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Abstract into (first-order quantifier-free) satisfiability constraints that can be

solved using off-the-shelf solvers. The last decade has witnessed a
revolution in SAT/SMT based methods enabling solving of indus-
trial sized satisfiability instances. This presents a real opportunity
to leverage these advances for solving hard program analysis prob-

A constraint-based approach to invariant generation in programs
translates a program into constraints that are solved using off-the-
shelf constraint solvers to yield desired program invariants.

In this paper we show how the constraint-based approach can
be used to model a wide spectrum of program analyses in an ex- ems. . .
pressive domain containing disjunctions and conjunctions of lin- . Constraint-based techniques offer two other advantages over
ear inequalities. In particular, we show how to model the problem fixeéd-point computation based techniques. First, they are goal-
of context-sensitive interprocedural program verification. We also dirécted and hence have the potential to be more efficient. Sec-
present the first constraint-based approach to weakest preconditiorP"dly: they do not require the use of widening heuristics that are
and strongest postcondition inference. The constraints we gener-USed by fixed-point based techniques leading to loss of precision
ate are boolean combinations of quadratic inequalities over integerthat IS o_ften hard to control. . .
variables. We reduce these constraints to SAT formulae using bit- " this paper, we present constraint-based techniques for three
vector modeling and use off-the-shelf SAT solvers to solve them, ~Cclassical program analysis problems, nanpetygram verification

Furthermore, we present interesting applications of the above Weakest preconditiogeneration angtrongest postconditiogen-
analyses, namely bounds analysis and generation of most-gener ration over the abstraction of linear arithmetic. Using this core
counter-examples for both safety and termination properties. We ramework of a”%'yses we further show interesting applications
also present encouraging preliminary experimental results demon-{© Pounds analysis and finding most-general counterexamples to

strating the feasibility of our technique on a variety of challenging safe.ty.and termination propertie§. A distinguishing featurg of our
examples. preliminary tool is that it can uniformly handle a large variety of

challenging examples that otherwise require many different spe-
Categories and Subject DescriptorsD.2.4 [Software Engineer- cialized techniques for analysis. The key contributions of this pa-
ing]: Software/Program Verification; F.3.L¢gics and Meanings per lie in the uniform constraint-based approach to core program
of Program$: Specifying and Verifying and Reasoning about Pro- analyses (Sectiors-5) and their novel applications (Sectiéh

grams; F.3.2l[ogics and Meanings of PrografnsSemantics of The goal ofprogram verificationis to discover invariants that
Programming Languages—Program analysis are strong enough to verify given assertions in a program. Current
constraint-based techniques are limited to discovering conjunctive
invariants in an intraprocedural setting. We present a constraint-
Keywords Program Verification, Weakest Precondition, Strongest based technique that can generate linear arithmetic invariants with
Postcondition, Most-general Counterexamples, Bounds Analysis, boundedboolean structurgSection2), which also allows us to

General Terms Algorithms, Theory, Verification

Non-termination Analysis, Constraint Solving extend our approach to@ntext-sensitive interprocedural setting
(Section3). A key idea of our approach is a scheme for reduc-
1. Introduction ing second-order constraints to SAT constraints and this can be re-

) o ] ) ) o garded as an independent contribution to solving a special class of
Discovering inductive program invariants is critical for both prov- gecond-order formulas. Another key idea concerns an appropriate
ing program correctness and finding bugs. Traditionally, iterative choice of cut-set, which has until now been overlooked in other
fixed-point computation based techniques like data-flow analy- constraint-based techniques. Our tool can verify assertions (safety
ses P9, abstract interpretatioril[] or model checking 13] have properties) in benchmark programs (used by alternative state-of-
been used for discovering these invariants. An alternative is to usethe-art techniques) that require disjunctive invariants and sophis-
aconstraint-based invariant generati¢g, 10, 7, 32 approach that  tjcated procedure summaries. We also show how constraint-based
translates (the second-order constraints represented by) a progranhyariant generation can be applied to verifying termination proper-
ties as well as the harder problembafunds analysi§Section6.1).

The goal ofstrongest postcondition generatigsto infer pre-
cise invariants in a given program so as to precisely characterize
the set of reachable states of the program. Current constraint-based
invariant generation techniques work well only in a program veri-
fication setting, when the problem enforces the constraint that the
Permission to make digital or hard copies of all or part of this work for personal or - jnvariant should be strong enough to verify the assertions. How-
classropm use is gralnted without fee provided _that copies are not made or d'St,“b"_‘tEdever, in absence of assertions in programs, there is no guarantee
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on the first page. To copy otherwise, to republish, to post on servers or to redistribute about the precision of invariants. We describe a constraint-based
to lists, requires prior specific permission and/or a fee. technique that can be used to discover some form of strongest in-
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techniques, the problem of generating precise invariants has led to
development of several widening heuristics that are tailored to spe-
cific classes of programsl(), 18, 16, 17]. Our tool can uniformly
discover precise invariants for all such programs.

The goal ofweakest precondition generatiaa to infer the
weakest precondition that ensures validity of all assertions in a
given program. We present a constraint-based technique for dis-
covering some form of weakest preconditions (SecfiprOur tool
can generate weakest preconditions of safety as well as termination

true

PVL (int g) {
x := —50;
while (z <0) {
=T+ Y;
yt+;
}

assert(y > 0)

}

properties for a wide variety of programs that cannot be analyzed
uniformly by any other technique.

We also describe an interesting application of weakest precondi- @
tion generation, namely generatingpst-general counterexamples Vo yb(1):
for_ both safety (Sectio%.2) ar_1d termination (Sectiof.3) prop- Y true = I[—50/a]
erties. The appeal o_f generating most-general _cou_nterexamplgs_ (as INz<0 = I[(y+1)/y, (z+y)/z]
opposed to generating any counterexample) lies in characterizing INZ>0 = y>0
all counterexamples in a succinct specification that provides better ()
intuition to the programmer. For example, if a program has a bug — ——
when(n > 200 4+ y) A (9 > y > 0), then this information is Figure 1. (a) A program verification example (b) The correspond-
more useful than simply generating any particular counterexample, ing control flow graph (c) Constraint generated from the program
sayn = 356 A y = 7 (Figure10). We have also successfully ap-  Over the' annqwn Ioop_ invariardt at loop header.. Our_tool gener-
plied our tool to generate weakest counterexamples for termination ates a disjunctive solutiofx < 0V y > 0) for the invariant/.
of some programs (taken from recent wogi]).

2. Program Verification is to include all targets of back-edges in any depth first traversal
Given a program with some assertions, the program verification of the control-flow graph. (In case of structured programs, where
problem is to verify whether or not the assertions are valid. The all loops are natural loops, this corresponds to choosing the header
challenge in program verification is to discover the appropriate in- node of each loop.) However, as we will discuss in Secfd
variants at different program points, especially inductive loop in- some other choices of cut-set may be more desirable from an effi-
variants that can be used to prove the validity of the given asser- ciency/precision viewpoint. For notational convenience, we assume
tions. (The issue of discovering counterexamples, in case the asserthat the cut-set always includes the program entry locatigg.,

tions are not valid, is addressed in SecttoR) and exit locationTeyix.

We then associate each cut-pointwith a relation I, over
program variables that are liveat The relationd,,,,, and/r.,;,
at program’s entry and exit locations respectively are sette,
while the relations at all other cut-points are unknown relations

is some boolean combination of linear inequalities> 0. Here that we seek to discover. Two cut-points adjacentif there

denotes some program variable that takes integral values andis a path in the control flow graph from one to the other that
z program ; . ‘eg ’ does not pass through any other cut-point. We establish constraints
e denotes some linear arithmetic expression. Since we allow for

assume Statements, without loss of generality, we assume that all between the relations at adjacent cut-pointsandr as follows.
conditionals in the ;Srogram are non-deterministic Let Paths(m, 72) denote the set of paths between andm

) that do not pass through any other cut-point. We use the notation
VC(m,m2) to denote the constraint that the relatidiks and I,

o at adjacent cut-points; and . respectively are consistent with
The problem of program verification can be reduced to the problem respect to each other:

of finding solutions to a second-order constraint. The second-order
unknowns in this constraint are the unknown program invariants

Program model In this paper, we consider programs that have
linear assignments, i.e., assignments of the ferm= e, or non-
deterministic assignments :=?. We also allow for assume and
assert statements of the forasume(p) andassert(p), wherep

2.1 Background: Conversion of programs to constraints

that are inductive and strong enough to prove the desired asser- VC(m1,m2) = VX /\ (Iny, = w(T, I,))
tions. In this section we describe the conversion of programs to ePaths(ry ,72)
constraints.

We first illustrate the process of constraint generation for an Above, X denotes the set of program and fresh variables that occur
example program. Consider the program in Figlife) with its in I, andw(, I, ). The notationu(r, I') denotes the weakest pre-
control flow graph in Figurel(b). The program’s precondition is  condition of pathr (which is a sequence of program instructions)
true and postcondition iy > 0. To prove the postcondition, we  with respect td and is as defined below:
need to find a loop invariant at the loop header. There are three w(skip,I) = I w(assunep,]) = p= I
paths in the program that constrdinThe first corresponds to the T Pl = b, — p

. w(x:=eI) = Ile/z] w(assertp,I) = pAI
entry case; the path fromrue to I. The second corresponds to the w(z :=7,1) = Ifr/a] W(S1; 95, 1) = w(S1,w(S2, 1))
inductive case; the path that starts and ends atd goes around TR T L2t = 1,822,
where r is some fresh variable and the notatipryz] denotes

the loop. The third corresponds to the exit case; the path fromn

y > 0. Figurel(c) shows the corresponding formal constraints. substitution ofx by e and may not be eagerly carried out across
We now show how to generate such constraints in a more gen-unknown relations.

eral setting of any arbitrary procedure. The first step is to choose a  Let 71,72 range over pairs of adjacent cut-points. Then any

cut-set. Acut-setis a set of program locations (calledt-point3 solution to the unknown relations: in the following (verification)

such that each cycle in the control flow graph passes through someconstraint (which may also have substitutions), yields a valid proof

program location in the cut-set. One simple way to choose a cut-setof correctness.



/\ VC(my, m2) (1) Step 2 Next, we translate first-order universal quantification to

first-order existential quantification using Farkas’ lemma (at the
. . . . cost of doing away with some integral reasoning). Farkas’ lemma
Observe that this constraint is universally quantified over the pro- implies that a conjunction of linear inequalities > 0 (with
gram variables and is a function bfthe vector of relations, at all integral coefficients) is unsatisfiable over rationals iff some non-
cut-points (including/x. .., , I.,,). We therefore write it as the  negative (integral) linear combination ef yields a negative quan-
verification constraint/X.¢(1I). For program verificatiod tity, i.e.,

entry
andI._,,, are set tacrue. Going back to the example, the second-

order constraints corresponding to the program in Fidad are VX <—|(/\e~ > 0)> —

1,72

shown in Figurel(c) and correspond to the entry, inductive and exit
constraints for the loop.

N> 00 >0 VX [ S e = —A
2.2 Constraint solving >0, —0[ (Z € )}

In this section we show how to solve the second-order constraint
from Eg. 1 that represents the verification condition of unknown
relations at cut-points. One way to solve these constraints for dis-
covering the unknown invarianfs is to use fixed-point based tech-
niques like abstract interpretation. Another (significantly manual)
approach is to require the programmer to provide the invariants at
the cut-points, which can then be verified using a theorem prover.
Instead, we take the approach of reducing the second-order con
straint into a boolean formula such that a satisfying assignment to
the formula maps to a satisfying assignment for the second-orderboth sides of the polynomial equality.

constraint. Throughout this section, we will illustrate our reduction We can convert any universally quantified linear arithmetic for-

over the constraints from Figutkc). mulaV.X () into an existentially quantified formula using Farkas’

. Qur constraint-solving approach involves thrge ma?"? Steps. 1amma as follows. We convedtin conjunctive normal form\ ¢;,
First, we assume some invariant templates (possibly disjunctive) i

and reduce the second-order constraints to first-order constraintsyhere each conjune; is a disjunctions of inequalitiey/ eg’ > 0.
over the unknown parameters of the templates. We then make use of j

Farkas’ lemma3g] to translate the first-order constraints (with uni-  Observe that' X (¢) = A VX (¢:) and thatp; can be rewritten as
versal quantification) into an existentially quantified multi-linear ¢
quadratic constraint. These constraints are then translated into a '/,

SAT formula using bit-vector modeling (instead of solving them apfolied to each X (¢;).

using specialized mathematical solvess 10]). These three steps We illustrate the application of this step over the first constraint
are detailed below. from Figurel(c) that we obtained after Step 1. After Step 1 we have
true = e; > 0Vea > 0 (wheree; = —50a1 +a2y+az > 0and

es = —50a4 + asy + as > 0 as obtained earlier). After expanding
the implication we get a constraint that is already in CNF form and

The reverse direction of the above lemma is easy to see since it is
not possible for a non-negative linear combination of non-negative
expressiong; to yield a negative quantity. The forward direction
also holds since the only way to reason about linear inequalities
over rationals is to add them, multiply them by a non-negative
quantity or add a non-negative quantity.

The universal quantification on the right hand side of the above
“‘equivalence is over a polynomial equality, and hence can be gotten
rid of by equating the coefficients of the program variable®n

(,ezf —1 > 0). Hence, Farkas’ lemma, as stated above, can be

Step 1 First, we convert second-order unknowns to first-order un-
knowns. Instead of searching for a solution to unknown relations
(Whlchhare seccr:nd-order elnt't'eﬁ) frpm an a[)bltrlary domagj, we re- ftherefore the corresponding unsatisfiability constraint(is—e1 —
ﬁfwrécetrtineesizrlﬁietsoaﬁg? ; artoe traﬁlizasr?a:?)?esogoeragx;cr)nm Itlanazlat:wonr?- = 0) A (ez —1 > 0)). Farkas’ lemma can now be applied to
known rel?sltion can havegtlge tgempla@: aiz; > 0N b'pm' > yield 31, Az > 0, X > 0(Vo y A1 (—e1—1)+A2(—e2—1) = —N).
— e = — = Now we can collect the coefficients far,y to get a first-order

0)V (X ez > 0A Y diz; > 0), wherea;, by, ¢;, d; are all un- existential constraint. Notice that (respectively\z) is multiplied

i i ) with the coefficients inside; (respectivelye;) and therefore this is
known integer constants and are the program variables. The tem- 5 mylti-linear quadratic constraint over integer variables. Equating

plate can either be provided by the user (for example, by specifying the coefficients of; and the constant term we get the constraints:
the maximum number of conjuncts and disjuncts in DNF represen- (50a1 M1 — asA1 — A1) + (50asdz — agha — A2) = —\ and

tation of any unknown relation), or we can have an iterative scheme ashi + ashe = 0.

in wh_lch we progres_swely increase the size of the template until a Application of Farkas’ lemma leads to a loss of completeness
solution is found. Given such templates, we replace the unknown gjnce we do away with some integral reasoning. For example
relations in the constraint in EQ.by the templates and then apply  arias’ lemma cannot help us prove unsatisfiabilitgef> 1 A

any pending substitutions to obtain a first-order logic formula with o, « | \wherex ranges over integers. However, we have not found

unknowns that range over integers. o this loss of completeness to be a hindrance in any of our benchmark
For the example in Figuré(a), a relevant invariant template  gyamples.

iS a1z + ay + as > 0V asx + asy + ag > 0, where the

a;'s are (integer) unknowns to be discovered. If the chosen domain Step 3 Next, we convert the first-order existentially quantified (or
for the template is not expressive enough then the constraints will quantifier-free) formula obtained from Step 2 to a SAT formula.
be unsatisfiable. On the other hand if there is redundancy thenThe formula that we obtain from Step 2 is a conjunction of (multi-

redundant templates can always be instantiatedwitle or false linear quadratic polynomials) over integer variables. We convert
as required. This step of the reduction translates the verification such a formula into a SAT formula by modeling integer variables
constraint in Figurel(c) with second-order unknownk to first- as bit-vectors and encoding integer operations like arithmetic, mul-
order unknowns;’s. For example, the first constraint in Figur) tiplication, and comparison as boolean operations over bit-vectors.
after Step 1 igrue = (—50a1 + a2y + as > 0) V (—50as + Our approach to constraint solving is sound in the sense that any
asy + as > 0). satisfying solution to the SAT formula yields a valid proof of cor-

rectness. However, it is not complete, i.e., there might exist a valid



proof of correctness but the SAT formula might not be satisfiable. Pv20) {

This is not unexpected since program verification in general is an L 2:=0; y:=0;
undecidable problem, and no algorithm can be expected to be both 2 while (tr;le) {
sound and complete. However, our constraint solving approach is i if (f; 50)
complete under two assumptions (i) the unknown invariants are in- 5 elsz ’
stances of given templates, (ii) checking consistency of invariants 6 -

at adjacent cut-points does not require integral reasoning. We have 7 if (y<0)
found that both these assumptions are easily met for our benchmark 8 break;
examples. The real challenge instead lies in finding the satisfiability 9 T+
assignment for the SAT formula, for which the recent engineering 10

advances in SAT solvers seem to stand up to the task. 1 ) assert (z = 102)

2.3 Choice of cut-set Figure 2. Another program verification example (taken frohg])

The choice of a cut-set affects the precision and efficiency of our that requires a disjunctive invariant at the loop header. However, a

algorithm (or, in fact, of any other constraint-based technique). non-standard choice of cutset (as suggested in Thebyésads to

The choice of a cut-set has been overlooked in constraint-basedconjunctive invariants.

approaches4] recently proposed a technique for performing fixed-

point computation on top of constraint-based technique to regain

some precision, which we claim was inherently lost in the first j,quctive invariant magms — (y > 0Az < 50Ax =1y)

place because of a non-optimal choice of cut-set. In this section, (,, > 0 Az > 50 A2 +y = 102)} in such a case.

we describe a novel strategy for choosing a cut-set that strikes a = However, the choice of cut-set mentioned in Theofistoes not

good balance between precision and efficiency. ) always obviate the need for disjunctive invariants. The example in
From definition of a cut-set, it follows that we need to include Figyre1(a) has no conditionals inside the loop, and yet any (linear)

some program locations from each loop into the cut-set. One simple jnqyctive invariant required to prove the assertion is disjunctive

strategy is to include all header nodes (or targets of back-edges) age g., (x < 0)V (y > 0), which is what our tool discovers).

cut-points. Such a choice of cut-set necessitates searching/solvingyeyristic proposals34, 4] for handling disjunction will fail to

for unknown relations over disjunctive relations when the proof of giscover invariants for such programs.

correctness involves a disjunctive loop invariant. It is interesting to

note that for several programs that require disjunctive loop invari- .

ants, there is another choice for cut-set that requires searching for3.  Interprocedural Analysis

unknown relations over.only conjunctive domains. Furthermore, The., computation described in previous section is applicable only
even the number of conjuncts required are less compared to thosgp, an intraprocedural setting. In this section, we show how to extend
required when the header nodes are chosen to be cut-points. Thig,r constraint-based method to perform a precise (i.e., context-
choice for cut-set corresponds to choosing one cut-point on eaChsensitive) interprocedural analysis.

path inside the loop. In presence of multiple sequential condition- Precise interprocedural analysis is challenging because the be-
als inside a loop, this requires expanding the control-flow inside the payior of the procedures needs to be analyzed in a potentially un-
loop into disjoint paths and choosing a cut-point anywhere on each pnded number of calling contexts. Procedure inlining is one way
disjoint path. In fact, this choice for cut-set leads to the greatest g precise interprocedural analysis. However, there are two prob-
precision in the following sense. lems with this approach. First, procedure inlining may not be possi-
ble at all in presence of recursive procedures. Second, even if there
are no recursive procedures, procedure inlining may result in an
exponential blowup of the program.

A more standard way to do precise interprocedural analysis is to
compute procedure summaries, which are relations between proce-
dure inputs and outputs. These summaries are usually structured as
sets of pre/postcondition paits!;, B;), whereA; is some relation
over procedure inputs anBl; is some relation over procedure in-
The proof of Theorent is given in the full version of this pa- ~ Puts and outputs. The pre/postcondition gal, B;) denotes that |
per 21]. Furthermore, there are several examples that show that Whenever the procedure is invoked in a calling context that satisfies
the reverse direction in Theorefnis not true (i.e., there exists a  constraint4,, the procedure ensures that the outputs will satisfy the
solution to the unknown relations corresponding to cutéebut constraintB;. However, there is no automatic recipe to efficiently
there is no solution to unknown relations corresponding to some Construct or even represent these procedure summaries, and ab-

other choice of cut-set). This is illustrated by the example in Fig- straction specific techniq_ues may be req_uired. Data structures and
ure2 (discussed below). algorithms for representing and computing procedure summaries

have been described over the abstraction of linear constagis [
Examples Consider the example shown in Figid etr; denote and linear equalities?P]. Recently, some heuristics have been de-
the program point thammediately precedebe statement at line  scribed for the abstraction of linear inequaliti@s][
¢ in the program. The simplest choice of cut-set corresponds to  In this section, we show that a constraint-based approach is

, e

THEOREM 1. Let C be a cut-set that includes a program location
on each acyclic path inside a loop (after expansion of control
flow inside the loop into disjoint paths). Suppose that the search
space for unknown relations is restricted to templates that have a
specified boolean structure. If there exists a solution for unknown
relations corresponding to any cut-set, then there also exists a
solution for unknown relations corresponding to cut-Set

choosing the loop header (program locatios). The inductive particularly suited to discovering such useful pre/postcondition
invariant that is required at the loop header, and is discovered by (A;, B;) pairs. The key idea is to observe that the desired behavior
our tool, is the disjunctio0 < z < 51 Az = y) V (z > of most procedures can be captured by a small number of such
51 ANy > 0Ax+y = 102). If we instead choose the cut-set to be  (unknown) pre/postcondition pairs. We then replace the procedure
{m4, 76} (based on the strategy described in Theof@nhen the calls by these unknown behaviors and assert that the procedure,

inductive invariant map is conjunctive. This is significant because in fact, has such behaviors as in assume-guarantee style reason-
conjunctive invariants are easier to discover. Our tool discovers the ing [23]. For ease of presentation and without loss of generality, let



P10 { by the pre/post pair§n > 100,ret = n — 10) and (n <
z:=5; y:=3; 100, ret = 91). The function has often been used as a benchmark
result ;= Add(z,y); | P20 { _ test for automated program verification. The goal directed nature

} assert(result = 8); ;::i:(r;]:ﬁi):gééf) of the verification problem allows our tool to deriy@01 < n <

addint i, ) { } ’ 119,ret = n — 10) and(n < 100,ret = 91) as the pairs that
if i <0 M(int n) { prove the program assertion. As such, it discovers only as much as

ret := j; if(n > 100) is required for the proof.
else return n — 10;
b:=1—1; else
ié;:j:i;ci(b, o |3 MM +11)); 4. Weakest Precondition
return ret; Given a program with some assertions, the problem of weakest

} precondition generation is to infer the weakest precondifiQp,,

@) ) that ensures that whenever the program is run in a state that satisfies

Figure 3. Interprocedural analysis examples. (a) is taken frégq [ Lrenry» the assertions in the program hold. In Sectiowe show
30]. (b) is the famous McCarthy 91 functiod, 27, 26], which that a solution to this problem can be a useful tool for a wide range

requires multiple pre/postcondition pairs. of appli(_:ations_. . .
In this section, we present a constraint-based approach to infer-

ring weakest preconditions under a given template. Since a precise
us assume that a procedure does not read/modify any global vari-Selution to this problem is undecidable, we work with a relaxed
ables; instead all global variables that are read by the procedure ardotion of weakest precondition. For a given template structure (as
passed in as inputs, and all global variables that are modified by thedefined in step 2.1 in Sectid?), we say thatd is a weakest pre-

procedure are returned as outputs. condition if A is a precondition that fits the template and involves
Suppose we conjecture that there grénteresting pre/post- constants whose absolute value is at mdstherec is some given
condition pairs for procedut®(x){S; return y; } with the vector constant such that the solutions of interest are those that involve

of formal arguments: and vector of return valuas In practice, the ~ €onstants whose absolute value is at mgsand there does not
value ofg can be iteratively increased until invariants are found that xist @ weaker precondition thahwith similar properties.

make the constraint system satisfiable. Then, we can summarize the _ The first step in a constraint-based approach to weakest precon-
behavior of proceduré usingq tuples(A;, B;) for 1 < i < ¢, dition generation is to treat the preconditify,.., as an unknown
where A; is some relation over procedure inputs while B; is relation in Eq.1, unlike in program verification where we sk,.,

some relation over procedure inputs and outpuémdy. We assert {0 betrue. However, this small change merely encodes that any
that this is indeed the case by generating constraints foreash ~ Consistent assignment fg,,., is a valid precondition, not neces-

below and asserting their conjunction: sarily the weakest one. In fact, when we run our tool with this small
change for any example, it returislse as a solution fot -, .
assume(A;); S; assert(B;); (2 Note thatfalse is always a valid precondition, but not necessarily

the weakest one.

One simple approach to finding the weakest precondition may
be to search for a precondition that is weaker then the current
> 3) solution (which can be easily enforced by adding another constraint

We compile away procedure calls:= P(u) on any simple path
by replacing them with the following code fragment:

to Eq. 1), and to iterate until none exists. However, this approach
can have a very slow progress. When we analyzed Fig(a

Observe that in our approach, there is no need, in theory, to (discussed below) using this approach, our tool iteratively produced
haveq different pre/postcondition pairs. In fact, the summary of a ¢ > j+127,7 > j+126,...,i > j under amodeling that used 8-bit
procedure can also be represented as some forg{alay) (with two's-complement integers. In general thisugaiterative technique
arbitrary Boolean structure) that represents relation between pro-will be infeasible. We need to augment the constraint system to
cedure inputse and outputsy. In such a case, we assert that encode the notion of a weakest relation.

v :=7; assume </\(AL[U/93] = Bilu/z,v/y])

A

indeed is the summary of procedufe by generating constraint We can encode thdt.,.., is a weakest precondition as follows.
for {S;assert(¢(x,y)); }, and we compile away a procedure The verification constraint in Ed. can be regarded as function of
call v := P(u) by replacing it by the code fragment := two argumentd~.,.., andIr, wherel. denote the relations at all

?; assume(¢[u/x,v/y]). However, our approach of maintaining  cut-points except at the program entry location, and can thus be
multiple symbolic pre/postcondition pairs (which is also inspired written asvX.¢(Ix,,,.,, Ir). Now, for any other relatiod’ that is

by the data structures used by the traditional fixed-point computa- strictly weaker than/_,.., it should not be the case thétis a

tion algorithms) is more efficient since it enforces more structure on valid precondition. This can be stated as the following constraint.
the assume-guarantee proof and leads to lesser unknown quantities

and simpler constraints. VX . OTrgprys Ir) A

Examples Consider the example shown in Figusg). Our tool VI, Iy (weaker(I', Ing,y) = ~VX.G(I', I))

verifies the assertion by generating the pre/post(@air 0, ret =

i+ ) for proceduretdd. This example illustrates that only relevant ~ whereweaker(I’, Ir,,.,,) S (VX Trgpeey = I') AIX.(I' A

pairs are computed for each procedure. In addition to serving as—/x.,..,)).

the base case of the recursion the true branch of the condition  The trick of using Farkas’ lemma to get rid of universal quantifi-

inside Add has the concrete effect formalized by the pre/post pair cation (Step 2.2 in Sectia?) cannot be applied here because there

(i < 0,ret = j). However, this behavior is not needed to prove is existential quantification nested inside universal quantification.

any assertion in the program and is therefore suppressed. In this section we describe some iterative techniques for generating
The proceduré(int n) in Figure 3(b) is the widely known weakest preconditions. We present two different novel approaches

McCarthy91 function whose most accurate description is given in Sections4.1and4.2



Merge(int m1,ma,m3) {
assert(mi > 0Ama > 0)
k:=1:=0;

WP1(int 4, j) { while (i <my) {

z:=y:=0;
; assert(0 <k <m
while (z <100) { Alk++] (: E[i++]' 3)
x:=x+1; ’
yi=y+i; 1 :=0;
while (i < mg) {
! assert(z > y) assert(0 < k < mg3)
Alk++] = C[i++];

@ (b)
Figure 4. Weakest Precondition Examples.

Examples For the procedure in Figuré(a), our tool generates
two different conjunctive preconditions (which individually ensure
the validity of the given assertion): ({§ > j), which ensures that
when the loop terminates then> v, (ii) (¢ < 0), which ensures

that the loop never terminates making the assertion unreachable an

therefore trivially true.

Figure 4(b) shows an array merge procedure that is called to
merge two arrays3, C of sizesmi, mo respectively into a third
oneA of sizems. The procedure is correct if no invalid array access

are made (stated as the assertions inside the loops) when it is ru

in an environment where the input arragsandC are proper (i.e.
m1,m2 > 0, which is specified as an assertion at the procedure
entry). For thelerge procedure in Figurd(b), our tool generates
two different conjunctive preconditiongs > mi + ma A m; >
0Ame > 0andm; = 0Amo =0.

4.1 Binary search strategy

WPreFromPre (Input: Precondition [)
1 Di,j =0;
2 foreach 1<4,5 < n:
low := O;high := MaxN;
while (high — low > ;)
mid := (high + low)/2;
D; ; :=mid;
if 3 a precondition I’ s.t. I(D) =1
then low :=mid;
else high :=mid;
10 D; j = low;
11 Output a precondition I' s.t. I(D)=1I'.

© 0N O U~ W

Figure 5. A binary-search based iterative algorithm for computing
a weakest precondition starting from any non-false precondition.

Theorem?2 suggests a binary search based algorithm (described
in Figure 5) for finding a weakest precondition. The parameters
MaxN andMaxD denote an upper bound on the values of the numer-

tor and denominator of any rational entry of the mafixreferred

0 in Theorem2(Al). Since the absolute values of all coefficients
in I andI’ are bounded above by MaxD andMaxN are bounded
above byN™/2 x ¢V, whereN = n2.2

Observe that the preconditions in lifeand line 11 can be

[generated by simply adding the additional constrdiib) =

rery 10 the verification condition for the procedure, and then
solving for the resulting constraint using the technique discussed
in Section2. Also note that the matriXD computed at the end is
not exactly the matrixD’ referred to in Theoreri(Al) but is close
enough in the sense that any precondition weaker fi{@ is a
weakest one.
The algorithm in Figure5 involves making a maximum of

n?xlog (MaxN x MaxD) queries to the constraint solver. Hence, itis

First, note that without loss of generality we can assume that the \gefy| o start with a non-false precondition with the least value of

weakest precondition to be discovered is a conjunctive invariant. yheren, denotes the number of conjunctions of linear inequalities
This is because we can obtain the disjunctive weakest precondition;p, the input preconditiorf). Such a precondition can be found by

as disjunctions of disjoint weakest conjunctive solutidns.

THEOREM2. Let] = A e; > 0 be some non-false precondition.

i=1
For anyn x (n + 1) matrix D of non-negative constants, I&tD)
denote the formulaA [ D; 41 + > Dije; > 0). Let I' be
i=1 j=1

some weakest precondition (in our template structureYs= I'.
Then,

ALl. There exists a non-negative matiiX such that/’ = I(D’).

A2. For any matrixD" that is strictly larger thanD’ (i.e., D’; >
D; ; forall i, j andD;; > D; ; for somei, 5), I(D") is not a
precondition (in our template structure).

A3. For any (non-negative) matril’’ that is smaller tharD’ (i.e.,
D}". > D ; forall 4,5), I(D") is a precondition.

PROOF. Al follows from Farkas’ lemmaA2 follows from the
fact that1(D") is strictly weaker tharf(D’) andI(D’) is a
weakest preconditiorA3 follows from the fact that' (D) is
stronger tharf (D").

O

1The significance of generating a weakest conjunctive solution that is
disjoint with other weakest conjunctive solutions already generated lies in

iteratively increasing the number of conjuncts in the template for
the precondition until one is found.

In the next Section, we describe another algorithm for generat-
ing a weakest precondition, which we found to be more efficient
for our benchmark examples.

4.2 Locally pointwise-weakest strategy

For simplicity of presentation, we assume that each non-trivial
maximally strongly connected component in the control flow graph
has exactly one cut-point (an assumption that can also be ensured
by simple transformation&[]). However, the results in this section
can be extended to the general setting without this assumption.
The algorithm for generating a weakest precondition is de-
scribed in Figure. Line 8 initializes I to a pointwise-weakest
relation (defined below) for each cut-pointin reverse topologi-
cal order of the control dependences between different cut-points.
(Note that since we assume that each maximal SCC does not have
more than one cut-point, there are no cyclic control dependences

2 This is because the entries in matrix D are solutions to a system of

linear equations each of whose coefficients are bounded in absolute value
by c. These linear equations are obtained by equating the coefficients of
corresponding variables in theequivalences represented by= I(D’).

The solution to each unknown in a system of linear equations can be

described by ratio of two determinants whose entries are coefficients of

the linear equations. Since there can be at mdstinearly independent

the fact that the number of weakest conjunctive solutions may potentially be equations among? unknowns, each entry in matri® can be expressed
unbounded. However, the number of weakest disjoint conjunctive solutions as ratio of two determinants, each of size at mgsk N whereN = n?,

is finite.

and all of whose entries are bounded in absolute value by



WPre (Input: Neighborhood structure N) Swap(int ) { sP20) {
1 foreach cutpoint 7 in reverse topological order: while (%) di%tizs =03
2 I := false; if (z=1) Whl}e(i)
3 while 3 a relation I’ at 7 s.t. xi=2; if t(:-z =0
/ / . _ 3 =U;
! (a) Tr/GSucc/e\ssors(‘ir) VC(ﬂ_’ T )[Iﬂ. - I] els; :l:f ]_(3j o 2) else if (*)
5 ™ I=1 vut I' AT , assert(z < 8); i C(lif; 55)“;
}
6 e A V =VC(m, ') | [In — I"]
I'"en(1’) <7\"€Successors(7‘r) (@) (b)
! . age
7 do {I:=1}; Figure 7. (a) Weakest precondition example that has two locally
8 I :=1; pointwise-weakest relations at program entry. (b) Strongest Post-
9 Output Irepy; condition example taken fromi§, 17].
Figure 6. Another iterative algorithm for computing a weakest
precondition based on an input neighborhood struature other) are as described below.
NAe>0 = {e+1>0AANe>0[1<j<n}U
between different cut-points.) We define a relatioat a cut-point i=1 i#]

to be pointwise-weakest if it is a weakest relation that is consis- {ej+es>0AN /\ ei>0]j#LAN1L< G0 <n} 4)
tent with respect to the relations at its neighboring (successor) cut- T it - - -

points. It is easy to see that the pointwise-weakest relation thus ) . . )
generated at the program entry location will be a weakest precon- Geometric Interpretation: The neighborhood structure described

dition. above has a nice geometric interpretation. The neighbors of a con-
The while loop in Line3 generates a pointwise-weakest relation Vex region/\e; > 0 are obtained by slightly moving any of the
at a cut-pointr by generating docally pointwise-weakeselation hyper-planes:; > 0 parallel to itself, or by slightly rotating any

(as dgfined b_elow)_ with respect to the input neighborh_ood struc- of the hyper-planes; > 0 along its intersection with any other
tureN in each iteration and repeating the process to obtain a Weakefhyper-planeee >0,

locally pointwise-weakest relation until one exists. (This process “'\ye extend the neighborhood structure defined above to relations
is conceptually similar to iterating over local minimas to obtain a j, pNE form (in which, without loss of generality, we assume that

global minima.) We say that a relatiahis a locally pointwise- all disjuncts are disjoint from each other) as:

weakest with respect to a neighborhaodf it is a weakest rela- .

tion among its neighbors that is consistent with respect to the rela- / . /

tion at its neighboring (successor) cut-points. A locally pointwise- N(_\/ L) = ALV \/ Li|1<j<mil; € N(I;)}

weakest relation can be generated by simply solving the constraints =1 73

on Lines5-6 using the technique discussed in Sectbi®bserve Notice how the above choice of the neighborhood structure
that the constraintd’ # I and —VC(rw,n’) are already exis- helps avoid the repeated iteration over the preconditionrs; +

tentially quantified, and hence do not require the application of 127, > j 4+ 126,...,i > j (as alluded in SectioA on Paget)

Farkas’ lemma to remove universal quantification. The only dif- to obtain the weakest precondition> j for the example in Fig-

ference is that we now obtain quadratic inequalities as opposed toure 4(a). None of these preconditions except> j is locally

quadratic equalities obtained at the end of Step 2 (on Bgjeour pointwise-weakest with respect to the above neighborhood struc-

constraint-solving methodology. However, the bit-vector modeling ture. Hence, the use of the above neighborhood structure requires

in Step 3 works equally well for quadratic equalities as well as in- only one iteration of the while loop in the algorithm in Fig@éor

equalities. Also note that the neighborhood structuhould be obtaining weakest precondition for the example in Figi(e9.

such that it should be possible to enumerate all elemenitgof However, a locally pointwise-weakest relation with respect to

for any invariant templaté’. the neighborhood structure defined above may not be a pointwise-
The performance of our algorithm crucially depends on the weakest relation. For example, consider the program in Figfaje

choice of the input neighborhood structure, which affects the num- The relationse < 0 andz < 8 are both locally pointwise-weakest

ber of iterations of the loop in Lin& A denser neighborhood struc-  relations (with respect to the above neighborhood structure) at pro-

ture may result in lesser number of iterations of the while loop (i.e., gram entry. However, only the relation < 8 is a pointwise-

a lesser number of queries to the constraint solver), but a largerweakest relation at program entry (and hence a weakest precon-

sized query as a result of the condition in LineWe describe be- dition). Hence, use of the above neighborhood structure requires

low a neighborhood structure that we found to be quite efficient for two iterations of the while loop in the algorithm in Figuefor

our purposes; in fact, it required upto 3 iterations for most of our obtaining weakest precondition for the example in Figi(es.

benchmark examples. However, (unlike the binary search strategy

described in previous section), we have not been able to prove a5 Strongest Postcondition

formal bound on the worst-case number of queries to the constraint

solver that our choice of neighborhood structure can yield because "€ Problem of strongest postcondition is to generate the most pre-
of repeated iterations of the while loop. cise invariants at a given cut-point. Just as in the weakest precon-

dition case, we work with a relaxed notion of strongest postcon-
. dition, wherein we are interested in finding a strongest postcondi-
4.2.1  Neighborhood Structure tion, whose proof of correctness is expressible in the given template
In this section, we describe the neighborhood structutieat we structure.

used in our experiments. The set of relations that are in the neigh-  Our technique for generating strongest postcondition is very
borhoodN of a conjunctive relation (in which, without loss of gen-  similar to the weakest precondition inference technique described
erality, we assume that all inequalities are independent of eachin the previous section. We use the algorithm described in Figure



SPost (Input: Neighborhood structure N) Loop(int n,m,%0,y0) {
1 foreach cutpoint 7 in topological order: Loop(int n,m,0,y0) { assert(zo < yo);
2 I := true; assert(zo < yo); T:=2x0; Y:=1yo; ¢:=0;
3 while exists a relation I’ at 7 s.t. vxvh:i:].:()(;xy;;)yo; Whﬁf. @<y
4 LI, — T oy
@ Tr’EPrede/c\essors(ﬂ') VC(Tr 7 ﬂ-)[ T } Ti=ztn; assert (i < f(n7 m,xo, yO)) H

’ ’ Yy :i=y-+m; Ti=x+n;

5 ® I'=>1vut 141 } } yi=y+m;
’ "
° (©) ING/D}(I/) ‘ep dV ( )_'VC(W ,7r)> [Ix = 1"] Original Program Instrumented Program
™ redecessors(m

7 ‘}0 {111: I'}; Figure 9. Discovering weakest preconditions for termination.
8 =15
9 Output Ir,.;

- — _ - are bounded above by some function of the inputs. The progtam
Figure 8. An iterative algorithm for computing a strongest post-  terminates iff the assert statementsithare satisfied.

condition based on an input neighborhood structure ] ] ] )
Invariant generation tools such as abstract interpretation can

be used to compute bounds on the counter variables (as proposed

(in place of the algorithm described in Figuiwith the following in [20]). We show instead that a constraint-based approach is par-
neighborhood structure (in place of the one mentioned irdEq. ticularly suited for discovering these invariants since they have a
n specified form and involve linear arithmetic. We introduce assert
N(Ae>0 = {e—1>0A \e>0[1<j<n}U statements with templatés< ao + " a;z; (at the counter incre-
=t i ment;i++ site in case of loops and ‘at the end of the procedure in
{ej —e¢ > 0N /\ ei>0]j#LAN1<jl<n} case of recursive procedures) for bounding the counter variable.
i£j Besides the counter instrumentation strategy mentioned above,

[20] also describes some other counter instrumentation strategies
Examples For a more general version of the procedure in Fig- that can be used to compute non-linear bounds as a composition
ure 2, wherein we replace the constditt by a symbolic constant  of linear bounds on multiple instrumentation counters. Such tech-
m that is asserted to be non-negative, our tool generates the postniques can also be used in our framework to compute non-linear

conditionz = 2m + 2. bounds using linear templates.
For the procedure in Figui&b), our tool generates the strongest Additionally, the constraint-based approach solves an even
postconditions + d +¢ > 0A d < s+ 5t. harder problem, namely inferring preconditions under which the
procedure terminates and inferring a bound under that precondition.
6. Applications For this purpose, we simply run the tool in weakest precondition

énference mode. This is particularly significant when procedures
are expected to be called under certain preconditions and would
not otherwise terminate under all inputs. We are not aware of any
technique that can compute such conditional bounds.

In earlier sections, we have described constraint-based technique
for verification of safety properties. In this section, we show how to
apply those techniques for finding counterexamples to safety prop-
erties, verification of termination (which is a liveness property), and
finding counterexamples to termination. Example For the example in Figur®, our tool computes the
weakest precondition > m + 1 A zp < yo — 1 and the bound

yo — xo. The latter requires discovering the inductive loop invariant
The termination problem involves checking whether the given pro- i < (z — o) — (y — o).

cedure terminates under all inputs. In this section, we show how .

to use the constraint-based approach to solve a harder problem8-2 Counterexamples for Safety Properties

namely bounds analysis. The problem of bounds analysis is to find Since program analysis is an undecidable problem, we cannot have
aworst-case bound on the running time of a procedure (say in termstools that can prove correctness of all correct programs or find bugs
of the number of instructions executed) expressed in terms of its in- in all incorrect programs. Hence, to maximize the practical success

6.1 Termination and Bounds Analysis

puts. _ _ _ rate of verification tools, it is desirable to search for both proofs
We build on the techniques that reduce the bounds analysis of correctness as well as counterexamples in parallel. Earlier, we
problem to discovering invariants of a specific kirtd]. The key showed how to find proofs of correctness of safety and termina-

idea is to compute bounds on loop iterations and number of re- tion properties. In this section, we show how to fimdst-general
cursive procedure call invocations. Each of these can be boundedcounterexamples to safety properties.

by appropriately instrumenting counter variables and estimating  The problem of generating a most-general counterexample for
bounds on counter variables. In particular, the number of loop it- a given set of (safety) assertions involves finding the most general
erations of a while loop “while: do 5” can be bounded by com-  characterization of inputs that leads to the violation of some reach-
puting upper bound on the instrumented variabiieside the loop able safety assertion. We show how to find such a characterization
in the following code fragment:i“:= 0; while ¢ do { i++; S; }". using the techniques discussed in Seciemd Sectior6.1

The number of recursive procedure call invocations of a procedure  The basic idea is to reduce the problem to that of finding the
“P(xz) { S }" can be bounded similarly by computing an upper weakest precondition for an assertion. This reduction involves con-
bound on global variabléeinside procedur in the following code structing another program from the given progr&using the fol-
fragment: ‘P(z) { i := 0; P'(x); }; P'(2) { i++; S[2'/x]; }". lowing transformations:

CLAIM 1. Let P be a given program. LeP’ be the transformed B1 Instrumentation of program with an error variable: We intro-
program obtained after instrumenting counters that keep track of duce a new error variable that is seftat the beginning of the
loop iterations and recursive call invocations and introducing par- program. Whenever violation of any assertion occurs (i.e., the
tial assertions at appropriate locations that assert that the counters negation of that assertion holds), we set the error variable to



Bugl(int y, n) { NT2(int ) {
1 x:i=err:=1iy := 19 := 0; even := 0;
2 if (y<9) NT1(int =, y) { while (¢ > 0)
Bugl(int y, n) { 3 while (z <n) while (z > 0) if (even = 0)
1 x:=0; 4 i1++; rz:=x+y; -
2 if (y <9 5 assert (i1 < f1(n,y)); y++; else
3 while (z < n) 6 if (x> 200) } i+t
4 assert(z < 200); 7 err :=1; goto L; even := 1 — even;
5 =z +y; 8 zi=z+y; }
6 else 9 else (a) (b)
7 while (z > 0) 10 while (z > 0)
8 T+t 11 ig++; Figure 11. Non-termination examples taken fro22].
} 12 assert(iz < f2(n,y));
13 xT++;
14 L: assert(err = 1); Note that the transformation B2 does not ensure termination of
} all loops in the original program. The transformation B2 ensures
(a) Original Program (b) Instrumented Program termination of only those loops that are reachable under the to-

be-discovered weakest precondition and that too in the program
Figure 10. A most-general counterexample that leads to violation obtained after transformation B1, which introduces extra control-
of the safety assertion in the original program(is > 200 + flow that causes loops to terminate as soon as the violation of
y) A (0 < y < 9). Our tool discovers this by instrumenting the any safety property occurs. For example, the loop on liién
program appropriately and then running our weakest precondition Figure1Q(b) is unreachable under the discovered preconditions and
algorithm. therefore any arbitrary functiof suffices.

. 6.3 Counterexamples for Termination
and jump to the end of the program, where we assert that the )
error variable is equal to. We remove the original assertions 1€ problem of generating a most-general counterexample for pro-
from the program. gram termination involves finding the most-general characteriza-

tion of inputs that leads to non-termination of the program. Without

B2 Instrumentation to ensure termination of all loops: For this we |oss of generality we assume that the program has at most one exit
use the strategy described in Sectiohy wherein we instrument  yoint,

the program with counter variables and introduce assertion tem-

plates that assert that the counter variable is upper bounded byCLaim 3. Let P be a given program with a single exit point. Let
some function of loop inputs or procedure inputs. P’ be the program obtained fro by adding the assert statement
“assert(false)” at the end of the program. Ther? is non-

CLAIM 2. Let P be a program with some safety assertions. Bét terminating iff the assert statement#¥ is satisfied.

be the program obtained from program by using the transfor-
mation described above. TheR,has an assertion violation iff the

. , ’ The significance of Clain8 lies in the fact that now we can
assertions in progran®’ hold.

use weakest precondition inference (Sectdpon the transformed
Claim 2 holds and its significance lies in the fact that now we Program to discover most-general characterization of inputs under

can use weakest precondition inference (Sectipon the trans-  Which the original program is non-terminating.

formed program to discover most-general characterization of inputs

under which there is a safety violation in the original program. Examples Consider the example shown in Figutd(a). If we

instrumentassert (false) at the end of the program, then our
Example The program shown in Figur&0(a) is instrumented tool generates the preconditian > 0 A y > 0, which is one
using transformations B1 and B2 and the resulting program is of the weakest affine conditions under which the program is non-

shown in FigurelO(b). Our tool discovers the preconditidn > terminating.
200 + y) A (9 > y > 0). The loop invariant (at line3) that Now consider the program shown in Figurg(b). If we instru-
establishes all assertions in the instrumented prograim is> mentassert (false) at the end of this program, then our tool

200+ y) A (i <z)A(9 >y > 0)A (z < n). Note that this generates the preconditien> 1. Notice that the loop guard> 0
invariant implies the instantiation for the loop bound function is not sufficient to guarantee non-termination.
fi1(n,y). On the other hand the preconditign< 9 implies that the
loop on line10is unreachable, and hence any arbitransuffices. -
pObserve the importance of transformatiogBl. Aﬁjflternative to 7. Experiments
transformation B1 that one might consider is to simply negate the In previous sections, we have shown how to reduce various pro-
original safety assertion instead of introducing an error variable. gram analysis problems to the problem of solving SAT constraints.
This is incorrect for two reasons: (a) It is too stringent a criterion We now present encouraging experimental results illustrating that
because it insists that in each iteration of the loop the original as- SAT solvers can in fact solve the constraints generated from our
sertion does not hold, (b) It does not ensure reachability and allows chosen set of examples in a reasonable amount of time. Our exam-
for those preconditions under which the assert statement is neverples are drawn from benchmarks used by state-of-the-art alternative
executed. In fact, when we run our tool with such an alternative techniques.

transformation on the example in Figut€(a), we obtaim < 0 as Our reduction technique is parameterized by several parameters
the weakest precondition. (such as the cut-set, the number of bits used in bit-vector modeling,
Also, observe the importance of transformation B2. If we do not and the size of templates in terms of the number of conjuncts and
perform transformation B2 on the example in Figl&a), then disjuncts) whose choice presents a completeness/efficiency trade-
the tool comes up with the following weakest preconditignis 0. off. An increase in size of these parameters increases the chance

Note that under this precondition, the assertion at the end of the that the required invariant/pre-condition would fit the template, but
program always holds since that location is unreachable. at the cost of generating a bigger SAT formula.



Name Time Num.

Name Time Num.

(secs)| Clauses (secs)| Clauses

Fig3(@), 39 | 057 63K
cegarl [9] 0.08 5K g
cegar2 9] 0.80 50 K 2% Eé} pgg 828 1;;1 E
barbr [18] 0.41 76K merge‘sg?t 0.19 43K Name Time Num.
Eﬁrke'eysm 3.00 i’;"i E quicksort 045| 133K (secs)| Clauses
Seg;aatvgﬂ]g] Saa| e fibonacci | 11.00| 90K [22, pg3 0.80 [ 42K
h ; ' Fig 3(b) 72.00| 558K Fig 11(b) [22) | 0.40 57K
isortprime 8] 1| 0.51 1 54K Fig11()[29 | 060 | 43K
lifnatprime [18] 1.27 51K (b) Fig 4(a) 14.40 119 K
swim [L8] 163| 45K _ Fig 4(b) 80.00 | 221K
cars [L8] 2.93 86 K Name Time Num. Fig 7(a) 0.50 50 K
ex1 [18] 0.10 10K (secs)| Clauses Fig 9 11.60 | 118K
ex2 18] 0751 92K Fig2[16, 17] 140 [ 107K Fig 10 68.00 | 135K
figla [18] 0141 20K Fig 7(b) 16.10 | 273K
fig2 [18] 0.56 | 239K w1 [5], pg12 0.60 60 K ()
fig3 [18] 16.60 | 547K speed{7], pgl0 | 18.20 41K
w1 [5], pgl2 0141 25K merge 6], pg 11 | 3.90 | 128K
w2 [5], pg12 180| 165K burner [L5], pg14 | 1.50 91K
@) (d)

Table 1. (a) Program verification examples (b) Interprocedural analysis examples (c) Weakest precondition inference (including non-
termination and bug-finding) examples. (d) Strongest postcondition inference examples

In our experiments, we used the cut-set suggested by Theo-covering invariants that establish upper bounds on the number of
rem 1. For discovering the remaining parameters, we used an in- recursive procedure call invocations after the respective procedures
cremental strategy. We progressively increased the number of bitshave been instrumented with the counter instrumentation strategy
required for bit-vector modeling by 2 bits (starting from 3 bits for described in Sectiof.1 The invariants for all of these examples
unknown coefficients and 6 bits for unknown constants and 1 bit required producing one pre/post pair for each procedure. Proving
for the multipliers\’s used in Farkas’ lemma). The number of dis- correctness of the McCarthy91 function in Figu@), however,
juncts and conjuncts were progressively increased by 1 (starting required computing two pre/post pairs.
with 1 disjunct and 2 conjuncts). The increment was performed un-  Tablel(c) shows the time taken by our tool for generating weak-
til the SAT solver stopped saying UNSAT. For most of our bench- est preconditions for respective examples. Our tool implements
mark examples, our choice of parameters required upto 2 iterationthe methodology described in Sectidr? for generation weak-
steps. The specific choice of these parameters was motivated byest precondition. The first three examples in Tal{le) are taken
the observation that for most of our examples, the required invari- from [22], and we infer the weakest preconditions that ensure non-
ants involved only one disjunct and one bit for the multiplés. termination of these examples. Our most challenging example (Fig-
We also observed that working with a smaller number of disjuncts ure 10) takes 68 seconds.
and a smaller number of bits for the multipli&'s is important for Table 1(d) shows the time taken by our tool for generating
efficiency reasons because the size of the generated SAT formulastrongest postconditions for respective examples taken from bench-
usually blows up with these two particular parameters. marks used by some sophisticated widening technicueks[ 16,

Table 1 describes the results of our analysis on our benchmark 17]. For each of these examples, we compute the strongest linear
examples. It shows the number of clauses in the generated CNFinvariants that hold at the end of the respective procedures. The
formula (for the choice of parameters for which the SAT solver examplespeed, merge, andburner model hybrid automaton for
was able to find a satisfying assignment) and the time taken by some real systems.
the SAT solver (Z312)) to find a satisfying assignment under the
discovered parameters.

Table 1(a) shows the time taken by our tool on several pro- 8 Related Work
gram verification examples. Most of these examples are taken from ] . . ) .
benchmarks used by some state-of-the-art abstraction refinemenfconstraint solving based techniquesTheoretical expositions of
based techniqued§, 18], which also provide exhaustive compar-  Program anaIyS|_s techniques freque_ntly formulate them as con-
ison against similar techniques. The last two exampleandw2 straints ((_:onstralnt-_based CFA, type |nfgrence, reachable states in
are taken fromf§]. w1 is a simple loop iteration but witk < n abstract interpretationl[], model checking among others) and
replaced withe # n while w2 is a loop with the guard moved in- typically solve them using fixed-point computation. We instead
side a non-deterministic conditional. Standard narrowing is unable concentrate on techniques that reduce the analysis problem to con-
to capture the precision lost due to widening in these instances. OurStraints that can be solved using SAT/SMT solvers. Constraint-
solution times compare favorably against previous techniques. based techniques have been successfully applied for discovering

Table 1(b) shows the time taken by our tool for generating re- conjunctivelinear garlthmetlc invariantsg| 36, 35, 37]_|n an in-
quired invariants for establishing validity of assertions in an inter- tra_lproce_dural setting. ID contrast, our approach c_1|_scovers linear
procedural setting for different examples. The first three examples &fithmetic invariants with arbitrary (but pre-specifiedpolean
are taken from alternate proposat®[31, 39 for discovering lin- structurein a context-sensitivinterproceduraimanner. )
ear invariants in an interprocedural setting. We also analyze some ~ Constraint-based techniques have also been applied for dis-

recursive procedures (Mergesort, Quicksort and Fibonacci) for dis- covering non-linear polynomial invariantg4] and invariants in
the combined theory of linear arithmetic and uninterpreted func-



tions [3], but again in a conjunctive and intraprocedural setting. It linear inequalities (both intraprocedurally and interprocedurally),
is possible to combine these techniques with our formulation to lift and apply it to the problem of checking safety properties and timing
them to disjunctive and context-sensitive interprocedural settings. analysis of programs. We also show how to model the problem of
Constraint-based techniques, being goal-directed, work natu- discovering weakest preconditions (and strongest postconditions)
rally in program verification mode where the task is to discover and apply it to inferring most-general counterexamples for both
inductive loop invariants for the verification of assertions. Oth- safety and termination properties. The constraints that we gener-
erwise, there is no guarantee on the precision of invariants gen-ate are boolean combinations of quadratic inequalities over integer
erated. §] describes a simple iterative strategy of rerunning the variables, which we reduce to SAT formulas using bit-vector mod-
solver with the additional constraint that the new solution should be eling. We show experimentally that the SAT solver can efficiently
stronger than the previous solution. Such a strategy can have a verysolve such constraints generated from hard benchmarks.
slow progress. Our approach for strongest postcondition provides  The work described here can be extended in two directions. The
a more efficient solution. Additionally, we present a methodology first one is to extend these techniques to discover a richer class
for generating weakest preconditions. of invariants involving arrays, pointers, and even quantifiers. Sec-
Constraint solvers have been used for finding bugs in loop-free ondly, one can also consider new constraint solving techniques, in
programs 41] (obtained by unrolling loops in programs heuristi-  particular QBF (Quantified Boolean Formula) solvers. This would
cally). In contrast, our methodology can be used to find a most- alleviate the need for applying Farkas’ lemma to compile away uni-
general counterexample and also find bugs in programs that requireversal quantification, leading to smaller sized SAT formulas, but
an unbounded or a large number of loop iterations for the bug to those that are universally quantified.
manifest.
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