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Abstract. We describe data structures and algorithms for performing
a path-sensitive program analysis to discover equivalences of expressions
involving linear arithmetic or uninterpreted functions. We assume that
conditionals are abstracted as boolean variables, which may be repeated
to reflect equivalent conditionals. We introduce free conditional expres-
sion diagrams (FCEDs), which extend binary decision diagrams (BDDs)
with internal nodes corresponding to linear arithmetic operators or un-
interpreted functions. FCEDs can represent values of expressions in a
program involving conditionals and linear arithmetic (or uninterpreted
functions). We show how to construct them easily from a program, and
give a randomized linear time algorithm (or quadratic time for uninter-
preted functions) for comparing FCEDs for equality. FCEDs are compact
due to maximal representation sharing for portions of the program with
independent conditionals. They inherit from BDDs the precise reasoning
about boolean expressions needed to handle dependent conditionals.

1 Introduction

Data structures and algorithms for manipulating boolean expressions (e.g., bi-
nary decision diagrams) have played a crucial role in the success of model check-
ing for hardware and software systems. Software programs are often transformed
using boolean abstraction [4] to boolean programs: arithmetic operations and
other operators are modeled conservatively by their effect on a number of boolean
variables that encode predicates on program state. In this paper, we show that
we can reason efficiently and precisely about programs that contain not only
boolean expressions but also linear arithmetic and uninterpreted functions. Such
algorithms are useful when the desired level of precision cannot be achieved with
boolean abstraction of linear arithmetic expressions in a program.

Consider the program fragment shown in Figure 1. The atomic boolean ex-
pressions in the conditionals (e.g. < y, y == z) have been abstracted as boolean
variables ¢; and co. We assume that the conditional abstraction procedure can
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’ lock, :=lock, +1; a := 0; ‘ ’ lock, :=locky; a :=1; ‘
T e F l
b := 3+locky; h := 2;d = locky; | [b := 4+locky; h := 3; d = lock,+a;

u :=d —locky; w = lock;+h; y := b-a;

assert(w=y);
R
’ lock, := lock, - u; ‘ ’ lock, = locky; ‘

’ assert (lock, = locky); ‘

Fig. 1. An example program fragment.

sometimes detect equivalences of atomic boolean expressions (e.g. * < y and
y > x are equivalent), as is the case for the first and last conditionals in the
program. Suppose our goal is to determine the validity of the two assertions in
the program. The first assertion holds because it is established on all four paths
that can reach it. The second assertion holds only because the first and last con-
ditionals use identical guards. A good algorithm for verifying these assertions
should be able to handle such dependent conditionals (Two conditionals are de-
pendent if truth-value of one depends on the other), or in other words perform a
path-sensitive analysis, without individually examining an exponential number
of paths that arise for portions of the program with independent conditionals.

Since there is no obvious boolean abstraction for this example, we need to
reason about the linear arithmetic directly. There are two kinds of algorithms
known to solve this problem. On one extreme, there are abstract/random inter-
pretation based polynomial-time algorithms, which perform a path-insensitive
analysis. Karr described a deterministic algorithm [22] based on abstract inter-
pretation [11]. Recently, we gave a faster randomized algorithm [18] based on
random interpretation. These algorithms are able to decide the first assertion
in the program since the first two conditionals preceding it are independent of
each other. However, these algorithms cannot verify that the second assertion
holds, because they would attempt to do so over all the eight paths through the
program, including four infeasible ones.
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bA=/02\A a=/0w\ h=¢, lock, = lock,
locky+3 locky+4 0 1 2 3

Fig. 2. The MTBDD representation for symbolic values of variables of the pro-
gram in Figure 1. The internal nodes are conditionals whose left child corre-
sponds to the conditional being true. The leaves are canonicalized linear arith-
metic expressions.

y=- w= +
b= C a= C4 lock; =¢C4 h=C
3+lock, 4+lock, 0 1 lockg+1 lock, 2 3

Fig. 3. The VDG/FCED representations for symbolic values of variables of the
program in Figure 1. The internal nodes also involve arithmetic operations. This
leads to succinct representations, and allows sharing.

On the other extreme, there are multi-terminal binary decision diagram
(MTBDD) [15] based algorithms that consider all feasible paths in a program
explicitly, and hence are able to decide both assertions in our example. However,
these algorithms run in exponential time even when most of the conditionals in a
program are independent of each other, which is quite often the case. MTBDDs
are binary decision diagrams whose leaves are not boolean values but canonical-
ized linear expressions. For the example program, the MTBDDs corresponding
to final values of the various variables are shown in Figure 2. These MTBDDs use
the same ordering of boolean variables and the same canonicalization for leaves.
With MTBDDs we can verify both assertions; however note that checking equal-
ity between w and y essentially involves performing the check individually on
each of the four paths from the beginning of the program to the first assertion.
Also note that there is little opportunity for sharing subexpressions in a MTBDD
due to the need to push computations down to the leaves and to canonicalize the
leaves. This algorithm is exponential in the number of boolean variables in the
program. Its weak point is the handling of sequences of independent conditionals
and its strong point is that it can naturally handle dependent conditionals, just
like a BDD does for a boolean program.

In this paper, we describe data structures and algorithms that combine
the efficiency of the path-insensitive polynomial-time algorithms with the pre-
cision of the MTBDD-based algorithms. Consider representing the values of
w and y using value dependency graph (VDG) [28], as shown in Figure 3.
Such a representation can be easily obtained by symbolic evaluation of the
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program. Note that this representation is exponentially more succinct than
MTBDDs. For example, note that |VDG(y)| = [VDG(b)| + [VDG(a)| while
IMTBDD(y)| = IMTBDD(b)| x IMTBDD(a)| (here |[VDG(y)| denotes the size
of VDG representation for y). This is because VDGs do not need to maintain
a normal form for expressions unlike MTBDDs, which even require a normal
form for their leaves. For example, w and y, which are equivalent expressions,
have distinct VDG representations as shown in Figure 3. A VDG for any expres-
sion can share nodes with the VDGs for its subexpressions. For example, note
that VDG(y) shares nodes with VDG(b) and VDG(a). On the other hand, an
MTBDD typically cannot exploit any sharing that is induced by the order in
which a program computes expressions.

The challenge now is to check equivalence of two VDGs. We do not know
of any efficient deterministic algorithm to solve this problem. We show in this
paper a randomized algorithm that can check equivalence of two free VDGs in
linear time. A VDG is said to be free if every boolean variable occurs at most
once on any path from the root node to a leaf. Note that if all conditionals in a
program are independent of each other, then the VDG for any expression in the
program is free. For example, the VDGs shown in Figure 3 are free.

In this paper, we propose Free Conditional Expression Diagrams (FCEDs),
which are a generalization of free VDGs. We describe a transformation that gen-
erates an FCED for any expression in a loop-free program, and a randomized
algorithm that checks equivalence of two FCEDs in linear time. This, in turn,
gives an algorithm for checking the validity of assertions e; = ey in programs
that contain linear arithmetic and conditionals. This algorithm is more efficient
than the MTBDD-based algorithm. In particular, if all conditionals in a pro-
gram are independent of each other, then this algorithm is as fast as the random
interpretation based algorithm, which runs in polynomial time, as opposed to
the MTBDD-based algorithm, which has exponential cost. However, the new
algorithm still has the same worst-case complexity as the MTBDD-based algo-
rithm (This happens when all conditionals in the program are arbitrary boolean
expressions involving the same set of boolean variables). This is not surprising
since the problem of checking equality assertions in a program with dependent
conditionals is NP-hard and it is generally believed that even randomized algo-
rithms cannot solve such problems in polynomial time.

In Section 2, we describe the FCED construction and the randomized equiva-
lence testing algorithm for conditional linear arithmetic expressions. In Section 3,
we describe the FCED construction and the randomized equivalence testing al-
gorithm for conditional uninterpreted function terms.
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2 Analysis for Linear Arithmetic

2.1 Problem Definition

Let L, be the following conditional arithmetic expression language over rational
constants ¢, rational variables x, boolean variables ¢, and boolean expressions b.

ex=q | = | es+es | esx—ex | gxe | ifbthen ey else ey
bu=c | b1Ab2 | bl\/b2

We want a data structure FCED to succinctly represent the expressions in lan-
guage L, and support efficient algorithms for the following two problems:

P1. Given the FCEDs for the sub-expressions of an expression e € L, construct
the FCED for the expression e.

P2. Given the FCED representations for two expressions ej,es € L,, decide
whether e; = es.

Note that the symbolic value of any expression in our example program be-
longs to the language L,. For example, the value of lock; is “ if ¢; then lockg +
1 else locky”. Hence, algorithms for problems P1 and P2 can be used to check
equivalence of two expressions in a loop-free program. In general, if a program
has loops, then since the lattice of linear equality facts has finite height k (where
k is the number of variables in the program), one can analyze a suitable unrolling
of the loops in the program to verify the assertions [22,18].

Note that we assume that there is an abstraction procedure for condition-
als that maps atomic conditionals to boolean variables such that only equiv-
alent conditionals are mapped to the same boolean variable. Equivalent con-
ditionals can be detected by using standard value numbering heuristics [25,1]
(e1 relop ea = € relop e}y if ey = €} and ex = €}, and relop = relop’) or other
sophisticated heuristics [24] (e.g. e1 relop ea = €] relop’ el if e1 —ea = €} — €}
and relop = relop’). Here relop stands for a relational operator, e.g. =,< or >.
Note that detecting equivalence of conditionals involves detecting equivalence of
expressions, which in turn can be done by using a simple technique like value
numbering. We can even use the result of our analysis to detect those equiva-
lences on the fly.

2.2 FCED Construction

An FCED for linear arithmetic is a DAG generated by the following language
over rational constants ¢, rational variables x and boolean expressions g, which
we call guards.

fu=x | q | Plus(fr,f2) | Minus(fi, f2)
| Times(q,f) | Choose(fi,f2) | Guardy(f)

The Choose and Guard node types are inspired by Dijkstra’s guarded command
language [14]. Given a boolean assignment p, the meaning of Guardy(f) is either
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the meaning of f (if ¢ is true in p) or undefined (otherwise). The meaning of a
Choose node is the meaning of its child that is defined. The Choose operator
here is deterministic in the sense that at most one of its children is defined given
any boolean assignment.

The guards g are represented using Reduced Ordered Binary Decision Di-
agrams (ROBDDs). Let < be the total ordering on program variables used in
these ROBDD representations. For any sets of boolean variables By and B, we
use the notation B; < By to denote that B1NBy = () and ¢; < ¢s for all variables
c1 € By and ¢y € By. The guards g can be described by the following language
over boolean variables c.

gu=true | false | ¢ [ 1f(c,g1,92)

We assume that we can compute conjunction (A) of two guards and negation
(=) of a guard. For any boolean guard g, let BV (g) denote the set of boolean
variables that occur in g. Similarly, for any FCED node f, let BV (f) denote the
set of boolean variables that occur below node f. An FCED f must satisfy the
following invariant:

Invariant 1 For any guard node Guardg, (f1) in FCED f, BV (¢1) < BV (f1).

Invariant 1 is similar to the ROBDDs’ requirement that boolean variables on any
path from the root node to a leaf must be ordered. As we shall see, it plays an
important role in the randomized equivalence testing algorithm that we propose.
The FCED representation of any expression e is denoted by FCED(e) and
is computed inductively as follows:
FCED(z)==x
FCED(q
FCED(e; + e Plus(FC’ED(el) FCED(ez))
FCED(e; — e3) = Minus(FCED(ey), FCED(e3))
FCED(q x e) = Times(q, FCED(e))
FCED(if b then ey else ea) = Choose(||gp, FCED(e1)ll, ||—gs, FCED(e2)l]),

) =
)=
)
) =

where ¢, is the ROBDD representation of the boolean expression b as a guard.
The normalization operator ||g, f|| takes as input a boolean guard g and an
FCED f and returns another FCED whose meaning is equivalent to Guard,(f),
except that Invariant 1 is satisfied:
lg, fIl = Guardy(f), if BV(g9) < BV(f)
g, fl| = Guardy(flg]), if g is a conjunction of literals
g, Plus(f1, f2)|l = Plus(||g, f1ll. g, f2[])
llg, Minus(f1, f2)|| = Minus(|lg, f1],[lg, f2l])
lg, Times(q, f')|| = Times(q, llg, f'll)
|lg, Choose(f1, f2)|| = Choose(llg, fill; lg, f2Il)
g, Guardy (f')|| = Guardy (||g, f'll), if BV(¢') < BV (g)
=|lgAg,f'|| otherwise
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lock, = C4 [l ¢4, W]l = GuardC1

/\ i
- lockg
+
T /\
c lock, locky+1 Gz
+ 2 3
locky+1 0

Fig. 4. An example of FCED and normalization operator

where f[g] denotes the FCED obtained from f by replacing any boolean variable
¢ by true or false, if it occurs in g in non-negated or negated form respectively.
The purpose of the normalization ||g, f]| is to simplify f or to push the guard g
down into f until a point when the boolean variables in g and f are disjoint, thus
ensuring that Invariant 1 is maintained. Figure 4 shows the FCED for variable
locks in our example program. Figure 4 also shows the FCED for ||c1, w||, where
the FCED for w has been shown in Figure 3. We use the notation c(fi, f2)
as a syntactic sugar for the FCED Choose(Guard.(f1), Guard-.(f2)). We also
simplify an FCED Choose(Guardy(fi), Guardyqase(f2)) to Guardg(f1).

2.3 Randomized Equivalence Testing

In this section, we describe an algorithm that decides equivalence of two FCEDs.
The algorithm assigns a hash value V(n) to each node n in an FCED, computed
in a bottom-up manner from the hash values of its immediate children. The hash
value of an FCED is defined to be the hash value assigned to its root. Two FCEDs
are declared equivalent iff they have same hash values. This algorithm has a one-
sided error probability. If two FCEDs have different hash values, then they are
guaranteed to be non-equivalent. However, if two FCEDs are not equivalent, then
there is a very small probability (over the random choices made by the algorithm)
that they will be assigned same hash values. The error probability can be made
arbitrarily small by setting the parameters of the algorithm appropriately.

For the purpose of assigning a hash value to an FCED representation of any
expression in L,, we choose a random value for each of the boolean and rational
variables. The random values for both kind of variables are chosen independently
of each other and uniformly at random from some finite set of rationals. (Note
that we choose a rational random value even for boolean variables). For any
variable y, let 7, denote the random value chosen for y. The hash value V(n) is
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assigned inductively to any node n in an FCED as follows:

Vig) =q
Viz) =r,
V(Plus(f1, f2)) =V (f1) +V(f2)
V(Minus(fi, f2)) =V (f1) = V(f2)
V(Times(q, f)) = q x V(f)
V(Choose(f1, f2)) =V (f1) + V(f2)
V(Guard,(f)) = H(g) x V(f)

H(If(c,g1,92) X H(g1)+ (1 —rc) x H(g2)

For example, note that w = (if ¢1 then locko+1 else lockg)+(if co then 2 else 3)
and y = (if co then 3+locky else 4+locky) — (if ¢1 then O else 1) in our example
program. If we choose Tipek, = 3,7¢, = 5,7, = —3, then V(w) = V(y) = 14,
thereby validating the assertion w = y. If we choose random boolean values
for boolean variables while computing hash values, then we would essentially be
hashing the symbolic values of expressions on one random path (corresponding to
the random boolean choice). However, it is essential to check for the equivalence
of expressions on all paths. Choosing non-boolean random values for boolean
variables help us to do that by essentially computing a random weighted com-
bination of the hash values of expressions on all paths. In the next section, we
explain more formally why, with high probability, this hashing scheme assigns
equal values only to equivalent expressions.

2.4 Completeness and Probabilistic Soundness of the Algorithm

Let e be any expression in language L,. Let P(FCED(e)) denote the polynomial
obtained by using variables x and ¢ instead of random values r, and r., while
computing V(FCED(e)). The following properties hold.

T1. V(FCED(e)) is the result of evaluating the polynomial P(FCED(e)) at
random values r, chosen for each variable y that occurs in P(FCED(e)).

T2. For any FCED f, P(f) is a multi-linear polynomial, i.e. the degree of any
variable is at most 1. This is due to the freeness property of an FCED
(ensured by Invariant 1).

T3. ey = eq iff P(FCED(e1)) and P(FCED(es)) are equivalent polynomials.

Property T1 is trivial to prove. The proof of property T2 is based on the obser-
vation that H(g) is multi-linear for any guard g (this is because every boolean
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variable occurs at most once on any path from the root node to a leaf in an
ROBDD), and for any Guard,(f) node in an FCED, BV (g) N BV (f) = 0. The
proof of property T3 is given in the full version of the paper [20].

These properties imply that the equivalence testing algorithm is complete,
i.e., it assigns same hash values to equal expressions. Suppose e; and e5 are equal
expressions. It follows from T3 that P(FCED(e1)) = P(FCED(ez)). Since
P(FCED(e1)) and P(FCED(ez)) are multi-linear (implied by T2), they are
equivalent even when the boolean variables are treated as rational variables. This
is a standard fact and is the basis of several algorithms [5,17,13,12]. Therefore,
it follows from T1 that V(FCED(e1)) = V(FCED(eg)).

Properties T1 and T3 imply that the algorithm is probabilistically sound,
i.e., it assigns different hash values to non-equivalent expressions with high
probability over the random choices that it makes. Suppose e; # es. It fol-
lows from T3 that P(FCED(ey)) # P(FCED(es)). Trivially, P(FCED(ey)) #
P(FCED(ez)) even when boolean variables are treated as rational variables. It
then follows from the classic Schwartz’s theorem [27] (on testing equivalence of
two polynomials) that the probability that P(FCED(e;)) and P(FCED(es))
evaluate to the same value on random assignment is bounded above by %,
where d is the maximum of the degrees of the polynomials P(FCED(ey)) and
P(FCED(ez)) (these are bounded above by the size of the expressions e; and e
respectively), and s is the size of the set from which random values are chosen.
Therefore, it follows from T1 that Pr[V(FCED(e1)) # V(FCED(ez))] > 1-4.
(Here Pr[V(FCED(e1)) # V(FCED(e3))] denotes the probability of the event
V(FCED(e1) # V(FCED(ez)) over the choice of the random values r, for all
variables y.)

Note that the error probability can be made arbitrarily small by choosing
random values from a large enough set. For boolean variables, this set cannot
contain more than 2 elements. It is precisely for this reason that we require prop-
erty T2, so as to be able to treat boolean variables as rational variables without
affecting equivalences of polynomials. Note that multi-linearity is a necessary re-
quirement. For example, consider the two equivalent polynomials cacz + ¢3 and
c1 + c3co over the boolean variables ¢; and c¢p. These polynomials are not equiv-
alent when the variables ¢; and co are interpreted as rational variables since the
first polynomial is not multi-linear in ¢;.

This randomized algorithm for equivalence checking can be explained infor-
mally using a geometric argument. For example, consider the validity of the
statement u = 1 at the place of the first assertion in Figure 1. This statement is
false since it holds on only three of the four paths that reach it. It is false when ¢;
is false and cs is true. Figure 5 shows a surface in a 3-dimensional space whose
z coordinate reflects the value of expression 1 — u as a function of (rational)
assignment for ¢; and cy. Since there is at least one boolean assignment for ¢;
and co where 1 — u is not zero, and since the degree of the surface is small (2
in this case), it follows that the surface intersects the ci-co plane in a “small”
number of points. This allows the quick discovery, with high probability, of this
false assertion by random sampling of the surface (this corresponds to choosing
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0,0

Fig. 5. The surface shows values of expression 1 — u for different values of ¢;
and cs.

random rational values for boolean variables). If, on the other hand, the surface
corresponds to a true assertion, then it is included in the ci-co plane and any
sampling would verify that.

2.5 Time and Space Complexity

The time required to compute the hash value of an FCED is clearly linear in
the size of the FCED. However, this is under the assumption that all basic
arithmetic operations (like addition, multiplication) to compute the hash value
can be performed in unit time. This assumption is not necessarily true since the
size of the numbers involved may increase with each arithmetic operation. The
standard technique to deal with this problem is to do the arithmetic operations
modulo a randomly chosen prime p [23]. This makes sure that at each stage, the
numbers can be represented within a constant number of bits and hence each
arithmetic operation can be performed in constant time. The modular arithmetic
adds an additional small probability of error in our algorithm.

The time and extra space T'(e) required to construct the FCED of an expres-
sion e from the FCEDs of the subexpressions of e depends on the structure of
e. If e is of the form ¢, x, e; + e, or ¢ X e, then it is easy to see that T'(e) is
constant. If e is of the form if b then ey else es, then an amortized cost analysis
would show that T'(e) = O(S(gp) % (S(e1)+S(e2))), where gy = ROBDD(b) and
S(gp) denotes the size of the ROBDD g,. S(e1) denotes the size of the FCED
of expression e; (when represented as a tree; however, the boolean guards in e;
may be represented as DAGs). The upper bound on time complexity for this case
relies on Invariant 1 and assumes some sharing of common portions of ROBDDs
that arise while construction of FCED(e).

If all conditionals in a program are independent of each other, then, it is easy
to see that FCED(e) is linear in size of e, as opposed to the possibly exponential
size implied by the above-mentioned bounds on 7T'(e). Figure 6 compares T'(e)
for FCED and MTBDD representations. The last column in the table refers to
the next section.
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= [ estes | ifbthenejelsees | gxer | Fleez) |
T(e) for FCED = Constant |S(gs) X (S(e1) + S(ez2))|Constant| Constant
T(e) for MTBDD =||S(e1) x S(e2)|S(gr) x (S(e1) + S(e2))| S(er) [S(e1) x S(ez2)

9

Fig. 6. A table comparing the time and space complexity T'(e) for constructing
FCEDs and MTBDDs of an expression from the representation of its subexpres-
sions.

3 Analysis for Uninterpreted Functions

Reasoning precisely about program operators other than linear arithmetic oper-
ators is in general undecidable. A commonly used abstraction is to model any n-
ary non-linear program operator as an uninterpreted function under the theory of
equality, which has only one axiom, namely, F(z1,..,z,) = F'(z1,..,2),) <
F = F' and z; = z for all 1 < ¢ < n. The process of detecting this form of
equivalence, where the operators are treated as uninterpreted functions, is also
referred to as value numbering. In this section, we describe how to construct
FCEDs for uninterpreted functions.

3.1 Problem Definition

Let £, be the following language over boolean expressions b, variables x and an
uninterpreted function symbol F' of arity two.

ex=x | F(e1,ea) | ifb then ey else ey

For simplicity, we consider only one binary uninterpreted function F. Our results
can be extended easily to languages with any finite number of uninterpreted
functions of any finite arity. However, note that this language does not contain
any linear arithmetic operators.

We want a data structure to succinctly represent the expressions in language
L., and support efficient algorithms for the problems similar to those mentioned
in Section 2.1. This would be useful to check equivalence of two expressions in
any loop-free program. As before, it turns out the lattice of sets of equivalences
among uninterpreted function terms has finite height k& (where & is the number
of variables in the program). Hence, if a program has loops, then one can analyze
a suitable unrolling of loops in the program to verify assertions [19,21].

3.2 FCED Construction

An FCED in this case is a DAG generated by the following language over vari-
ables x and boolean guards g represented using ROBDDs.

fuo=a | F(fi,f2) | Choose(fi,f2) | Guardy(f)
gu=true | false | ¢ | If(e,g91,92)
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Here ¢ denotes a boolean variable. As before, an FCED satisfies Invariant 1. The
FCED representation of any expression e is computed inductively as follows:

FCED(x) ==
FCED(F(e1,e2)) = F(FCED(ey), FCED(e2))
FCED(if b then ey else e3) = Choose(||gp, FCED(e1)ll,||—gs, FCED(e2)||)

where g, = ROBDD(b). The normalization operator ||g, f|| takes as input a
boolean guard g and an FCED f and returns another FCED as follows:

g, 1| = Guardy(f), if BV(g) < BV(f)
llg, fIl = Guard,(flg]), if g is a conjunction of literals

lg, F(f1, f2)ll = F(llg, fill, g, fal])
|lg, Choose(f1, f2)|| = Choose(||g, fill, g, f2ll)
\lg, Guardy (f')|| = Guardy (|lg, f'll), if BV(g") < BV(9g)
=lgng, f|| otherwise

where f[g], BV (g) and BV (f) are as defined before in Section 2.2.

3.3 Randomized Equivalence Testing

The hash values assigned to nodes of FCEDs of expressions in the language £,
are vectors of k rationals, where k is the largest depth of any expression that
arises. For the purpose of assigning hash values, we choose a random value 7, for
each variable y and two random k x k matrices M and N. The following entries
of the matrices M and N are chosen independently of each other and uniformly
at random from some set of rationals: M; 1, Ny 1, and M;_1 4, M; i, Ni—1,4, Ni
for all 2 <4 < k. The rest of the entries are chosen to be 0. The hash value V(n)
is assigned inductively to any node n in an FCED as follows:

V(z) =[re,.. 7
V(E(f1, f2)) = V(f1) x M+ V(f2) x N
V(Choose(f1, f2)) = V(f1) + V(f2)
V(Guardy(f)) = H(g) x V(f)

where H(g) is as defined before in Section 2.3. Note that H(g) x V(f) denotes
multiplication of vector V(f) by the scalar H(g), while V(f;) x M denotes
multiplication of vector V(f1) by the matrix M.

The proof of property T3 (given in the full version of the paper [20]) explains
the reason behind this fancy hashing scheme. Here is some informal intuition. To
maintain multi-linearity, it is important to choose a random linear interpretation
for the uninterpreted function F. However, if we let k = 1, the hashing scheme
cannot always distinguish between non-equivalent expressions. For example, con-
sider e; = F(F(x1,x2), F(x3,24)) and es = F(F(x1,x3), F(x2,24)). Note that
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e1 # ea but V(FCED(e1)) = V(FCED(e2)) = 1oy m? +rp,mn+ry,nm—+r,,n?,
where m and n are some random rationals. This happens because scalar multi-
plication is commutative. This problem is avoided if we work with vectors and
matrices because matrix multiplication is not commutative.

3.4 Completeness and Probabilistic Soundness of the Algorithm

Let e be any expression in language £,. Let P(FCED(e)) denote the k" poly-
nomial in the symbolic vector obtained by using variable names x and c instead
of random values 7, and r., and by using variable names M; ; and N; ; instead
of random values for the matrix entries, while computing V(FCED(e)). The
properties T1,T2,T3 stated in Section 2.4 hold here also. Properties T1 and T2
are easy to prove as before. However, the proof of property T3 is non-trivial,
and is given in the full version of the paper [20]. These properties imply that
the randomized equivalence testing algorithm is complete and probabilistically
sound as before. The error probability is bounded above by g, where d and s
are as mentioned in Section 2.4.

3.5 Time and Space Complexity

The time required to compute the hash value for an FCED f is O(n x k) where
n is the size of f and k is the size of the largest FCED in the context. The
time and extra space T(e) required to construct FCED of an expression e in
language £, from the FCED of its sub-expressions can be estimated similarly
as in Section 2.5, and is shown in Figure 6.

4 Comparison with Related Work

Path-insensitive version of the analyses that we have described in this paper
have been well studied. Karr described a polynomial-time abstract interpreta-
tion based algorithm [22] to reason precisely about linear equalities in a program
with non-deterministic conditionals. Recently, we described a more efficient algo-
rithm based on the idea of random interpretation [18]. Several polynomial-time
algorithms have been described in literature for value numbering, which is the
problem of discovering equivalences among program expressions when program
operators are treated as uninterpreted [1,26]. All these algorithms are complete
for basic blocks, but are imprecise in the presence of joins and loops in a program.
Recently, we described algorithms for global value numbering that discover all
equivalences among expressions under the assumption that all conditionals are
non-deterministic and program operators are uninterpreted [19,21].

Karthik Gargi described a path-sensitive global value numbering algorithm [16]
that first discovers equivalent conditionals, and then uses that information to
do a simple predicated global value numbering. However, this algorithm is not
complete and cannot handle conditionals as precisely as our algorithm. Our al-
gorithm is complete with respect to the abstraction of conditionals to boolean
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Handles Dependent|Handles |Handles Independent|Randomized or
Conditionals Arithmetic|Conditionals Deterministic
ROBDD ||good no good deterministic
MTBDD||good poor poor deterministic
FBG no no good randomized
RI no good good randomized
FCED ||good good good randomized

Fig. 7. A table comparing different data structures for software model-checking

variables. Gargi’s algorithm treats all operators as uninterpreted and hence does
not handle linear arithmetic.

The model checking community has been more concerned with path-sensitivity,
in an attempt to do whole state-space exploration. The success of ROBDDs has
inspired efforts to improve their efficiency and to expand their range of appli-
cability [7]. Several generalizations of ROBDDs have been proposed for efficient
boolean manipulation [2,17]. There have been some efforts to extend the con-
cept to represent functions over boolean variables that have non-boolean ranges,
such as integers or real numbers (e.g.Multi Terminal Binary Decision Diagrams
(MTBDDs) [3,9], Edge-Valued Binary Decision Diagrams (EVBDDs), Binary
Moment Diagrams (BMDs) [6] and Hybrid Decision Diagrams (HDDs) [8]). Mul-
tiway Decision Graphs (MDGs) have been proposed to represent quantifier-free
formulas over terms involving function symbols [10]. None of the above men-
tioned extensions and generalizations of ROBDDs seem well-suited for software
model checking since they do not directly and efficiently support manipulation of
conditional expressions, i.e. expressions that are built from boolean expressions
and expressions from some other theory like that of arithmetic or uninterpreted
functions. This is because most of these techniques rely on having a canonical
representation for expressions. Figure 2 illustrates the problems that arise with
canonicalization. However, our proposed representation, FCED, can efficiently
represent and manipulate such expressions since it does not require a canonical
representation.

The idea behind hashing boolean guards g in our randomized equivalence
testing algorithm is similar to that used for checking equivalence of Free Boolean
Graphs (FBG) [5], FBDDs [17] and d-DNNFs [13,12] all of which represent
boolean expressions. We have extended this line of work with checking equiva-
lence of conditional arithmetic expressions or conditional expressions built from
uninterpreted function terms. Similar ideas have also been used in the random
interpretation (RI) technique for linear arithmetic [18] and for uninterpreted
function terms [19] for detecting equivalence of conditional expressions that in-
volve independent conditionals. Figure 7 compares these related techniques.

5 Conclusion and Future Work

We describe in this paper a compact representation of expressions involving con-
ditionals and linear arithmetic (or uninterpreted functions) such that they can be
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compared for equality in an efficient way. In the absence of linear arithmetic and
uninterpreted functions, our technique behaves like ROBDDs. In fact, FCEDs
inherit from ROBDDs the precise handling of dependent conditionals necessary
for discriminating the feasible paths in a program with dependent conditionals.
However, the main strength of FCEDs is the handling of the portions of the pro-
gram with independent conditionals. In those situations, the size of FCEDs and
the time to compare two FCEDs is linear (quadratic for uninterpreted functions)
in the size of the program.

The simpler problem involving only independent conditionals can be solved
in polynomial time by deterministic [22,21] and randomized algorithms [18,19].
In this special case, randomization brings a lower computational complexity and
the simplicity of an interpreter, without having to manipulate symbolic data
structures. Once we allow dependent conditionals, the problem becomes NP-
hard and we should not expect randomization alone to solve it in polynomial
time. We show in this paper that randomization can still help even for NP-hard
problems, if we combine it with a symbolic algorithm. We expect that there are
other NP-hard program analysis problems that can benefit from integrating the
symbolic techniques with randomization.

The next step is to implement our algorithms and compare them with the
existing algorithms with regard to running time and number of equivalences dis-
covered. The results of our algorithm can also be used as a benchmark to measure
the number of equivalences that are missed by path-insensitive algorithms.

We have presented randomized algorithms for checking equivalence of two
FCEDs for the languages £, and L,. It is an open problem to extend these
results to the combined language, i.e. the language that involves both conditional
arithmetic expressions as well as conditional uninterpreted function terms. It
would also be useful to extend these results to other languages/theories apart
from linear arithmetic and uninterpreted functions, for example, the theory of
lists, the theory of uninterpreted functions modulo commutativity, associativity,
or both. Such theories can be used to model program operators more precisely.
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