
Reconstructing B-spline Curves from Point Clouds
– A Tangential Flow Approach Using Least Squares Minimization

Yang Liu Huaiping Yang Wenping Wang
Department of Computer Science

The University of Hong Kong
Pokfulam Road, Hong Kong SAR, P. R. China

yliu, hpyang, wenping@cs.hku.hk

Abstract

We present a novel algorithm based on least-squares
minimization to approximate point cloud data in2D plane
with a smooth B-spline curve. The point cloud data may
represent an open curve with self intersection and sharp
corner. Unlike other existing methods, such as the moving
least-squares method and the principle curve method, our
algorithm does not need a thinning process. The idea of
our algorithm is intuitive and simple — we make a B-spline
curve grow along the tangential directions at its two end-
points following local geometry of point clouds. Our algo-
rithm generates appropriate control points of the fitting B-
spline curve in the least squares sense. Although presented
for the 2D case, our method can be extended in a straight-
forward manner to fitting data points by a B-spline curve in
higher dimensions.

1. Introduction

As a classical fitting problem in CAD/CAM, computer
graphics, computer vision, image processing and statistics,
fitting a smooth curve to a set of data points has been studied
in the past thirty years. Many techniques and theories have
been published and utilized. Many existing methods assume
that the order of data points is known, so the fitting or inter-
polating curve can be obtained by minimizing an error func-
tion or computational geometry methods [1, 4]. For many
practical problems, the data points are usually unordered
and noisy. It still remains an active research problem as how
to reconstruct a smooth curve from point cloud data with
correct topology. Most existing methods use a thinning pro-
cess to smooth noisy data points at first and then fit a curve
to the smoothed data points, which are sometimes assumed
to be ordered. Levin [13] proposes a moving least squares
(MLS) method to reduce noisy data points to a thinner set

by applying local weighted regressions twice. Lee [12] im-
proves MLS by choosing appropriate neighborhoods for re-
gressions. But the computation of MLS is rather costly,
since regression is done twice for each data point; more-
over, these methods cannot handle self-intersection cases.
Another approach is mapping a point cloud to an image.
Pottmann [16] maps data points to a binary image, then fits
a smooth curve to the image’s medial axis. Goshtasby [6]
constructs a potential function based on the mapped points
in an image to generate a new gray image and computes
ridge contours. Then the mapped points are ordered by their
projections on the ridge contours and a fitting curve is re-
constructed from the ordered points.

Clustering the data points is another commonly used ap-
proach to fitting a curve to point data. Yan [20] presents a
fuzzy curve-tracing algorithm. Data points are divided to
several clusters by fuzzy algorithms and the center points of
all the clusters are connected. After reordering and elim-
inating loops, the connected poly-line is output as a fit-
ting curve. This method again cannot handle a point cloud
with self-intersections and sharp corners. Other more com-
plex approaches have been developed in recent years, in-
cluding the principle curve method [10] and self-organizing
maps [11]. But these methods also cannot reconstruct the
curve with self-intersection. Implicit curve fitting [18] is an-
other effective technique, but it can only deal with a point
cloud representing a closed curve, and has considerable dif-
ficulty in capturing self-intersection points and sharp cor-
ners.

Our new algorithm is based on the simple idea that a
spline curve can be made to crawl and stretch along the
curve shape defined by a point cloud. More specifically,
we place a short smooth curve segment somewhere on the
point cloud and let it grow along the tangential directions at
its two endpoints following the local geometry of the point
cloud. The two endpoints of the curve serve as detectors and
new points in neighborhoods of the two detectors are used
to pull the fitting curve to grow via solving a least squares

problem (see Figure 1). In this paper we choose a B-spline
curve as the fitting model. Note that a B-spline curve can
also express a poly-line when its degree is1.

A B

grow

(a) (b)

Figure 1. Intuitive explanation. (a) the two
endpoints of the curve detect the new points
in A and B; (b) the grown curve

A similar idea in surface reconstruction has been imple-
mented by N.S. Sapidis and P.J. Besl [17]. They developed
a region growing technique and approximated3D points
with a functional surface. The main disadvantage of region
growing is that it is only compatible with simple shape. Re-
cently Duan and Qin [5] also present an algorithm which
reconstructs a point cloud with triangle meshes, where the
final mesh is grown from a single seed triangle. The ini-
tial triangle grows in different tangential directions by ap-
pending to it new triangles, which are projected to back to
the point cloud to preserve the model shape. Their growth
mechanism is based on an evolutionary system of differen-
tial equations, and assumes noiseless data points represent-
ing a manifold. In contrast, our algorithm uses an iterative
least squares approach for curve reconstruction and is capa-
ble of dealing with a curve with self-intersection, i.e. non-
manifold data. Redistribution of the control points of the fit-
ting curve is naturally achieved during the growth of the fit-
ting curve via least squares minimization.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces preliminaries of B-spline curves and a lo-
cal fitting algorithm using least squares. Section 3 presents
our new algorithm and implementation details. In Section 4
several test examples are presented to demonstrate the ef-
fectiveness of our algorithm.

2. B-spline curve

An open B-spline curve of degreed in R
2 is defined

as [9,15]

C(t) =

n∑

i=0

Bi,d(t) · Pi (1)

whereBi,d are the B-spline basis functions defined on the
knot vectors

U = {0, ..., 0︸ ︷︷ ︸
d+1

, ud+1, ..., un, 1, ..., 1︸ ︷︷ ︸
d+1

} (2)

andP = {Pi ∈ R
2, i = 0, . . . , n} are the control points of

C(t).
The problem of fitting a B-spline curve to a point cloud

can be formulated as follows. Given a point cloudX =
{Xk, k = 0, . . . , N}, representing amodel shape, find a
B-spline curveC(t) with a fixed knot vector such that

min
P

[
1

N + 1

N∑

k=0

d2 (Xk, C(t)) +
1

n + 1
λ · fs

]
(3)

whered(Xk, C(t)) is the minimal Euclidean distance from
Xk to C(t) andfs is a smoothing (regularization) term.λ is
a coefficient which adjusts the ratio between distance errors
andfs. We use the smoothing term,

fs = α

∫ 1

0

||C′(t)||2 dt + (1 − α)

∫ 1

0

||C′′(t)||2 dt

where 0 ≤ α ≤ 1. We also denotef1 and f2 as∫ 1

0
||C′(t)||2 dt and

∫ 1

0
||C′′(t)||2 dt respectively. Since

the minimization of (3) is a nonlinear least squares prob-
lem, we use a Gauss-Newton algorithm [2, 14]. Firstly
we derive a quadratic approximation to the original ob-
jective function. Sincefs is quadratic, we only consider
the individual termsd2 (Xk, C(t)). For clarity, some sym-
bols need to be defined firstly.

• Let C(tk) denote theprojection point of Xk on C(t),
i.e. tk = argmin

t
d(Xk, C(t)). tk is called as thepro-

jection parameter of Xk.

• Vk = Xk − C(tk).

• The local Frenet frame atC(tk) on C(t) is {Tk, Nk}
whereTk is a unit tangential vector andNk is a unit
normal vector of the fitting curve atC(tk).

A quadratic approximation ofd2 (Xk, C(t)) can be obtained
as

d2 (Xk, C(t)) ≈ γk · (V T
k Tk)2 + (V T

k Nk)2 (4)

Then our local quadratic model is

F̃ =
1

N + 1

N∑

k=0

(
γk · (V T

k Tk)2 + (V T
k Nk)2

)

+
1

n + 1
λ · fs (5)

It is known [19] that, whenγk = 0, the above approxi-
mation leads to the Gauss-Newton method; whenγk = 1,
the above approximation amounts to the alternating method,

also called theintrinsic parametrizationby Hoschek [8].
The iso-values curves of the two approximations withγk =
0 and γk = 1 are shown in Figure 2. We useγk = 0
for the otherXk whose nearest points are their orthogonal-
projection points onC(t), andγk = 1 for those data points
Xk whose closest points onC(t) are the endpoints ofC(t).
In this way, the data pointsXk in the former group will have
little resistance to the tangential motion of points on the fit-
ting curve, and the pointsXk in the latter group will exert
an attractive force to the two ends of the fitting curve to fa-
cilitate its growth.

Xk

d

C(tk)

(a) γk = 0

Xk

d

C(tk)

(b) γk = 1

Figure 2. Iso-values curves of distance error
terms

3. Algorithm and Implementation

We list all parameters to be used in our algorithm:
PARAMETERS LIST

• X : a point cloud.

• C(t): the B-spline curve.

• Q0 andQ1: the beginning and ending points ofC(t).

• T0 andT1: the two unit tangential direction atQ0 and
Q1.

• ξ: fitting tolerance.

• φ: converge speed tolerance.

• w: thickness.

• ρ: sampling density of the point cloud.

• δ: the parameter for correcting projection.

• Head andTail: growing sets at the two ends of the fit-
ting curve.

• A: the point set for current approximation.

The basic algorithm flow is as follows:

1. Input: a point cloudX = {Xk, k = 0, . . . , N} ⊂ R
2.

2. Data Analysis: Compute the Euclidean Mini-
mum Spanning Tree (EMST) and a cell partition of
X . Then estimate thicknesses ofX .

3. Initial curve: An empty setA is initialized. Pick a seed
point S in X randomly. AddS and the neighboring
points of S in EMST to A. Fit a line L to A with
orthogonal regression. ConvertL to a B-spline curve
C(t).

4. Approximation: Fit C(t) toA using knot insertion until
a fitting tolerance is satisfied.

5. Growing: Use two tangential directions at two end-
points ofC(t) to search for more new points inX . If
there are such new points, add them toA and go to
”Approximation”; otherwise go to ”Refinement”.

6. Refinement: Project all the points ofA to C(t) and use
the resulting parameter valuestk to get a better fit of
C(t) to the point setA ; knot insertion and fairing is
used here to improve the shape ofC(t). Should data
shape be closed, a periodic B-spline curve can be com-
puted to yield a closed fitting curveC(t).

7. Output: the B-spline fitting curveC(t).

3.1. Input

In our algorithm, we suppose that (1)X represents a sin-
gle smooth curve, possibly with noise, self-intersection and
sharp corners; (2) there are not many outliers, i.e. points far
away from the medial axis ofX ; and (3) the density of the
point cloud is nearly uniform at different locations of the
model shape. Figure 3 shows an unacceptable set of data
points.

Figure 3. Unacceptable point cloud.

3.2. Data Analysis

Data Structure: The Euclidean Minimum Spanning
Tree (EMST) has proven a useful data structure in curve re-
construction [12]. Lee uses the EMST to avoid clustering
wrong points which should not belong to the current clus-
ter although those points are not far away from it. We
use the EMST to avoid adding wrong points toA in the
growing phase. We use Prim’s algorithm for comput-
ing the EMST ofX . The average, minimum and maxi-
mum edge length in the EMST are denoted aseave, emin

and emax. We useemax as the estimated sampling den-
sity ρ of the point cloud ifρ is not provided.

Estimating Thickness: In most cases the thickness of
the point cloud is not known. With the aid of the EMST we
can estimate the thickness at different cell as follows.

1. Compute the bounding box ofX in R
2 and partition

it into uniform cells{Bm, m = 0, . . . , M} (the size of ev-
ery cell isemax × emax). Suppose that the cellBm contains
nBm

data points.
2. Estimate thicknessωm for each cellBm which con-

tains data points inX : (a) count the number of its
nonempty neighboring cells, includingBm itself, in the
eight directions (see Figure 4)~vm,1 = (1, 0), ~vm,2 =
(−1, 0), ~vm,3 = (0, 1), ~vm,4 = (0,−1), ~vm,5 =
(1, 1), ~vm,6 = (−1,−1), ~vm,7 = (1,−1), ~vm,8 = (−1, 1).
Denoterl, l = 1, . . . , 8 as the corresponding numbers. Let
Yi,j,k = min{ri, rj , rk}. ThenY1,3,5, Y1,4,7, Y2,3,8, Y2,4,6

are the thickness in terms of the number of cells in the four
quadrants, each spanned by three direction vectors. De-
note

Z = {Y1,3,5, Y1,4,7, Y2,3,8, Y2,4,6}

Then the thicknessωm is defined to be

ωm =





emax × max
Zi∈Z

Zi , min
Zi∈Z

Zi = 1

emax ×

(
2 max

Zi∈Z
Zi − 1

)
, min

Zi∈Z
Zi > 1

(6)

v1
v2

v3

v4

v5

v6 v7

v8

Figure 4. Eight directions

Fitting tolerance: There are many criterions for deter-
mining the fitting error of a B-spline curve. We use the av-

erage distanceEave =

(
1

N+1

N∑
k=0

‖Vk‖
2

)1/2

, and check

whetherEave < ξ, a pre-specified tolerance. The user can
setξ. But sometimes it is preferably to set it automatically;
in this case we set it relative to thicknesses of the point cloud

lettingξ =

(
1

N + 1

M∑
m=0

(ωm

2

)2

· nBm

)1/2

.

3.3. Initial curve

We pick a pointS as a seed inX randomly. If the point
cloud has self-intersections or sharp corners, the user should

avoid placingS in those areas. Choose those points which
are neighbors ofS in the EMST and the shortest distance
from them toS in the EMST are less than a user-defined
valuelS (We setlS = 10 · ωi, for S ∈ Bi in our implemen-
tation). Then group them as a setI, representing a neighbor-
hood of the pointS. We fit a straight lineL to the point set
I, using orthogonal regression, which is done in 2D plane
using PCA (principal component analysis); (this is a sim-
ple constrained optimization problem even in higher dimen-
sions). Then we can convertL to a B-spline curve, using
d+1 uniformly distributed control points on the lineL. We
project all the points inI to L orthogonally to obtain their
corresponding projection points and parameters. The pro-
jection points which correspond to the minimum and max-
imum parameter will serve as the two endpoints of the ini-
tial B-spline curve. The knot vector is also set to be equal-
spaced. After obtaining the initial B-spline curve, we com-
pute the projection points and parameters for all points inI.
Record them for approximation. Two setsHead andTail
are initialized for growing:Head = Tail = I andA = I.

3.4. Approximation

Since the projection point and parameter of every data
point in the setA are known, we may compute new control
points ofC(t) by solving the linear squares problem (5). If
the projection point ofXi ∈ A is close to one endpoint of
C(t), we setγi = 1 otherwiseγi = 0. For preventing the
linear system from becoming ill-posed, we add a regulariza-
tion termτ

∑n
i=0

(Pi − Pi,old)
2 wherePi are variables and

Pi,old are current control points before optimization. There
are many techniques for choosing an optimalτ such as gen-
eral cross validation(GCV) and L-curve criterion [3,7]. But
these techniques are too costly because sub-nonlinear and
complex optimization problems need to be solved. We em-
ploy the Levenberg-Marquardt strategy [14] to adjustτ dy-
namically such that̃F in Eqn (5) is always decreased af-
ter every iteration of optimization. This strategy is used for
all of our testing examples to be presented in Section 4. Af-
ter each iteration of optimization, we update the projection
points and parameters ofA and check whether the tolerance
is reached. The updated procedure will be presented in Sec-
tion 3.6.

The integration of the smoothness termfs’s derivatives
can be computed by a numerical integration method such
as Gauss quadrature. To avoid undesirable large variations
of ∂fs/∂P , we normalize the matricesM1 = ∂f1/∂P

and M2 = ∂f2/∂P to M̃1 = M1/ max
i,j

‖M1i,j‖ and

M̃2 = M2/ max
i,j

‖M2i,j‖.

The tolerance can be checked as follows: letErrave,j be

current average error

(
1

nA

∑
Xk∈A

‖Xk − C(tk)‖2

)1/2

af-

ter the j-th iteration whereC(tk) is the projection point
of Xk and nA is the number of points inA. If tol-
erance is not satisfied and the relative error reduction
(Errave,j−1 − Errave,j)

Errave,j−1

is smaller than a thresh-

old φ (we useφ = 0.1%), we insert a new knot to
C(t).

3.4.1. Knot insertion We propose two knot insertion
strategies for the following two cases.

Case 1 (A = X): In this case, all the data points can be
projected toC(t). Thus we improve the fitting accuracy by
knot insertion. There are several published methods for con-
trol point insertion [9, 15, 21]. We add a knot at the place
where the maximum error occurs.

Case 2 (A ⊂ X): The B-spline curve is in its growing
process. In this case, most knot insertion methods do not
work well, since the B-spline curve will change a lot after
the next iteration and the nonuniform knot vector will affect
the curve’s quality. Therefore we insert a knotu′ at [ud, un]
and redistribute all the knots and make them equally spaced.

3.5. Growing

The growing procedure is the most important process in
our algorithm. LetT0 andT1 be two tangential directions at
the endpointsQ0 andQ1 of the B-spline curve. SinceC(t)
approximatesA in the least squares sense,T0, T1 represent
the local geometry around the neighborhood ofQ0 andQ1

in X . We shall add new points toA alongT0 andT1.
Construct Search Areas:(1) Get the thicknessw0 of

the cell which containsQ0 and the thicknessw1 of the cell
which containsQ1; (2) Construct two rectanglesB0 andB1

attached toQ0 andQ1 along−T0 andT1 (see Figure 5); we
shall call the rectanglesbanded region. The widthes ofB0

andB1 arew0 andw1; (we use local thickness to avoid in-
volving too many nonlocal points. Figure 6 shows an unac-
ceptable case). (3) For each pointXi ∈ Head, check all the
adjacent pointsXp of Xi in the EMST. IfXp ∈ B0, add it
to Head and setXp’s projection point asQ0 and projection
parameter as0. Xi is called anintroducer of Xp. This pro-
cess is executed recursively until no more points are added
to Head. Similarly, for each pointXi ∈ Tail, check all the
adjacent pointsXp of Xi in the EMST. IfXp ∈ B1, add
it to Tail and setXp’s projection point toQ1 and projec-
tion parameter to1.

3.6. Finding projection points

In every optimization iteration, we need to find the pro-
jection pointC(t∗i) and parametert∗i of every pointXi in A

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

w0

B0

Q1

Q0

B1

T0

T1
w1

Figure 5. The growing set A.

w

Figure 6. Choose thickness

for constructing the equation (3). We use the existing pro-
jection point and parameter as initial conditions and apply
the Newton formula in Eqn. (7) [9,15] to find the new pro-
jection points and parameters iteratively.

t∗i = ti −
(Xi − C(ti)) · C

′(ti)

(Xi − C(ti)) · C′′(ti) − C′(ti)2
(7)

Filtering points: WhenC(t) marches through the self-
intersection region, it is possible thatC(t) is mislead by
the data points belonging to another branch. We use a fil-
tering process to reduce the influence of these wrongly in-
cluded points. Since for each pointXi in A, the thick-
nessωi of its surrounding grid has been estimated in Sec-
tion 3.2. Then the distance fromXi to a good fitting curve
should be less than half of the thicknessωi. Thus the fil-
tering strategy is as follows: if‖Xi − C(t∗i)‖ ≥ ωi/2 and
|(Xi − C(t∗i)) · C

′(t∗i)|

‖Xi − C(t∗i)‖‖C
′(t∗i)‖

< 10−8, thenXi will not be in-

volved in Eqn (5). The latter condition is to ensure that the
points which pull the endpoints ofC(t) will not be filtered.

Handling sharp corners: In general, the projec-
tion point is the nearest point fromXi to C(t). But some-
times it will cause problems when the curve is passing
through a sharp corner. In Figure 7,F1 andF2 are the pro-
jection points ofX1 andX2 respectively andX1 is the in-
troducer ofX2. The projection points ofX2, . . . , X7 are
at the left of F1. If we approximate (4) directly,C(t)
will be distorted because there is no pulling force for
the end of the curve to pass throughX2, . . . , X7. Sup-
pose thatXi is one of the current data points andXp is
the introducer ofXi, with projection pointsFi andFp, re-

spectively. The nearest endpoint of the curve toXi

and Xp is P . We use the following strategy: com-
pute the arc-lengthli = F̂iP and lp = F̂pP . If li > δ
andlp < δ (δ = eave in our experiments), we set the pro-
jection point of Xi to P with the projection parameter
0 or 1 (depended on the position ofP at C(t)). There-
fore all the points likeF2, . . . , F7 will always pull the
endpoints of the fitting curve to move towards them.

F1

F2

X2

X1

X7

F1

F2

X2

X1

X7

Modify

(a) (b)

Figure 7. Sharp corner.

3.7. Other cases

In three other cases, no new data points can be added into
B0 or B1 and the growing ofHead or Tail will halt. These
two cases are processed in our algorithm as follows.

1. The directionT0 or T1 does not respect the local ge-
ometric information ofX due to the lack of degree
of freedom in approximation (Figure 8). By insert-
ing knots toC(t) and doing approximation again, the
banded region will be able to contain new points inX .

2. Head orTail stops growing when fitting a point cloud
with self-intersections (Figure 9). Although the EMST
is connected, the topology may be not the same as that
of the desired shape ofX . We need to fill the gap by
adding edges. Suppose thatTail is unchanged. LetS1

denote all the data points in(B1 ∩ X)/Tail. Find the
pair of pointsXp ∈ S1 andXq ∈ Tail with the min-
imum distance betweenS1 andTail. If their distance
is less than the sampling density, i.e.‖Xp − Xq‖ ≤ ρ,
connectXp to Xq. This gap-filling procedure recovers
the desired topology of the point cloud data by modi-
fying the EMST structure.

3. A very sharp corner can stop the growing of the fitting
curve, despite that we have used ”introducers” to over-
come the wrong projection problems in Section 3.6.
Figure 10 shows a very sharp corner with its EMST.
All the introducers of the points inC1 andC2 can be
traced toP . But the projection points of the points in
C1 are far away fromQ1, the criterion in Section 3.6

will not satisfy. So the points inC1 will not pull Q1 to
move to them. When this happens, we leave the cur-
rent B-spline curve alone and generate a new seed (an-
other initial B-spline curve) from the un-visited data
points. The new curve is then growing up in the same
way as before and finally the two B-spline curves are
merged together to produce the desired result. This
new seeding strategy can also be used to handle com-
plex cases when the model shape is composed of mul-
tiple branches, as illustrated in Figure 11.

xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxB1

C(t)

Control Polygon

Figure 8. Less control points.

C(t)

EMST

Gap

Q0

Q1

Figure 9. EMST with wrong topology.

PC1

C2

Q0

Q1

Figure 10. Very sharp corner.

4. Experiments

In this section, we present some test examples to demon-
strate the effectiveness of our method. Several representa-

(a) point clouds (b) fitting curves without merging

Figure 11. Multiple branches.

tive examples, including a swirl shape with varying thick-
nesses (Example 1), a shape with sharp corners(Example
2) and self-intersections (Example 3) are tested in our ex-
periment. We shall also show that our method can be used
to extract the skeleton of a shape by taking the uniformly
sampled points inside the shape as the point cloud data to
be fitted (Example 4). There are two parametersλ andα
which control the smoothness of the fitting curve and are
pre-specified by the user. In our test examples, we usually
setα = 0.5, which yields a balance between the stiffness
and flexibility of the fitting B-spline curve.λ should be ad-
justed according to the distribution of the sampling density
and thickness of the point cloud data. Larger values ofλ
should be used when the sample density is quite nonuni-
form and there is considerable thickness of data points. We
also show a failed example(Example 5) which uses a very
smallλ. All the experiments were run on a PC with a Pen-
tium 2.4GHz CPU and 512MB RAM.

Example 1 Swirl Shape : (Figure 12) The number of points
is 1018. Parameters:λ = 0.001, α = 0.5. The number of
control points is12 and the degree ofC(t) is 3. The time for
generating EMST and spacial partition is 0.02 seconds, and
the total computation time with 142 iterations is 0.58 sec-
onds.

Example 2 Sharp corner: (Figure 13) The number of points
is 842. Parameters:λ = 0.01, α = 0.5. The number of con-
trol points is13 and the degree ofC(t) is3. The time for gen-
erating EMST and spacial partition is 0.04 seconds, and the
total computation time with 152 iterations is 1.27 seconds.

Example 3 self-intersection shape with large noisy: (Fig-
ure 14) The number of points is2000. Parameters:λ =
0.02, α = 0.5. The number of control points is12 and the
degree ofC(t) is 3. The time for generating EMST and spa-
cial partition is 0.32 seconds, and the total computation
time with 68 iterations is 2.37 seconds.

Example 4ξ shape: (Figure 15)666 points are uniformly
sampled inside the characterξ. Parameters:λ = 0.06, α =

(a) point clouds (b) point clouds with initial curve

(c) fitting result (d) fitting curve

Figure 12. Swirl shape

(a) point clouds (b) point clouds with initial curve

(c) fitting result (d) fitting curve

Figure 13. Sharp corner

0.5. The number of control points is21 and the degree of
C(t) is 3. The time for generating EMST and spacial parti-
tion is 0.028 seconds, and the total computation time with
40 iterations is 0.59 seconds.

Example 5 The data points and the initial curve are same
as them in Example 2. Parameters:λ = 0.000001, α = 0.5.
After196 iterations, the fitting curve cannot grow since one
end of the curve doesn’t follow the local geometry and no
more points can be added to this end(Figure 16).

(a) point clouds (b) point clouds with initial curve

(c) fitting curve in growing (d) fitting result

(e) fitting curve

Figure 14. Self-intersection

(a) point clouds (b) point clouds with initial curve

(c) fitting result (d) fitting curve

Figure 15. Skeleton of the character ξ

(a) fitting result (b) fitting curve

Figure 16. failed example

5. Conclusion

We have presented a novel algorithm based on least-
squares method to approximate noisy/non-noisy point
clouds with smooth B-spline curves. Unlike the exist-
ing methods our algorithm does not need a thinning
process. The basic idea of our algorithm is encour-
aging the B-spline curve to grow along tangential di-
rections which respect local geometric changes of the
model shape. Our method generates appropriate con-
trol points for the B-spline curve in the least squares, due to
the use of the quadratic error term that does not inhibit tan-
gential flow. We have also applied this algorithm success-
fully to point clouds which contain self-intersections and/or
sharp corners. Our method can be extended to comput-
ing a B-spline fitting curve from a data cloud in higher
dimensions.

There are several issues with our method that should be
studied in further research. Our method is based on tan-
gential direction detection and lease squares fitting. When
a point cloud is sampled non-uniformly and has large thick-
nesses variation, the least squares method without weights
may not produce desired results, and the EMST may not
faithfully represent the correct topology of the point cloud.
In such a case, the local regression approach in Lee’s ap-
proach [12] may produce a statistical more meaningful re-
sult.

We have assumed implicitly that the two branches at an
intersection have rather different tangential directions, since
the tangential direction detection mechanism will have diffi-
culty in distinguishing two branches with similar directions.
From our experiences, relatively narrow band searching re-
gions can help find the right branch if the local geometry at
self-intersections changes slowly. Note that we do not ex-
plicitly detect intersections in the model shape. Thus our
further work will include explicit feature detection to facili-
tate the fitting curve marching through intersections and ad-
justing the smoothing term automatically.

6. Acknowledgements

This research is supported by a HKU CRCG Grant on
Basic Research. The authors wish to thanks the anonymous
reviewers for their careful reading and suggestions.

References

[1] N. Amenta, M. Bern, and D. Eppstein. The crust and the
beta-skeleton: combinatorial curve reconstruction.Graphi-
cal Models and Image Processing, 60:125–135, 1998.

[2] A. Atieg and G. A. Watson. A class of methods for fitting a
curve or surface to data by minimizing the sum of squares of
orthogonal distances.Journal of Computational and Applied
Mathematics, 158:227–296, 2003.

[3] A. Bjorck. Numerical Methods for Least Squares Problems.
Mathematics Society for Industrial and Applied Mathemat-
ics, Philadelphia, 1996.

[4] T. K. Dey, K. Mehlhorn, and E. Ramos. Curve reconstruc-
tion: connecting dots with good reason.Comput. Geom.
Theiry & Appl., 15:229–244, 2000.

[5] Y. Duan and H. Qin. 2.5d active contour for surface recon-
struction. InProceedings of 8th international workshop on
Vision, Modeling and Visualization, pages 431–439, Munich,
Germany, November 2003.

[6] A. A. Goshtasby. Grouping and parameterizing irregularly
spaced points for curve fitting.ACM Transaction on Graph-
ics, 19(3):185–203, 2000.

[7] P. C. Hansen.Rank-Deficient and Discrete Ill-Posed Prob-
lems. Society for Industrial and Applied Mathematics,
Philadelphia, 1998.

[8] J. Hoschek. Intrinsic parameterization for approximation.
Computer Aided Geometric Design, 5:27–31, 1988.

[9] J. Hoschek and D. Lasser.Fundamentals of Computer Aided
Geometric Design. AK Peters, 1993.

[10] B. Kégl, A. Krzyzak, T. Linder, and K. Zeger. Learning and
design of pricipal curves.IEEE Transactionon Pattern Anal-
ysis and Machine Intelligence, 22(3):281–297, 2000.

[11] G. S. Kumar, P. K. Kalra, and S. G. Dhande. Curve and sur-
face reconstruction from points: an approach based on self-
organizing maps.Applied Soft Computing, 5(1):55–66, 2004.

[12] I.-K. Lee. Curve reconstructionfrom unorganized points.
Computer Aided Geometric Design, 17:161–177, 2000.

[13] D. Levin. The approximation power of moving least-squares.
Mathematics of Computation, 67(224):1517–1531, 1998.

[14] J. Nocedal and S. J. Wright. Numerical optimization.
Springer Verlag, 1999.

[15] L. Piegl and W. Tiller. The NURBS book. Springer, New
York, 2nd edition, 1997.

[16] H. Pottmann and T. Randrup. Rotational and helical sur-
face approximation for reverse engineering.Computing,
60(4):307–322, 1998.

[17] N. S. Sapidis and P. J. Besl. Direct construction of polyno-
mial surfaces from dense range images through region grow-
ing. ACM Trans. Graph., 14(2):171–200, 1995.

[18] G. Taubin. An improved algorithm for algebraic curve and
surface fitting. In4th Int. Conf. on Computer Vision, pages
658–665, 1993.

[19] W. Wang, H. Pottmann, and Y. Liu. Fitting b-spline
curves to point clouds by squared distance minimiza-
tion. Technical Report TR-2004-11, Dept. of Com-
puter Science, The University of Hong Kong, 2004.
http://www.cs.hku.hk/research/techreps/document/TR-
2004-11.pdf.

[20] H. Yan. Fuzzy curve-tracing algorithm.IEEE Transac-
tions on Systems, Man,and Cybernetics–Part B: Cybernet-
ics, 31(5):768–780, 2001.

[21] H. P. Yang, W. Wang, and J. G. Sun. Control point adjust-
ment for b-spline curve approximation.Computer-Aided De-
sign, 36:639–652, 2004.

