system using “keyword program-
ming” to generate method calls where the user gives keywords and
the system generates a method call that includes arguments that
have most or all of the keywords. Their system attempts to be closer
to natural language than ours at the cost of a lower success rate.

Hou and Pletcher[8] recommend various ways of filtering and
sorting APIs to show the most relevant choices first. Their system is
mainly based on manual annotations of APIs as well as considering
how often an API is used. Their work is complementary as it could
be used to filter out irrelevant methods from our results.

Searching for functions by type has been recommended for
functional programming languages[/13[][20]]. Those proposals differ
in that the type signature alone, along with modifications to, for
example, handle both curried and uncurried functions, tends to be
sufficient for a search. In imperative languages with subtyping,
inexact matches are more likely to be meaningful and side-effects
make it more likely that many options have the same type.

For discovery of entire modules at once, specification matching
can search by specification[21]. Semantics-based code search[12]]
similarly searches based on specifications including tests and key-
words but additionally may make minor modifications to the code
to fit the details of the specification.

SNIFF[2] returns snippets matching natural language queries
by mining multiple examples from existing code, matching them
based on the documentation of the APIs they use, and combining
them based on their similarities to eliminate the usage-specific parts
of the snippets. Unlike our algorithm, this technique requires the
API being searched to be well-documented.

MatchMaker[19]] handles API discovery at a different scale:
given two types, it generates the glue code to connect those two
types by generalizing examples from existing code.

Program sketching[[15]][16] is a form of program synthesis[3]
where the programmer writes a partial program with holes and
provides a specification the solution must satisfy. Our technique is
similar but considers only a single expression at a time and avoids

the need for an explicit specification by using type information to
filter the results.

7. Conclusions and Future Work

This paper has shown that type-directed completion of partial ex-
pressions can effectively fill in short code snippets that are com-
plicated enough to be difficult to discover using code completion.
Furthermore, our ranking scheme is able to sift through hundreds
of options to often place the correct answer among the top results.

Future work would be to implement an IDE plug-in and perform
a user study to determine if it is useful in real development situa-
tions as well as possibly seeing if developers have other ideas for
how such a plugin could be used or for similar ideas for lightweight
searches. Extending the algorithm to other programming languages
is also future work. The features are at least partially tied to C#/Java
and will need to be adapted to make sense in other languages.
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