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Abstract
Data filtering in spreadsheets is a common problem faced by
millions of end-users. The task of data filtering requires a
computational model that can separate intended positive and
negative string instances. We present a system, FIDEX, that
can efficiently learn desired data filtering expressions from a
small set of positive and negative string examples.

There are two key ideas of our approach. First, we design
an expressive DSL to represent disjunctive filter expressions
needed for several real-world data filtering tasks. Second,
we develop an efficient synthesis algorithm for incremen-
tally learning consistent filter expressions in the DSL from
very few positive and negative examples. A DAG-based data
structure is used to succinctly represent a large number of fil-
ter expressions, and two corresponding operators are defined
for algorithmically handling positive and negative examples,
namely, the intersection and subtraction operators. FIDEX is
able to learn data filters for 452 out of 460 real-world data
filtering tasks in real time (0.22s), using only 2.2 positive
string instances and 2.7 negative string instances on average.

Categories and Subject Descriptors D.1.2 [Programming
Techniques]: Automatic Programming; I.2.2 [Artificial In-
telligence]: Program Synthesis

General Terms Algorithms, Human Factor

Keywords Program Synthesis, Data Filtering, Regular Ex-
pressions, Programming By Examples

1. Introduction
Data filtering in spreadsheets is a common problem faced
by millions of spreadsheet users. In spreadsheets with large
amounts of data, users often want to work with a subset of
data. Spreadsheet systems like Excel allow some basic auto-
filtering using concrete strings and also more advanced fil-
tering capabilities using regular expressions. Unfortunately,
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these features are either not powerful enough or not accessi-
ble to most of the end-users who have diverse backgrounds
and lack necessary programming skills to write customized
regular expressions to filter their data [15].

These end-users have to resort to online help forums to
ask for help from experts with the desired filtering expres-
sions. We performed an extensive study of these forums and
observed that these users were able to specify their intent
using examples. The experts would ask for additional exam-
ples in case there was still some ambiguity and in many cases
were able to provide the desired filtering expressions after a
few iterations. In this paper, we present a system that allows
end-users to perform data filtering tasks automatically using
a similar example based interface.

Data filtering as a unit operation is also an important sub-
task in many other task domains such as data extraction and
transformation. In the data extraction domain, a user might
want to extract data from only specific entries which are lo-
cated by a filter expression whereas in the data transforma-
tion domain, a user might want to perform different trans-
formations on different types of data which are separated by
filtering expressions. These operations are a key part of data
wrangling [18, 19], a new term coined for the overall process
of converting data from its raw format to a more structured
form that is amenable to querying and analysis for drawing
insights. It is estimated that data scientists sometimes spend
upto 80% of their time wrangling data [9, 33].

The automation of data filtering from examples requires
learning a computational model that can separate the in-
tended positive and negative string instances. In order to
learn a customized model, end-users should be able to
guide the learning process. Since 99% of end-users are non-
programmers and struggle with repetitive data manipulation
tasks [15], only simpler specification mechanisms such as
example based interfaces are a viable alternative. Automat-
ically learning data filtering models from examples is also
motivated by reasons that are different than those behind tra-
ditional automata based inference [3, 14] and machine learn-
ing based filtering techniques [7]. In the fuzzy tasks, ma-
chine learning techniques have the potential to learn black-
box filters that might achieve better precision than models
produced by human experts. In contrast, we aim to produce



human-readable filter expressions with perfect precision for
relatively simple and well-defined data filtering tasks.

We present a system, FIDEX (stands for FIltering Data us-
ing EXamples), that efficiently learns intended data filtering
expressions from a small set of positive and negative string
examples. Our approach has two key components: First, we
have identified an appropriate computational model for such
filtering tasks in the form of a Domain-Specific Language
(DSL) that corresponds to a restricted and structured form
of regular expressions. We show that such a model is ex-
pressive enough to represent the expressions needed for real-
world data filtering tasks and at the same time is restricted
enough to enable efficient learning. Second, we present a
sound, complete, and efficient learning algorithm for learn-
ing the filter expressions in the DSL from a few examples.

There are two key technical challenges in FIDEX. First, an
efficient representation of the desirable expressions is nec-
essary for better scalability since there are typically a large
number of expressions in the DSL that conform with a set of
examples. Second, an efficient algorithm to handle both pos-
itive and negative examples is necessary for efficient search.
Our synthesis algorithm leverages a Directed Acyclic Graph
(DAG) data structure based representation to succinctly rep-
resent the set of all filter expressions in the underlying DSL
that are consistent with the examples provided by the user.
The algorithm leverages the intersection operator and a novel
subtraction operator over the DAG to incrementally refine
the set of filter expressions that are consistent with both the
positive and negative instances. Learning an intended filter
expression from as few examples as possible is critical from
the usability standpoint [37]. We define a ranking structure
over the underlying space of the DSL expressions and de-
velop an algorithm to efficiently identify the highest ranked
filter expression from expressions represented in a DAG.

Our DAG data structure is inspired from the version-
space algebra based DAG representation in FlashFill [16].
However, unlike FlashFill where a DAG succinctly repre-
sents a large set of string concatenation expressions, a DAG
in FIDEX allows for more concise representation with mul-
tiple start nodes, where each path in the DAG represents
a set of token sequences. Moreover, unlike FlashFill and
other version-space algebra based synthesis approaches [17],
FIDEX uses a novel subtraction operator over the DAG struc-
ture to algorithmically support negative examples.

We evaluate FIDEX on 460 benchmarks taken from vari-
ous real-world data filtering tasks on online forums and in-
dustrial sources. FIDEX is able to learn the desired filter ex-
pressions on 452 benchmarks as compared to 343 solved by
the baseline approach. It takes about 0.22 seconds on aver-
age and requires on average only 2.2 positive string instances
and 2.7 negative string instances for each benchmark.

This paper makes the following key contributions:

• We present a DSL that can express filter expressions for
several real-world data filtering tasks (§3).

• We present a DAG data structure for succinctly represent-
ing the DSL expressions, and the intersection (

⊗
) and

subtraction (	) operators for handling positive and neg-
ative string instances, respectively (§5).

• We present a sound, complete, and efficient synthesis
algorithm to learn filter expressions in the DSL using the⊗

and 	 operators in an incremental fashion (§6).
• We present a comprehensive evaluation of our system

FIDEX on 460 real-world data filtering tasks (§7).

2. Motivation
In this section, we present a few examples taken from online
help forums that show the diverse kinds of filtering opera-
tions requested by the spreadsheet users. We observed that
in most of these forum posts, users typically describe their
intent using natural language and examples. The experts on
the forum then ask for additional examples and a sample of
their data in case there is some ambiguity in the task descrip-
tion. FIDEX presents a similar interface for spreadsheet users
that allows them to provide positive and negative examples
on a sample of their data. The positive examples correspond
to data rows that they would like to see after the filtering op-
eration, whereas the negative examples correspond to rows
they would like to be removed from the result. FIDEX then
learns a data filtering predicate from the provided examples
and runs it on the remaining spreadsheet. After inspecting
the results, a user can provide additional examples in case
some strings are not filtered as intended, and the learning
process continues until FIDEX learns the desired filter ex-
pression.

Example 1 (Matches). On StackOverflow1, a user posted
the following task to find a regular expression that matches
the strings "RJ123456", "PY654321" and "DD321234" but
not the strings "DDD12345" and "12DDD123".

There were some additional interactions on the forum that
involved experts asking if strings such as "ABC1234567"

were possible, if the first two letters can also be lowercase,
and if the digits can only be Western Arabic numerals (0-
9) or digits from other Numeral systems. Some suggested
solutions were: [A-Z]{2}\d{6}, [a-zA-Z]{2}\d{6}, etc.
FIDEX learns a filter expression to match strings consisting
of a sequence of two letters followed by six digits and filters
out other strings, given these examples.

Example 2 (StartsWith). An Excel user had a list of stock
transactions in a column and wanted to filter for rows for
Profit transactions with a value greater than 1000 for further
analysis as shown in Figure 1(a).

The highlighted data entries are considered as positive
examples and the table cells that are not highlighted until the
last positive example are implicitly considered as negative

1 http://stackoverflow.com/questions/10439666/regex-pattern-any-two-
letters-followed-by-six-numbers



(a) (b)

Figure 1. (a) Filtering for data rows for profit transactions
with value greater than 1000, (b) Filtering for data rows
corresponding to the new item price.

examples. A user can double click a highlighted entry for
it to be considered as a negative example. Given the first
three positive examples (rows 1, 3, and 8), FIDEX learns the
desired filter expression StartsWith("Profit "·d·d·d·d)
for this task, where the token d matches any digit from 0-9.

Example 3 (Contains). A user wanted to filter for rows that
correspond to the new item price of a product in a csv file
consisting of a long list of products as shown in Figure 1(b).
The csv file was obtained by scraping the product informa-
tion from the Amazon website. The highlighted lines are pos-
itive examples and all other lines are negative examples.

Learning the regular expression to filter only rows that
correspond to the new item price is quite challenging. The
expression that looks for lines beginning with a "$" does
not suffice since there are other lines that also begin with a
"$". Similarly, looking for lines containing the string "new"

(or "new (") also does not suffice. Given 2 positive and 3
negative examples, FIDEX learns the filter expression that
checks for the presence of the pattern "w" ·ws ·lparen ·num,
where "w" matches the constant string "w", ws matches a
white space, lparen matches a left parenthesis, and num

matches a number.

Example 4 (EndsWith). A chemist wanted to select lines
corresponding to the intensity readings of different elements
from a lab report as shown in Figure 2.

There is no consistent StartsWith logic as there is
no prefix shared by all desired strings. An expression that
checks for presence of constant string "ug/L" (Contains)
does not suffice because some readings have missing field
values, and Matches does not work for the same rea-
son. For this task, FIDEX learns the filter expression that
matches lines ending with the expression num · dquote,
where dquote matches the double quote character.

Example 5 (Matches). An Excel user wanted to filter for
rows that correspond to only monthly transaction values as

Figure 2. Selecting element intensity measurements for all
elements from a lab experiment report.

Figure 3. Filtering for all the Month-Year rows.

shown in Figure 3. The spreadsheet column also included
other data items such as revenue, target, profit numbers etc.
that made the filtering task challenging for the user.

The challenge in this problem is to learn a filter expres-
sion to match all the month-year strings in the spreadsheet.
Given 1 positive and 2 negative examples, FIDEX learns a
filter predicate Matches(Word · Num) that matches the string
completely for the occurrence of a Word followed by a Num.

Example 6 (Disjunction). A user had a list of links in a
spreadsheet columns and needed to filter the rows that con-
tained only the http and ftp links.

This example requires a disjunction and FIDEX learns a
filter expression that corresponds to the predicate expression
StartsWith("http" ∨ "ftp").

3. Domain Specific Language
We now present our domain specific language (DSL) to en-
code data filtering predicates that can distinguish positive
data from negative data. The DSL was designed iteratively
based on a large-scale empirical study of the real-world
benchmark problems collected from online help forums and
other industrial sources. The key idea underlying its design
is to impose a structure on the space of possible expressions
to enable efficient learning while keeping the language ex-
pressiveness to encode real-world data filtering tasks.

The syntax and semantics of the language is presented in
Figure 4 and Figure 5 respectively. We use the symbol ε to
denote an empty string. The notation [s : l] denotes a list
of strings with s being the first string in the list and l being



the remaining list. Let s[i, j] denote the substring of a string
s starting at position i (inclusive) and ending at position j
(exclusive), and let |s| denote the length of the string s.

Filter f := Filter(p, L)

Predicate p := StartsWith(v, r)

| EndsWith(v, r)

| Matches(v, r)

| Contains(v, r)

DisjExpr r := Disjunct(ts, r) | ts
TokenSeq ts := Seq(T, ts) | T

Figure 4. The syntax of the DSL, where T denotes a token,
L denotes a list of strings, and v denotes a string variable.

3.1 Tokens and Token Sequences
Tokens in the DSL are picked from a token set that contains
two types of tokens: i) Constant tokens and ii) General to-
kens. A constant token matches only one particular string,
e.g. <A> matches only the string “A”, whereas a general to-
ken can match multiple strings, e.g. <Alpha> matches a se-
quence of alphabet letters and <Num> matches a sequence
of digits. The semantics of token matching is defined by the
construction of the token unambiguously.

Specifically, the token set in the DSL consists of constant
tokens for i) each uppercase and lowercase letter, ii) each
digit between 0-9, and iii) special characters such as hyphen,
dot, semicolon, colon, comma, left/right parenthesis/bracket,
forwardslash, backwardslash, white space, etc. It includes
general tokens for digits, alphabet letters, a sequence of dig-
its, a sequence of alphabet letters, a sequence of uppercase
letters, a sequence of lowercase letters, etc. The token set
also includes a few more higher-level general tokens, such
as date, phone number, etc, to capture the frequently used
patterns in practice.

A token sequence ts is a sequence of tokens. The se-
mantics of a token sequence ts matching a string s includes
three rules: i) an empty string ε is not matched by any to-
ken sequence, ii) if ts is simply a token T , then ts matches a
string s if T matches s, and iii) if ts = Seq(T, ts′) consists
of more than one token, it first looks for the longest prefix
s[0, i] of s that is matched by the first token T in ts, and
then recursively checks if the remaining token sequence ts′

matches the remaining substring s[i, |s|]. For example, ts =
Seq(<Alpha>,<Num>) matches string “ABC123”, whereas
it does not match string “123ABC” or “ABC123DEF”. Note
that the number of tokens in a token sequence is unbounded.

3.2 Disjunctive Expressions
A disjunctive expression r is defined as a disjunction of to-
ken sequences: if at least one token sequence in r matches a
string s, then r is defined to match s. Adding the disjunction
expression enables the DSL to: i) construct expressions that

can match “incompatible” strings and ii) simulate the effects
of Kleene star, both of which increases its expressiveness.

3.3 Predicates and Filter Expressions
On top of the disjunctive expressions, the DSL has Predicate
expressions. As shown in Figure 4, it consists of four pred-
icates: StartsWith, EndsWith, Matches, and Contains.
Predicates generalize the semantics of disjunctive expres-
sions, such that it allows a disjunctive expression r to match
a prefix (StartsWith), a suffix (EndsWith), or a substring
(Contains) of the string s in addition to matching the whole
string (Matches).

A filter expression Filter(p, L) maps an input list L of
m strings to an output list of n strings, where the predicate p
holds for the n output strings (n ≤ m), i.e., it filters out the
other (m-n) strings in L for which p does not hold.

3.4 Design of the DSL
The main design choices we made in design the DSL were
regarding: 1) the kinds of predicates, 2) the Disjunct ex-
pression at the level of token sequences (and not at the level
of predicates), and 3) the set of tokens. These design choices
enable us to not only express all of our benchmarks, but also
to perform efficient learning of such expressions. Although
the DSL disallows compositions of predicates, it is already
quite expressive because of the use of disjunctions, a large
token set, and token sequences with arbitrary lengths.

The DSL can express any data filtering task that i) con-
tains a finite number of strings and ii) each string is of finite
length. This is because the token set in the DSL consists of a
constant token for each possible character (extensible to ar-
bitrary unicode characters) and the DSL supports disjunctive
expressions over token sequences of arbitrary length.

In general, FIDEX only requires the constant tokens, the
Matches predicate, and the disjunctive expressions of any
arbitrary length token sequences to perform any data filtering
task with a finite number of finite-length strings. We added
other general tokens and predicates to enable FIDEX to effi-
ciently learn more general and simpler expressions.

4. Overview of the Synthesis Algorithm
In this section, we present an overview of the synthesis
algorithm in FIDEX on a small running example which is
a slightly modified version of Example 1 in Figure 6.

Example 7. Given a list of strings: ["RJ1", "PY65", "DDD",
"DD32K", "D1", "12D"], a user wants to filter them to obtain
the list of strings: ["RJ1", "PY65", "DDD", "DD32K"].

A possible filter expression in our DSL for this task is
Filter(StartsWith(v, Seq(<l>,<l>)), L), which filters
out the strings that do not start with two alphabet letters.
We now sketch the interactive synthesis process in FIDEX
to learn such an expression from examples. For simplicity,
assume the token set used in FIDEX consists of four tokens:
{<l>, <a>, <d>, <n>}, where the tokens <l>, <a>, <d>, <n>



JFilter(p, [ ])K σ = [ ]

JFilter(p, [s : l])K σ = if (Jp(v, r)K σ) then s : JFilter(p, l)K σ else JFilter(p, l)K σ, where σ = σ[v ← s]

JStartsWith(v, r)K σ = ∃ 0 < j ≤ |s|, such that JrK s′, where s′ = s[0, j], s = σ(v)

JEndsWith(v, r)K σ = ∃ 0 ≤ j < |s|, such that JrK s′, where s′ = s[j, |s|], s = σ(v)

JContains(v, r)K σ = ∃ 0 ≤ i < j ≤ |s|, such that JrK s′, where s′ = s[i, j], s = σ(v)

JMatches(v, r)K σ = JrK s, where s = σ(v)

JDisjunct(ts, r)K s = (JtsK s) ∨ (JrK s)
JtsK ε = False

JSeq(T, ts)K s = ∃ 0 < i < |s|,∀i < j < |s|, such that (JT K s[0, i]) ∧ ¬(JT K s[0, j]) ∧ (JtsK s[i, |s|])
JT K s = T matches s

Figure 5. The semantics of the DSL with an environment σ mapping a string variable v to a string in a list L.

match an alphabet letter, a sequence of alphabet letters, a
digit, and a sequence of digits, respectively.

Iteration 1: The user provides a positive example string,
"RJ1", to the FIDEX system. FIDEX first tries to learn a fil-
ter expression using the StartsWith predicate. It first con-
structs all token sequences (denoted asD1) for StartsWith
predicate that match "RJ1", such as StartsWith(v, <a>),
StartsWith(v, <l>), StartsWith(v, Seq(<l>,<l>)) etc.
It then picks the top-ranked sequence amongst them (say
StartsWith(v, <a>)) and returns the result of the corre-
sponding filter expression (Filter(StartsWith(v, <a>), L)).

Iteration 2: After inspecting the result, the user observes
that the string "D1" is not filtered out and provides "D1"

as a negative example. Again, FIDEX finds all the token se-
quences (denoted asD2) for StartsWith predicate to match
"D1" and removes the token sequences inD2 fromD1 to ob-
tain a refined set of token sequences D3 (D3 = D1	D2).
The token sequences in D3 match the positive string "RJ1"

but not the negative string "D1". As in the first iteration,
FIDEX returns the result of the top-ranked filter expression,
say Filter(StartsWith(v, Seq(<l>,<l>,<n>)), L).

Iteration 3: However, in this case the synthesized filter
expression filters out a desired string "DDD" and the user
provides "DDD" as another positive example. The system
computes all token sequencesD4 for StartsWith predicate
for "DDD" and removes token sequences in D2 from D4

(sinceD2 contains all token sequences that match a negative
string) to obtain a refined set D5 (D5 = D4	D2). Note
that in order to recognize both the first (positive) example
and the third (positive) example, we have to consider token
sequences in bothD3 andD5. FIDEX finds all common token
sequences D6 in both sets D3 and D5 (D6 = D3

⊗
D5)

and returns the filtering result corresponding to the filter
expression Filter(StartsWith(v, Seq(<l>,<l>)), L) in
which the token sequence is selected from D6.

The synthesized filter expression filters out the undesired
strings and the synthesis process terminates with 2 positive
examples and 1 negative example. There are two interesting

points worth mentioning: 1) In the third iteration, since there
exists a common token sequence in both sets (D3 and D5),
the filter expression is guaranteed to match the positive ex-
ample strings but not the negative example string. However,
for more complex cases, it might be the case that there is
no common token sequence amongst the two sets. In such
cases, FIDEX recognizes all positive examples by generat-
ing disjunctive expressions. 2) Using a StartsWith pred-
icate is sufficient for this example task, however, for other
scenarios, there might not exist a filter expression with the
StartsWith predicate to perform the task. For such cases,
FIDEX iterates over other predicates in the synthesis process.

There are several technical challenges in the synthesis al-
gorithm. First, we need a data structure to efficiently com-
pute and represent the set of all expressions in the DSL that
are consistent with a given set of positive and negative ex-
ample strings. Second, we need to design sound and com-
plete synthesis algorithms to incrementally incorporate new
positive/negative examples. Finally, we need an efficient and
effective ranking algorithm so that users don’t need to pro-
vide a lot of examples for FIDEX to learn the desired filter
expressions. We tackle these challenges in §5 and §6.

5. DAG Data Structure
We use a directed acyclic graph (DAG) based data structure
to succinctly represent a large set of token sequences. The
set of disjunctive expressions is represented by a collection
of DAGs. We note that the notions of a token sequence and
a disjunction of token sequences are intrinsically different
and we use two different data structures to represent them.
Representing them in one data structure might be possible,
but it would lead to extra efforts to distinguish them and we
might potentially lose the ability to learn disjunctions in an
efficient, lazy and clean fashion.

The key idea in the DAG data structure is to represent
token sequences as paths in the graph such that tokens (rep-
resented as edge labels) can be shared across multiple token



Figure 6. An example for illustrating the steps of the synthesis algorithm for Example 7. Dash-line nodes are start nodes and
double-line nodes are end nodes.D1 is the DAG learnt from the first (positive) example string "RJ1" andD2 is the DAG learnt
from the second (negative) example string "D1". The list of DAGs after the first two interactions is D̃ = [D3]. D4 is the DAG
learnt from the third (positive) example string "DDD". We have D̃ = [D3,D5] after the third interaction. The resulting DAG D6

is obtained by merging D3 and D5. The learning process terminates in three iterations.

t̃s := D(Q,S, F,E,W ),

where W : E → 2T̃

r̃ := [D1, ··,Dn]

Jt̃sK = JDK = {Seq(t1, ··, tn) | ti ∈W (ei), where e1, ··, en ∈ E form

a path between any s ∈ S and any f ∈ F}
Jr̃K = JD̃K = {ts1 ∨ · · ∨tsn | ts1 ∈ JD1K, ··, tsn ∈ JDnK,Di ∈ D̃, i = 1, ··, n}

Figure 7. The syntax and semantics of: 1) a DAG data structure D to succinctly represent a large set of token sequences, and
2) a list of DAGs D̃ to represent a large set of disjunctive expressions.

sequences (represented as paths). The syntax and semantics
of the DAG data structure is shown in Figure 7. A DAG is
represented by a 5-tuple D(Q,S, F,E,W ), where Q is a set
of nodes containing two sets of distinctly marked start and
end nodes S ⊂ Q and F ⊂ Q respectively, E is a set of
edges over nodes in Q that induces the DAG, and W maps
each edge e ∈ E to a set of tokens t̃which is the subset of the
token set in the DSL. The set of token sequences represented
by a DAGD(Q,S, F,E,W ) includes those token sequences
that can be obtained by concatenating tokens along any path
(one token for each edge) from a start node s ∈ S to an end
node f ∈ F . A list of DAGs represents a set of disjunctive
expressions which are disjunctions of the token sequences
represented by the DAGs in the list.

Note that the DAG data structure represents an exponen-
tial number of token sequences using polynomial space. The
list of DAGs also represents an exponential number of dis-
junctive expressions. We use the notationD to denote a DAG
and use D̃ to denote a list of DAGs.

5.1 DAG Operators
We define two binary operators over the DAG data structure:⊗

and 	. The semantics of the two operators is shown in
Figure 8. The

⊗
operator intersects the sets of token se-

quences represented byD1 andD2 to find the common token
sequences, and the 	 operator removes the token sequences
represented by D2 from those represented by D1. These op-
erators are used in the synthesis algorithms to handle posi-
tive and negative examples.

JD1

⊗
D2K = JD1K∩ JD2K JD1	D2K = JD1K \ JD2K

Figure 8. The semantics of
⊗

and 	 operators.

5.2 Algorithms for Implementing Operators
The algorithm for the

⊗
operator for computing token se-

quences that are common to two DAGs is shown in Fig-
ure 10. It constructs the product graph of two DAGs, while
at the same time intersecting the token labels on the edges.2

The complexity3 of
⊗

operator is O(n2) where n is the
number of nodes in D1 and D2 respectively. The result ob-
tained by the algorithm is still a DAG.

D = D1

⊗
D2

QD := {(q1, q2) | q1 ∈ QD1
, q2 ∈ QD2

}
SD := {(s1, s2) | s1 ∈ SD1

, s2 ∈ SD2
}

FD := {(f1, f2) | f1 ∈ FD1 , fD2 ∈ F2}
ED := {((q1, q2), (q′1, q′2)) | (q1, q′1) ∈ ED1 , (q2, q

′
2) ∈ ED2}

WD((q1, q2), (q
′
1, q
′
2)) :=WD1

((q1, q
′
1)) ∩WD2

((q2, q
′
2))

Figure 10. The algorithm for implementing the
⊗

operator.

Theorem 1. Figure 10 implements the semantics of
⊗

:
D = D1

⊗
D2 ⇒ JDK = JD1K ∩ JD2K.

Example 8 (DAG intersection). The result of the intersec-
tion D6 = D3

⊗
D5 in Example 7 is shown in Figure 6.

2 An extra step to remove the unreachable nodes in the resulting DAG is
necessary to reduce the DAG size for efficiency.
3 We use the number of nodes in the resulting DAG as a measure of the
complexity of an algorithm in the following sections of the paper.



st ep 1 st ep 2 st ep 3

st ep 4 st ep 5 st ep 6 st ep 7

Figure 9. The different steps of the 	 operator for removing token sequences in DAG D2 from D1. The algorithm creates
copies of nodes in D1 and isolates the paths to be removed by splitting the edge tokens between the copied nodes.

The algorithm for the 	 operator removes token se-
quences present in DAG D2 from another DAG D1. A naı̈ve
algorithm to compute the difference would be to first enu-
merate the token sequences in D1 and D2, and then remove
the token sequences in D2 from those in D1. This algorithm
is clearly prohibitively expensive. There are two key ideas in
our algorithm to efficiently perform the DAG subtraction: i)
it performs a synchronized traversal of paths in D1 based on
corresponding nodes in D2, and ii) it splits the token sets on
edges to remove multiple paths in D2 simultaneously. These
key ideas allow our algorithm to lazily explore only the rel-
evant paths in D1 based on paths in D2.

Before describing the algorithm formally, we briefly il-
lustrate the different steps of the algorithm for removing to-
ken sequences in D2 from those in D1 for a simple example
shown in Figure 9. D1 consists of three nodes q1, q2, and q3,
and represents the token sequences {Seq(a,c), Seq(a,d),
Seq(b,c), Seq(b,d)}, whereas D2 consists of three nodes
q4, q5 and q6, and represents one token sequence {Seq(a,c)}.
We can observe that the algorithm can not simply remove
tokens a or c from edges (q1, q2) or (q2, q3) as that would
result in removing valid token sequences, such as Seq(a,d)
or Seq(b,c). The key intuition behind our subtraction al-
gorithm is to recursively isolate the token sequences (paths)
that need to be removed fromD1 by creating copies of nodes
and edges along those paths. The algorithm only deletes the
isolated paths, without affecting other valid token sequences
that might share some edges with the paths to be deleted.

First, the algorithm creates a copy of the start node q1 in
D1 (and it also makes q1 a non-starting node) to get a new
start node q′1 and copies the corresponding outgoing edges
(step 1). This results in a new DAG D that is equivalent
to the original DAG in terms of the token sequences being
represented. It then iterates the outgoing edges from nodes
q′1 inD and q4 inD2 in a pairwise fashion, say edges (q′1, q2)
and (q4, q5), as a way to synchronously traverse all the paths
from nodes q′1 and q4. In each iteration, it considers one
of the edges (q′1, q2) in D, and creates a copy of q2 to

obtain q′2 and copies the outgoing edges of q2 as well (step
2). It then removes tokens from the edge (q′1, q2) that are
common to the tokens on the edge (q4, q5) inD2, and adds an
edge (q′1, q

′
2) with those common tokens (step 3). Finally,

the algorithm proceeds recursively by considering outgoing
edges of the nodes q′2 in D and q5 in D2 (steps 4-5), and
removes the isolated paths in D by making corresponding
end nodes as non-ending nodes (step 6, q′3 becomes a non-
ending node since the node q6 in D1 is an end node). The
DAGs in this example consist of only one start node, but the
general algorithm performs this operation over all pairs of
start nodes inD1 andD2 in order to be sound. The algorithm
also handles DAGs with multiple end nodes.

We now formally describe the algorithm for the 	 oper-
ator shown in Figure 11.

D = D1	D2

1 D := Copy(D1)
2 foreach s ∈ SD, s2 ∈ SD2:

create a new node s̈ in D
3 s̈ := new Node(), QD := QD ∪ s̈

make s̈ a start node and s a non-starting node

4 SD := (SD \ {s}) ∪ {s̈}
copy outgoing edges and update edge labels

5 ED := ED ∪ {(s̈, q) | (s, q) ∈ ED}
6 foreach q ∈ QD :WD((s̈, q)) :=WD((s, q))

remove token sequences for (s, s2)

7 SubPartialDAG(D, s̈,D2, s2)

Figure 11. The algorithm for implementing the	 operator.

The subtraction algorithm first copies D1 to D (line 1)
and then iterates over all pairs of start nodes (s, s2) inD and
D2 (line 2). In each iteration, it creates a fresh node s̈ (line 3),
replaces s by s̈ (s is not removed) as the new start node (line
4), connects s̈ to the outgoing nodes of s (line 5) and assigns
tokens on outgoing edges of s̈ (line 6). Then it subtracts the
partial DAG in D2 rooted at s2 from the partial DAG in D
rooted at s̈ by calling the SubPartialDAG function (line 7).



Figure 13 shows the algorithm of SubPartialDAG func-
tion, the core component of the subtraction algorithm. Given
two nodes q1 ∈ QD1

and q2 ∈ QD2
, it iterates over all pairs

of outgoing edges of q1 and q2 (line 1). In each iteration for
(q1, q

′
1) ∈ ED1 and (q2, q

′
2) ∈ ED2 , it performs the follow-

ing two steps, which are also illustrated in Figure 12.

SubPartialDAG(D1, q1,D2, q2)
1 foreach (q1, q

′
1) ∈ ED1

,(q2, q
′
2) ∈ ED2

:

create a new node q̈′1 in D1

2 q̈′1 := new Node(), QD1 := QD1 ∪ q̈′1
copy outgoing edges and update edge labels

3 ED1 := ED1 ∪ {(q̈′1, q′′1 ) | (q′1, q′′1 ) ∈ ED1
}

4 foreach q ∈ QD1:WD1((q̈
′
1, q)) :=WD1((q

′
1, q))

connect q1 and q̈′1

5 ED1
:= ED1

∪ {(q1, q̈′1)}
update edge labels

6 WD1((q1, q̈
′
1)) :=WD1((q1, q

′
1)) ∩WD2((q2, q

′
2))

7 WD1
((q1, q

′
1)) :=WD1

((q1, q
′
1)) \WD2

((q2, q
′
2))

mark q̈′1 as an end node

8 if q′1 ∈ FD1
: FD1

:= FD1
∪ {q̈′1}

mark q̈′1 as a non-ending node (delete paths)

9 if q′2 ∈ FD2
: FD1

:= FD1
\ {q̈′1}

remove token sequences for (q̈′1, q
′
2)

10 SubPartialDAG(D1, q̈
′
1,D2, q

′
2)

Figure 13. The algorithm for SubPartialDAG function.

• Path isolation (lines 2-8): It copies the node q′1 to q̈′1
(line 2) together with the outgoing edges of q′1 and token la-
bels on those edges (lines 3-4) and obtains D′1. It also adds
an edge (q1, q̈′1) inD′1 (line 5). Then, the algorithm splits the
original token setWD1

((q1, q
′
1)) on edge (q1, q′1) into two to-

ken sets:WD1
((q1, q

′
1))∩WD2

((q2, q
′
2)) andWD1

((q1, q
′
1))\

WD2
((q2, q

′
2)), and it assigns the first token set on edge

(q1, q̈
′
1) (line 6) and replaces the token set on edge (q1, q′1) by

the second one (line 7). The algorithm sets q̈′1 as an end node
if q′1 is an end node in D1 (line 8). This step is also shown in
Figure 12. Intuitively in this step it isolates one edge on the
path that needs to be removed, and we have JD′1K = JD1K
after this isolation step.
• Path deletion (line 9): In this step, if q′2 is an end node in

D2, the algorithm removes fromD1 the paths inD2 that ends
at q2 by making q̈′1 a non-ending node (line 9), otherwise, it
does not do anything. Figure 12 shows this step for the case
where q′2 is an end node.

Finally, the algorithm recurses on q̈′1 and q′2 (line 10) until
it reaches the termination condition where at least a node has
no outgoing edges. 4

4 We note three important optimizations for an efficient implementation: 1).
caching intermediate nodes to avoid unnecessary node copies, 2). immedi-
ately removing edges with empty token sets, and 3). periodically cleaning
unreachable nodes in the DAG.

Theorem 2. Figure 11 implements the semantics of 	:
D = D1	D2 ⇒ JDK = JD1K \ JD2K.

Example 9 (DAG subtraction). The results of the subtrac-
tions D3 = D1	D2 (iteration 2) and D5 = D4	D2 (it-
eration 3) in Example 7 are shown in Figure 6.

Relationship to NFA The DAG representation in FIDEX
can be considered as a form of non-deterministic finite au-
tomata (NFA)5 with tokens as edge labels. The algorithms
for implementing

⊗
and 	 operators can be regarded as

computing the intersection and difference over two NFAs.
Note that DAGs are less general than NFAs because: i) they
don’t have epsilon transitions, and ii) there are no cycles.

For implementing the
⊗

operator we borrowed the idea
from NFA intersection algorithm and achieve the optimal
complexity O(n2). For implementing the 	 operator, how-
ever, we developed a novel algorithm in which we perform
synchronized traversal on both DAGs. This is different from
the traditional algorithm for computing the NFA difference
in which it intersects the first NFA with the complement of
the second NFA. Since complementing an NFA requires a
determinization step, the complexity is exponential. How-
ever, by the synchronized traversal, the intermediate DAGs
computed by our algorithm are sparse, i.e., the out-degree
of most nodes is small (close to 1) and this leads to better
practical complexity. In the worst case, the complexity of the
SubPartialDAG algorithm isO(n2) (for dense graphs), and
the number of nodes in the DAG after each iteration in the
	 algorithm grows in the following manner: n, n2, ··, nn2+1

(at most n2 iterations), which leads to the worst-case com-
plexity ofO(nn). However, the intermediate graphs are usu-
ally sparse, which causes the number of node copies to be
small during the synchronized traversal of SubPartialDAG
(a node in D1 is copied for a few nodes in D2). The size of
a DAG grows almost linearly after each iteration. We show
this phenomenon of O(n) complexity empirically in §7.7.

Our subtraction algorithm is also different from the anti-
chain method [42]. The anti-chain method exploits the spe-
cial structure of the subset construction by treating set in-
clusion as a partial order, which also turns out to be a sim-
ulation relation for reachability problems. These anti-chain
techniques are proven to be theoretically sound and also effi-
cient in practice on large random automata. However, these
techniques have been only developed for binary properties
such as language inclusion, emptiness, and universality. We
instead need a method to perform efficient language subtrac-
tion over two DAGs and we need to compute and keep the
final resulting DAG after the subtraction. Moreover, the sub-
traction algorithm in FIDEX does not use the notion of partial
order over sets of states to prune the states during the oper-
ation, instead it does a synchronized pass over two DAGs
to copy nodes and remove edges from the first DAG (while
synchronizing with the second DAG) to perform subtrac-

5 Recall that a DAG can have multiple start nodes.
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Figure 12. The SubPartialDAG(D1,q1,D2,q2) function.

tion. The practical efficiency of our subtraction algorithm
exploits the property of our DAG data structure (sparsity in
edges) that arises from the practical filter expression synthe-
sis benchmarks.

6. Synthesis Algorithms
In this section, we present a sound and complete synthesis
algorithm for incrementally learning a Filter expression in
the DSL that is consistent with the given list of positive and
negative strings. We first describe the synthesis algorithms
for learning consistent token sequences and consistent dis-
junctive expressions for a given predicate, respectively. We
then present an incremental algorithm for learning consis-
tent disjunctive expressions for a given predicate. Finally,
we describe the incremental learning algorithm for learning
consistent Filter expressions using a ranking algorithm.

6.1 Overview of the Synthesis Algorithm
We first present a high-level overview of the synthesis al-
gorithm as shown in Figure 14. Given a set of positive
example strings S+ and negative example strings S−, the
LearnFilter algorithm learns a filter expression in the
DSL that is consistent with the examples. It first learns the
set of all filter expressions f̃ that are consistent with the first
positive example string S+[0], and uses a ranking algorithm
Rank to find a filter expression f ∈ f̃ . It then returns f as the
desired filter expression if f is consistent with all the posi-
tive and negative examples. Otherwise, the algorithm finds
a counterexample string s that is not consistent with f , and
then refines the set of filter expressions such that they are
consistent with the counterexample string s in addition to
the previous examples. This iterative process continues until
it finds a consistent filter expression (or fails to find one).

There are several technical challenges in the LearnFilter
algorithm for efficiently learning the desired filter expres-
sion. First, we need an efficient LearnFilterExpr algo-
rithm to compute (as well as represent) a large set of filter
expressions in the DSL that are consistent with a given ex-
ample string. Second, we need an efficient ranking algorithm
Rank to efficiently compute the most likely filter expression
amongst the large set of consistent filter expressions. Third,
we need to develop algorithms to refine the set of consistent
filter expressions with additional positive and negative ex-

LearnFilter(S+, S−)

Learn consistent filters with 1st positive string

1 f̃ := LearnFilterExpr(S+[0)
Select a top-ranked filter expression

2 f := Rank(f̃)
Find a counterexample string inconsistent with f

3 while (∃s ∈ S+ : ¬JfKs ∨ ∃s ∈ S− : JfKs)
Refine the set of filters with a counterexample

4 f̃ := RefineFilterExpr(f̃ , s)

5 if f̃ = ∅: return null

6 f := Rank(f̃)
7 return f

Figure 14. An overview of the top-level synthesis algorithm
for learning a filter expression consistent with a set of posi-
tive and negative examples.

ample strings. Finally, we need to develop incremental algo-
rithms to efficiently incorporate new examples and compute
the set of consistent filter expressions.

6.2 Preliminaries
We first define the notion of the consistency of Filter

expressions with a given list of positive and negative strings
and describe the GenDAG algorithm for learning a DAG D
from a string s for different predicates.

Definition 1 (Consistency). Given a list of strings L =
[s+1 , ··, s+n , s

−
1 , ··, s−m] in which s+i is a positive string and

s−j is a negative string, we define a Filter expression f to
be consistent with L if we have Jf(p, L)K σ = [s+1 , ··, s+n ],
i.e. if the predicate p is only true for the positive strings s+i
and false for all negative strings s−j .

GenDAG Algorithm: Given a string s and a predicate
Pred in the DSL, we use the GenDAG algorithm shown in
Figure 15 to learn the set of all token sequences for Pred
(represented succinctly using a DAG D) such that the Pred

expression with any token sequences in D matches string
s. The key idea of the GenDAG algorithm for a string s is
to construct a DAG D, where the nodes represent different
indices of the string and the edges denote the tokens that are
consistent with different substrings of s. For example, for the



StartsWith predicate and a string s, the GenDAGStartsWith
algorithm first constructs |s| + 1 number of nodes Q :=
{0, ··, |s|} and assigns the set of start nodes and end nodes
as S1 := {0} and F1 := {1, ··, |s|}, respectively. It then
adds an edge (i, j) between each pair of nodes i and j such
that 0 ≤ i < j ≤ |s| and labels each edge (i, j) with a set of
tokens W ((i, j)) each of which matches the substring s[i, j]
but not any substring s[i, k], k > j. For other predicates, the
algorithm learns the DAG similarly as shown in Figure 15.
The only difference is in terms of assigning the set of start
nodes and end nodes. The running time complexity of the
GenDAG is O(k · n2), where k is the size of the token set T̃
in the DSL and n = |s|.

Q := {0, ··, |s|}
E = {(i, j) | 0 ≤ i < j ≤ |s|)}
W ((i, j)) := {T | Token T ∈ T̃ matches s[i, j] ∧ @k > j

s.t. T matches s[i, k]} ∀(i, j) ∈ E
S1 := {0}, S2 := {0, ··, |s| − 1}
F1 := {1, ··, |s|}, F2 := {|s|}
GenDAGStartsWith(s) := D(Q,S1, F1, E,W )
GenDAGEndsWith(s) := D(Q,S2, F2, E,W )
GenDAGMatches(s) := D(Q,S1, F2, E,W )
GenDAGContains(s) := D(Q,S2, F1, E,W )

Figure 15. The GenDAG algorithm for learning the DAG that
succinctly represents all token sequences conforming to a
given string s for different predicates.

Lemma 1. The GenDAG algorithm is sound and complete,
i.e., for a predicate Pred and a string s = σ(v), it learns a
DAG D such that i) ∀ token sequence ts ∈ JDK we have
JPred(v, ts)K σ = True, and ii) if there exists a token
sequence ts in the DSL for a predicate Pred such that
JPred(v, ts)K σ = True, then we have ts ∈ JDK.

Example 10 (DAG generation in the running example). The
generated DAGsD1,D2 andD4 for strings "RJ1" (iteration
1), "D1" (iteration 2) and "DDD" (iteration 3) in Example 7
are shown in Figure 6.

6.3 Learning Token Sequences
We first present the LearnTokenSeqsPred algorithm, shown
in Figure 16, for learning the set of token sequences in the
DSL for the predicate Pred that are consistent with a given
list of positive (S+) and negative (S−) strings. The key idea
of the algorithm to first learn the DAGs for each example
string using the GenDAGPred algorithm. For the positive ex-
ample strings, the algorithm intersects the DAGs using the⊗

operator to compute a DAG consisting of all consistent
token sequences, and then uses the 	 algorithm to remove
token sequences present in the DAGs for the negative strings
to compute the resulting DAG.

The algorithm first learns a DAG D for the first positive
string S+[0] using the corresponding GenDAGPred algorithm.
It then learns a DAG D+ for every other positive string in

LearnTokenSeqsPred(S
+, S−)

1 D := GenDAGPred(S
+[0])

2 for i = 1 to size(S+)− 1:
3 D+ := GenDAGPred(S

+[i])
4 D := D

⊗
D+

5 foreach s ∈ S−:
6 D− := GenDAGPred(s)
7 D := D	D−
8 return D

Figure 16. The LearnTokenSeqs algorithm to learn all
token sequences for a predicate Pred to be consistent with
the given positive strings S+ and negative strings S−.

S+ and applies the
⊗

operator on D+ and D to obtain the
common token sequences for Pred. The resulting DAG D
now represents the set of all token sequences for a predicate
Pred expression that are consistent with the list of positive
strings S+. The algorithm then learns a DAG D− for each
negative string and subtracts the token sequences inD− from
those in D using the 	 operator. The resulting DAG D
therefore consists of all token sequences for Pred that are
consistent with [S+, S−].

Definition 2 (Soundness). We define a synthesis algorithm
to be sound for a DSL fragment if the expressions in the DSL
fragment learnt by the algorithm are all consistent with the
given list of positive strings (S+) and negative strings (S−).

Definition 3 (Completeness). We define a synthesis algo-
rithm to be complete for a DSL fragment if the synthesis
algorithm is guaranteed to learn an expression in the DSL
fragment that is consistent with the given list of positive
strings (S+) and negative strings (S−) whenever there ex-
ists such an expression in that DSL fragment.

Theorem 3. The LearnTokenSeqsPred algorithm is sound
and complete for the non-disjunctive predicate expression
fragment in the DSL.

6.4 Learning Disjunctive Expressions
The LearnTokenSeqs algorithm described in §6.3 can only
learn the set of token sequences consistent with a given
set of examples. For learning the disjunctive expressions in
the DSL, we present the LearnDisjExprsPred algorithm
shown in Figure 17. The key idea of the algorithm is to
maintain a list of DAGs to represent a set of disjunctive
expressions. It first constructs a list of DAGs consisting of
individual DAGs for each positive string, and then uses the
DAGs for negative example strings to remove the token
sequences individually from each positive DAG in the list.
It finally merges the DAGs in the resulting list to minimize
the number of disjunctions in the resulting expression.

The algorithm first learns a DAG D+ for each positive
string in S+ and stores them in a list of DAG structures
D̃. It then learns a DAG D− for each negative string in



LearnDisjExprsPred(S
+, S−)

1 D̃ = [ ]
2 foreach s ∈ S+:

3 D+ := GenDAGPred(s)

4 D̃.Append(D+)
5 foreach s ∈ S−:
6 D− := GenDAGPred(s)

7 for i = 0 to size(D̃)− 1:

8 D̃[i] := D̃[i]	D−
9 if D̃[i] = ∅: return [ ]

10 return MergeDAGs(D̃)

Figure 17. The LearnDisjExprs algorithm for learning all
disjunctive expressions for a predicate Pred to be consistent
with the given positive strings S+ and negative strings S−.

S− and subtracts D− from each DAG D̃[i] ∈ D̃. If there
is any empty DAG in the resulting list of DAGs D̃, the
algorithm returns [ ] denoting that there does not exist any
disjunctive expression in the DSL for the predicate Pred

that is consistent with [S+, S−]. Otherwise, it returns the
result of merging the list of DAGs D̃, which represents all
consistent disjunctive expressions for the predicate Pred.

The MergeDAGs algorithm, as shown in Figure 18, greed-
ily merges the DAGs in D̃ into partitions such that the inter-
section of DAGs in any partition is non-empty, to reduce the
number of disjunctions in the final expressions.

MergeDAGs(D̃)
1 D̃res := [ ], D̃res[0] := D̃[0]
2 foreach D ∈ D̃:
3 if ∃ j : 0 ≤ j < size(D̃res) ∧ D̃res[j]

⊗
D 6= ∅:

4 D̃res[j] := D̃res[j]
⊗
D

5 else: D̃res.Append(D)
6 return D̃res

Figure 18. The MergeDAGs algorithm for greedily finding
the largest partitions of a list of DAGs D̃.

Theorem 4. The LearnDisjExprsPred algorithm is sound
and complete for all predicate expressions in the DSL.

Example 11 (DAG merging in the running example). The
DAG merging (intersection) D6 = D3

⊗
D5 in the third

iteration in Example 7 is shown in Figure 6.

6.5 Learning Disjunctive Expressions Incrementally
The LearnDisjExprs algorithm described previously in
§6.4 learns the set of disjunctive expressions in the DSL that
are consistent with a given set of positive and negative ex-
amples. A big issue with this algorithm is that it assumes the
set of all positive and negative examples are provided a pri-
ori. If we use this algorithm in the LearnFilter algorithm

LearnDisjExprsIncPred(D̃, D̃−, s)
1 D := GenDAGPred(s)
2 if IsPosStr(s):

3 foreach D− ∈ D̃−:
4 D := D	D−
5 if D := ∅: return ([ ], D̃−)
6 D̃.Append(D)
7 else: // IsNegStr(s)

8 for i = 0 to size(D̃)− 1:

9 D̃[i] := D̃[i]	D
10 if D̃[i] := ∅: return ([ ], D̃−)
11 D̃−.Append(D)
12 return (D̃, D̃−)

Figure 19. The LearnDisjExprsInc algorithm to incre-
mentally learn all disjunctive expressions for a predicate
Pred to be consistent with a new string s.

for refining the learnt set of expressions with counterexam-
ple strings, it will result in an inefficient algorithm as the
LearnDisjExprs algorithm starts from scratch on every in-
vocation. Moreover, for FIDEX’s application in Excel, a user
might provide examples interactively by inspecting the in-
termediate results instead of providing the complete list of
positive and negative strings at once. This motivates the need
of an incremental learning algorithm for efficiently learning
the set of consistent disjunctive expressions.

We present an incremental synthesis algorithm in Fig-
ure 19 for learning all disjunctive expressions in the DSL for
a predicate Pred that are consistent with an example string
s and all previous examples. The key idea of the algorithm
is to maintain two lists of DAGs: 1) D̃ to store all the dis-
junctive expressions such that the predicate expression Pred

with any of those disjunctive expressions is consistent with
all positive and negative strings in the past, and 2) D̃− con-
sisting of DAGs for each negative string in the past. The al-
gorithm uses these lists of DAGs to incrementally refine the
set of filter expressions given a new example string.

If the current input string s is a positive example, the
algorithm learns a DAG D for string s and subtracts each
DAG D− ∈ D̃− from D. If the resulting DAG D is empty,
it returns the empty list as the result denoting no desired
disjunctive expression for Pred exists. Otherwise, it updates
the current list of DAGs D̃ by appending D to D̃. If the
current input string s is a negative example, it updates the
current D̃ by subtracting D from each D′ ∈ D̃. If any DAG
in D̃ becomes empty, it returns the empty list. Otherwise, it
updates D̃− by appending D− to it.

The final set of consistent expressions would be the same
for incremental and non-incremental algorithms, but the ex-
pression returned to the user and running time would depend
on the order of examples as we might get different DAGs
representing the same set of expressions.



Theorem 5. The LearnDisjExprsIncPred algorithm is
sound and complete for all predicate expressions in the DSL.
Example 12 (Incremental learning in the running example).
The DAG lists D̃ = [D3,D5] and D̃− = [D2] learnt in the
third iteration in Example 7 are shown in Figure 6.

6.6 Ranking Disjunctive Expressions

A list of DAGs D̃ succinctly represents a large number of
disjunctive expressions and we use ranking to efficiently se-
lect the most likely one amongst them. The ranking algo-
rithm RankDAG for finding the top ranked token sequence
in a DAG D is shown in Figure 20, whereas the ranking
algorithm RankDAGs for finding the top ranked disjunctive
expression in a list of DAGs D̃ is shown in Figure 21.

RankDAG(D)
1 foreach e ∈ ED:
2 maxTok[e] := argmaxT {score(T ) | T ∈W (e)}

Each token has an empirically predefined score

3 score[e] := score(maxTok[e])
4 foreach q ∈ QD:
5 maxEdge[q] := argmaxe{score[e] | e = (q, q′) ∈ ED}

Get the target (second) node of the edge maxEdge[q]

6 nextNode[q] := maxEdge[q]. 2
7 score[q] := score(maxEdge[q])
8 qc := argmaxs{score[s] | s ∈ SD}
9 AvgScore := score[qc], path := [qc]

10 while(qc 6∈ FD ∨ AvgScore < size(path)·AvgScore+score[q′c]
size(path)+1 )

11 q′c := nextNode[qc]

12 AvgScore :=
size(path)·AvgScore+score[q′c]

size(path)+1

13 path.Append(q′c)
14 qc := q′c
15 ts := ε
16 foreach q ∈ path:

17 T := maxEdge[maxTok[q]]
18 ts := Seq(T, ts)
19 return ts

Figure 20. The ranking algorithm RankDAG for efficiently
identifying the top ranked token sequence in a DAG D. The
argmaxT {score(T) | T ∈ W (e)} returns the element T
with the maximum score(T) value.

RankDAGs(D̃)
1 r := ε

2 foreach D ∈ D̃:
3 ts := RankDAG(D)
4 r := Disjunct(ts, r)
5 return r

Figure 21. The ranking algorithm for efficiently identifying
the top ranked disjunctive expression in a list of DAGs D̃.

The key idea of the ranking algorithm in Figure 20 is
to find a path from one of the start nodes in D to one

of the end nodes such that the average score of that path
is maximized locally. The scores for tokens are assigned
empirically according to their generality, i.e., a general token
has a higher score than a constant token. The algorithm uses
a greedy strategy to find a path in D by selecting nodes
based on their ranks starting from the set of start nodes S.
It stops the search when the path ends at an end node f
and when there is no improvement on the average score
AvgScore by taking an outgoing edge from f . It finally
returns the token sequence r corresponding to tokens on the
edges along the path. The complexity of RankDAG isO(n·k)
where n is the number of edges in D and k denotes size of
the token set T̃ in the DSL.

The RankDAGs algorithm applies the RankDAG algorithm
on each DAG D ∈ D̃ and disjoins the selected token se-
quences to get the top ranked disjunctive expression in D̃.
The complexity is O(n · k · l) where l = size(D̃).

6.7 Learning Filter Expressions Incrementally
We now have all the components for describing the top-
level LearnFilter algorithm for learning a Filter expres-
sion that is consistent with a given set of positive and nega-
tive strings as shown in Figure 22. The algorithm learns the
Predicate expression in the Filter expression by iterat-
ing over all available predicates in the DSL in a certain order:
{StartsWith, EndsWith, Matches, Contains} and learn-
ing a disjunctive expression for the predicate expression.

LearnFilter(S+, S−)
1 foreach Pred ∈ {StartsWith, EndsWith, Matches, Contains}
2 (D̃, D̃−) := LearnDisjExprsIncpred([ ], [ ], S+[0])

3 if D̃ = [ ]: continue

4 r := RankDAGs(MergeDAGs(D̃))
5 p := Pred(v, r)
6 while (∃s ∈ S+ : ¬JpKs ∨ ∃s ∈ S− : JpKs)
7 (D̃, D̃−) := LearnDisjExprsIncPred(D̃, D̃−, s)
8 if D̃ = [ ]: break

9 r := RankDAGs(MergeDAGs(D̃))
10 p := Pred(v, r)

11 if D̃ 6= [ ]: return Filter(p, L)
12 return null

Figure 22. The LearnFilter algorithm for learning a filter
expression in the DSL that is consistent with positive strings
S+ and negative strings S−.

For a predicate Pred, it first learns all disjunctive expres-
sions represented by D̃ which are consistent with the first
positive string S+[0] using the LearnDisjExprsIncPred al-
gorithm (line 2) and uses the MergeDAGs and RankDAGs al-
gorithms to compute the corresponding predicate expression
p (lines 4-5). It then looks for a counterexample string s in
[S+, S−] such that either p does not match a positive string
s ∈ S+ or p matches a negative string s ∈ S− (line 6). If no
such counterexample exists, the algorithm returns the filter



expression Filter(p, L) (line 11). Otherwise, the algorithm
continues the learning procedure by giving that counterex-
ample as a new example to LearnDisjExprsIncPred (lines
6-10) until it finds a predicate expression p that is consis-
tent with all the example strings (line 11) or it fails to find a
consistent predicate expression (line 12).

Note that the counterexample strings in the while loop
(lines 6-10) in Figure 22 can also be provided by a user.
The FIDEX system supports such an interface where the user
first provides a positive example and a set of test strings.
The system learns the corresponding Filter expression
and returns the result of matching the learnt expression on
the test strings. The user can then inspect the result and
provide additional positive/negative examples. FIDEX then
updates the Filter expression to be also consistent with
the additional examples, and this interaction repeats until the
result is as desired by the user or the FIDEX system realizes
there does not exists a consistent expression in the DSL.

Theorem 6. The LearnFilter algorithm is sound and
complete for the Filter expression in the DSL.

An example execution of LearnFilter: The intermedi-
ate DAGs computed during the LearnFilter algorithm for
the filter task in Example 7 are shown in Figure 6.

Iteration 1: The DAG list for the first (positive) example
"RJ1" is D̃ = [D1] and the DAG list for negative examples
is D̃− = [ ] (line 2). The top-ranked disjunctive expression
<a> is computed at line 5 and the corresponding predicate
expression StartsWith(v, <a>) is constructed at line 5.

Iteration 2: When StartsWith(v, <a>) is applied on all
the input strings (line 6), it also matches string "D1" which is
further given as the second (negative) example. After invok-
ing LearnDisjExprsIncStartsWith, we have (D̃, D̃−) =
([D3], [D2]) (line 7). The predicate with the top-ranked dis-
junctive expression, StartsWith(v, Seq(<l>,<l>,<n>)),
is computed at lines 9-10.

Iteration 3: When StartsWith(v, Seq(<l>,<l>,<n>))
is applied on all input strings (line 6), it does not recognize
string "DDD" which is further given as the third (positive) ex-
ample. After invoking LearnDisjExprsIncStartsWith (line
7), we have (D̃, D̃−) = ([D3,D5], [D2]). At line 9, the al-
gorithm performs D6 = D3

⊗
D5 to merge DAGs D3 and

D5 in D̃ since they share token sequences in common, se-
lects the top-ranked disjunctive expression from D6, and
then it constructs the corresponding predicate expression
StartsWith(v, Seq(<l>,<l>)) at line 10. This expression
can perform the desired filtering task (line 6) and the algo-
rithm returns Filter(StartsWith(v, Seq(<l>,<l>))) as
the final filter expression to the user at line 11.

7. Experiments
We implemented FIDEX in C# (and also as an add-in for Mi-
crosoft Excel) and report its evaluation on 460 benchmarks.

The experiments were performed on a quad-core Intel Core
i7 2.67GHz CPU with 6GB RAM.

7.1 Benchmarks
We have collected 460 benchmarks in total, among which
334 benchmarks were collected from online help forums and
Microsoft Excel team, and the other 126 benchmarks were
provided by Microsoft Bing team. Each benchmark consists
of a set of strings U and a set of positive strings S where we
have S ⊆ U (the strings in U \S are negative strings). A data
filtering task is to learn a filter expression to select exactly S
out of U .

The benchmarks on average consist of 47.4 positive string
instances and 470.1 negative string instances, and the maxi-
mum number of positive and negative strings for any bench-
mark is 24961 and 3195, respectively. The average length of
each positive and negative string is 68.8 and 54.2, and the
maximum length is 3485 and 3323, respectively.

7.2 Experimental Setup
We evaluate FIDEX using the incremental learning algorithm
LearnFilter (with all four predicates) shown in Figure 22.
We also evaluate FIDEX using one predicate to compare the
performance of different predicates with one another. FIDEX
uses a predefined token set of 114 tokens that includes both
general tokens and constant tokens.

We compare FIDEX with the following baseline strate-
gies: (1) NoDisj: A variant of FIDEX that learns expressions
(represented in a DAG) with only token sequences (without
disjunctions). (2) Enum: A variant of FIDEX that learns dis-
junctive expressions by enumerating all the token sequences
(without using a DAG representation). We implemented 5
different variants Enum-k (for k ∈ {3,6,9,12, inf}), where
k denotes the maximum length of token sequences consid-
ered by the algorithm. Only Enum-inf variant is a complete
algorithm that doesn’t impose any restriction on the token
sequence lengths. (3) FE: The conditional learning engine
in FlashExtract [24] that learns non-disjunctive expressions
consisting of sequences of at most 3 tokens. We set 10 sec-
onds as the timeout for each predicate synthesis task.
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Figure 23. The running times for solving benchmarks for
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FIDEX NoDisj Enum-inf Enum-12 Enum-9 Enum-6 Enum-3 FE

StartsWith 424(45) 317(23) 175(123) 330(497) 400(214) 383(41) 315(18) N.A.

EndsWith 417(36) 269(19) 151(81) 283(554) 398(293) 386(39) 332(19) N.A.

Matches 438(44) 243(16) 200(113) 311(190) 278(24) 186(9) 112(5) N.A.

Contains 374(128) 323(75) 142(93) 174(257) 288(505) 373(214) 363(38) N.A.

All predicates 452(98) 366(45) 212(314) 410(480) 442(343) 444(157) 434(75) 343(46)

Table 1. The number of solved benchmarks by FIDEX and other baseline strategies. The first four rows show the number of
solved benchmarks using one predicate, and the last row shows the number of solved benchmarks using all predicates. The
number of benchmarks solved by FE is shown only in the last row. XX(YY) means XX benchmarks are solved in YY seconds.

Time (s) ≤ 0.1 (0.1, 0.2] (0.2, 1] > 1
Percentage 81.2% 11.9% 6.0% 0.9%

# Examples 1 2 3-5 6-10 > 10
Percentage 13% 20% 42% 16% 9%

Table 2. Statistics of the running times and the number of examples (sum of both positive and negative examples) for FIDEX.

# Tokens 1 2-5 6-10 11-50 > 50
Percentage 19% 29% 23% 26% 3%

# Disjunctions 0 1 2 3-5 > 5
Percentage 75% 10% 6% 7% 2%

Table 3. Statistics of the complexity of the learnt disjunctive expres-
sions (the number of tokens/disjunctions in the expression).

GenDAG
⊗

	
StartsWith 66.3 1.1 5.0
EndsWith 66.0 1.2 4.8
Matches 66.0 1.7 2.5
Contains 66.3 20.7 178.4

Table 4. Average running time (ms) per bench-
mark for GenDAG algorithm,

⊗
and 	 operators.

(m,e,s,c) 65 (e,s,c,m) 74 (m,c,s,e) 90 (e,c,m,s) 94 (s,c,m,e) 100 (c,s,m,e) 312

(m,e,c,s) 69 (e,m,c,s) 77 (m,c,e,s) 90 (s,e,m,c) 98 (s,c,e,m) 113 (c,e,s,m) 312

(e,s,m,c) 73 (m,s,e,c) 77 (s,m,e,c) 92 (s,e,c,m) 98 (c,m,s,e) 286 (c,e,m,s) 312
(e,m,s,c) 73 (m,s,c,e) 84 (e,c,s,m) 94 (s,m,c,e) 99 (c,m,e,s) 286 (c,s,e,m) 324

Table 5. Total running time (seconds) for solving 460 benchmarks with different predicate orders in FIDEX, where s, e, m and
c stand for StartsWith, EndsWith, Matches and Contains, respectively. Timeout is set as 10 seconds.

7.3 Number of Solved Benchmarks
Figure 23 shows the number of benchmarks solved by each
strategy, which is also summarized in Table 1. FIDEX solves
more benchmarks than any other baseline strategy (in less
time). For StartsWith and EndsWith, FIDEX solves more
benchmarks: 424 vs 400 (Enum-9) and 417 vs 398 (Enum-9),
respectively. For Matches, FIDEX solves significantly more
benchmarks: 438 as compared to 311 solved by Enum-12.
Only for the Contains predicate, FIDEX and Enum-6 solve
comparable number of benchmarks (374 vs 373), but FIDEX
takes less time. Overall, FIDEX solves the maximum number
of tasks 452/4606, as opposed to fewer benchmarks solved
by its variants (NoDisj and Enum-k) and the baseline FE.
This confirms the need for not limiting the token sequence
length and having disjunctions in the DSL, in order to im-
prove the language expressiveness. The percentiles of the
running times for FIDEX are shown in Table 2.

6 The 8 failed benchmarks timed out. After increasing the timeout to 100
seconds, only 1 benchmark failed because of timeout.

7.4 Effect of Predicate Order
The effect of using different predicate orders on the per-
formance of FIDEX is shown in Table 5. The best running
time is for the order {Matches, EndsWith, StartsWith,
Contains} (65s), and the worst running time is for the order
{Contains, StartsWith, EndsWith, Matches} (324s).
The running time for the order used in FIDEX, {StartsWith,
EndsWith, Matches, Contains}, is 98s, as highlighted in
Table 5. We chose this predicate order based on the observa-
tions that (1) we believe users will find the learnt expression
simpler and (2) the predicates have different computational
complexities. Therefore, we have StartsWith at the begin-
ning in order to learn simpler expressions, but since it solves
fewer benchmarks than Matches, this order suffers from a
little timeout penalty (0.07 seconds per benchmark on av-
erage). We have Contains predicate as the last predicate
because it has the highest operator complexity.

7.5 Number of Examples
The number of positive and negative examples required by
FIDEX to solve each benchmark task is shown in Figure 24.
It requires 2.2 positive examples and 2.7 negative examples



per benchmark on average, whereas the median values are 1
(positive) and 2 (negative). The ranking algorithm in FIDEX
makes it learn the desired filter expressions from very few
examples (and in fewer user iterations). The percentiles of
the number of examples for FIDEX are shown in Table 2.
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Figure 24. Number of positive and negative examples re-
quired by FIDEX for solving each benchmark.

Different ranking algorithms could also affect the num-
ber of positive/negative examples. Besides the one used in
FIDEX, we evaluated two other ranking algorithms (one fa-
vors more general expressions and one favors more specific
expressions). The ranking algorithm that favors more gen-
eral expressions required more negative examples (because
of underfitting), while the ranking algorithm that favors more
specific expressions required more positive examples (be-
cause of overfitting).

7.6 Effect of Token Set Size
We evaluated FIDEX with two different token sets in the DSL
(Large: 114 tokens v.s. Small: 46 tokens) and the learning
time is shown in Figure 25. The small token set restricts
the language expressiveness of FIDEX and causes it to solve
fewer benchmarks. There is no big difference in the learning
time for range of benchmarks that both versions can solve.

We do not observe much increase in the learning time of
FIDEX with a larger token set because often the bit-vector
representation of tokens on the edges are sparse (very few
tokens amongst the whole token set match a given substring)
and the ambiguous edge tokens are typically removed after
a few intersection/subtraction operations.
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7.7 Complexity of
⊗

and 	 Operators
We present the size (# edges) of the learnt DAG before and
after applying the

⊗
and 	 operators in Figure 26. As

can be observed, the size of DAGs grows almost linearly in
practice for both operators. For the 	 operator, there are a
few cases (for Contains predicate) where the size does not
grow linearly but it still grows in a polynomial fashion as
opposed to the theoretical worst case bound of O(nn). We
hypothesize the reason for this phenomenon is the sparsity
of edges in the DAGs obtained from real-world tasks.

7.8 Complexity of Learnt Expressions
The statistics about the complexity of predicate expressions
in the Filter expressions learnt by FIDEX is shown in Ta-
ble 3. About 75% of benchmarks can be solved without any
disjunction and over 90% of benchmarks can be solved us-
ing at most 2 disjunctions. Almost half (48%) of token se-
quences in have lengths fewer than 5 and another half (49%)
have lengths between 6 and 50. The most complex expres-
sion learnt by FIDEX has 222 tokens with 6 disjunctions.

FIDEX avoids learning too many disjunctions in the ex-
pressions because it employs a greedy MergeDAGs algorithm
(shown in Figure 18) to introduce disjunctions lazily. The
ranking algorithm (shown in Figure 24) in FIDEX helps find
simpler expressions with fewer tokens.

7.9 Outlier Analysis
We studied the benchmarks for which (i) FIDEX learnt rather
complex filter expressions (with more than 50 tokens or 5
disjunctions), (ii) FIDEX timed out (in 10 seconds), and (iii)
FIDEX requires lots of examples (more than 20).

A common feature shared by these benchmarks is that
they contain a large number (more than 1000) of long strings
(with more than 500 characters), which requires FIDEX to
learn longer (complex) token sequences and to spend longer
time in computing intermediate results (line 6 in Figure 22).
Another feature is that the positive and negative strings are
logically similar (e.g., similar prefix and suffix regular ex-
pressions), which leads to more iterations (examples) to find
the desired filter expressions. Very few benchmarks contain
many incompatible positive strings which require different
token sequences to recognize, and this causes FIDEX to learn



many disjunctions. This phenomenon is also partly caused
by the sub-optimality of the greedy MergeDAGs algorithm.

7.10 Threats to Validity
Although our benchmark set comes from a wide variety of
sources such as online help forums and Microsoft Excel and
Bing teams, it might not be representative of all kinds of
filter transformations needed by the spreadsheet users. In our
benchmarks, we assume that the correct set of positive and
negative example strings are provided (or a user can provide
such example strings based on manual inspection), but there
might be some real-world cases of filtering that contain noisy
labeling of examples.

8. Related Work
VSA-based data wrangling Version-space algebra (VSA)
is a technique to succinctly represent a large set of consistent
hypotheses and has been used in many domains including
machine learning [27], Programming By Demonstrations
(PBD) [23], and Programming By Examples (PBE) [32].
There are three recent PBE-based data wrangling systems
that use VSA-based program representation: (i) FlashFill [16],
(ii) FlashExtract [24], and (iii) FlashRelate [6]. FlashFill
learns syntactic string transformations in spreadsheets using
input-output examples. FlashExtract learns scripts to per-
form data extraction from semi-structured data using exam-
ples of the data items to be extracted in the file. FlashRelate
learns programs to extract structured relational data from a
semi-structured spreadsheet using examples of output rela-
tional tuples.

FIDEX is also a PBE system that uses VSA-based tech-
niques to learn and succinctly represents a large number of
filtering expressions given a set of examples, but differs from
the previous PBE systems in four key ways. First, the ap-
plication of data filtering is different from data extraction
and transformation. Second, the DSL for FIDEX consists of
filtering predicate expressions with disjunctions over token
sequences of arbitrary length. The DSLs for FlashFill and
FlashExtract have a small component of conditional expres-
sion learning, but they are limited to predicate expressions
over token sequences of finite length (3 tokens). More im-
portantly, there is no VSA-based sharing at the level of con-
ditional expressions in these systems. Third, there is no al-
gorithmic way to handle negative examples in these systems
and FlashExtract uses enumerative brute-force techniques to
discard programs that extract undesired data items. FIDEX,
on the other hand, uses a novel DAG subtraction operator
to algorithmically handle negative examples. Finally, unlike
previous systems, the FIDEX synthesis algorithm uses in-
tersection and subtraction operators for learning consistent
DAGs, and can learn disjunctions in an incremental fashion.

Program synthesis The area of program synthesis is gain-
ing a renewed interest [2]. In addition to data wrangling [6,
16, 24], the synthesis techniques have recently been devel-

oped for a wide range of problems including synthesizing ef-
ficient low-level code from partial programs [40], inference
of efficient synchronization in concurrent programs [41],
efficient compilation of declarative specifications [20], au-
tomated feedback generation for education [39], and com-
piler for low-power spatial architectures [30]. These synthe-
sis techniques take as input different forms of specifications
such as examples, partial programs, reference implementa-
tion, trace information, and etc. Among these specifications,
example-based specifications, as used in FIDEX, have been
recently used for interactive parser synthesis [25], synthesis
of program transformations [26], synthesis of higher-order
functional programs over recursive data types [12, 29], and
synthesis of sequences of program refactoring [34]. In ad-
dition to a different application domain of data filtering, a
major difference between our approach in FIDEX than these
synthesis approaches is the ability to algorithmically handle
negative examples using a novel DAG subtraction operator
in a VSA-based representation of consistent hypotheses.

Handling negative examples FIDEX is the first PBE sys-
tem that handles negative examples in an algorithmic way,
which is achieved by the novel subtraction algorithm. Pre-
vious work either do not handle negative examples [16], or
handle negative examples by running the synthesized pro-
grams [24]. In particular, FlashExtract [24] uses all positive
examples to learn the set of consistent programs P , and han-
dles negative examples by running each program p in P on
the input data and removing p from P if the extracted output
contains a negative example. In contrast, FIDEX does not
run any consistent program in P , instead, it constructs the
programs that conform to the negative example and removes
them from the consistent programs P algorithmically by the
novel subtraction operator.

Learning regular expressions by crowd-sourcing Recent
work [8] investigated an approach to program synthesis
called Program Boosting that is based on crowd-sourcing
and genetic programming. It involves crowd-sourcing im-
perfect solutions to the problem of writing regular expres-
sions for URLs or email addresses and then blending these
programs together using geneting programming in a way
that improves their correctness. FIDEX also learns regular-
expression-like programs from an expressive DSL, but the
learning algorithm is fully automated and does not in-
volve crowd-sourcing techniques. The goal of FIDEX is to
learn deterministic filter expression for well-defined tasks,
whereas the Program Boosting approach tries to learn ap-
proximate regular expressions for fuzzy complex tasks rely-
ing on crowd wisdom.

Learning regular languages from positive/negative exam-
ples The problem of inducing regular languages from ex-
amples has been well studied in the past [1, 3–5, 10, 11,
13, 14, 22, 28, 31, 36]. It has been shown that finding the
smallest automaton consistent with given input/output pairs



is NP-complete [3, 14], and even finding an approximate so-
lution for the given examples is intractable [31]. If one can
only actively interact with the unknown automaton, it re-
quires exponential time to identify the unknown automaton
[4], and Firoiu et al. [13] developed algorithms for learning
approximations of regular languages from positive evidence.
Angluin proposed the L∗ algorithm [5] that can learn an au-
tomaton in polynomial time given an oracle that can perform
membership and equivalence queries. In our setting, we do
not have access to such an oracle and asking users to an-
swer such queries is practically infeasible. The FIDEX DSL
defines a structured subset of regular expressions that is not
only able to express the different kinds of filtering tasks users
need to perform in the real-world, but also enables efficient
learning of expressions using few input-output examples.

Kushmerick [21] introduced a new technique for auto-
matically learning wrappers (procedures to extract data from
information sources) from example query responses. It iden-
tified a class of pre-defined wrappers whereas FIDEX de-
fines a DSL corresponding to richer class of expressions.
Moreover, the wrapper induction algorithm in [21] performs
an enumerative search over the space of wrappers to learn
a consistent wrapper to extract elements from a webpage,
whereas the synthesis algorithm in FIDEX uses a version-
space algebra based technique to learn the set of all consis-
tent filter expressions given a set of examples.

9. Limitations and Future Work
A current limitation of the FIDEX system is that it cannot
handle noisy examples. Since the algorithm is sound, it will
try to learn an expression in the DSL that conforms exactly
with the positive and negative examples. Another limitation
is that the synthesis algorithm only performs a linear search
order over predicates to learn filter expressions. We are cur-
rently looking at adding probabilistic reasoning to the syn-
thesis algorithm to handle small quantities of noise in the
examples and datasets [35, 38]. The FIDEX system learns a
filter expression over a list of positive and negative example
strings. We are also working on extending the support for
filter expressions over richer data structures than strings that
have more structural contexts.

10. Conclusion
In this paper, we have identified and addressed an impor-
tant problem of data filtering that is present in many data
wrangling tasks. We presented a system FIDEX that can ef-
ficiently learn a filtering expression given a set of positive
and negative string instances in an incremental fashion. The
key idea of our approach is to design an expressive DSL for
string filtering tasks and then develop efficient synthesis al-
gorithms to learn the desired DSL expressions using a DAG
data structure. We presented the effectiveness as well as the
efficiency of the FIDEX system on 460 real-world bench-
marks involving string filtering tasks.
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Appendix
We now present the proofs of the theorems in the paper.

Theorem 1. Figure 10 implements the semantics of
⊗

:
D = D1

⊗
D2 ⇒ JDK = JD1K ∩ JD2K.

Proof. We prove that for D = D1

⊗
D2:

• ∀ ts ∈ JD1K ∧ ts ∈ JD2K, we have ts ∈ JDK. This
shows that we have JDK ⊇ JD1K ∩ JD2K.
• ∀ ts ∈ JDK, we have ts ∈ JD1K ∧ ts ∈ JD2K. This

shows that we have JDK ⊆ JD1K ∩ JD2K. Therefore, we can
prove this theorem.

Suppose we have D1 = D(Q1, S1, F1, E1,W1), D2 =
D(Q2, S2, F2, E2,W2), D = D(Q,S, F,E,W ) and ts =
Seq(t1, ··, tn), and we prove each statement as following.
• Since ts ∈ JD1K, there exists a path p1 = (q01 , ··, qn1 )

in D1 such that q01 ∈ S1, q
n
1 ∈ F1, and ti ∈ W1((q

i−1
1 , qi1))

where i = 1, ··, n. Similarly, since ts ∈ JD2K, there exists
a path p2 = (q02 , ··, qn2 ) in D2 such that q02 ∈ S2, q

n
2 ∈ F2

and ti ∈ W2((q
i−1
2 , qi2)) where i = 1, ··, n. Now consider

the following nodes in D: q0 = (q01 , q
0
2), ··, qn = (qn1 , q

n
2 ):

we have q0 ∈ S, qn ∈ F , (qi−1, qi) ∈ E, W ((qi−1, qi)) =
W1((q

i−1
1 , qi1)) ∩ W2((q

i−1
2 , qi2)) ⊇ {ti} 6= ∅ where i =

1, ··, n. Thus, p = (q0, ··, qn) is a valid path in D, and we
have ts to be one of the token sequences represented by p.
Therefore, we have ts ∈ JDK.
• Since ts ∈ JDK, there exists a path p = (q0, ··, qn) in D

such that q0 ∈ S, qn ∈ F and ti ∈W ((qi−1, qi)), where i =
1, ··, n. Since D = D1

⊗
D2, we have qi = (qi1, q

i
2), where

qi1 ∈ Q1 and qi2 ∈ Q2. Also, since (qi−1, qi) ∈ E, we have
(qi−11 , qi−11 ) ∈ E1 and (qi−12 , qi2) ∈ E2. Furthermore, since
ti ∈ W ((qi−1, qi)) = W1((q

i−1
1 , qi1)) ∩ W2((q

i−1
2 , qi2)),

we have ti ∈ W1((q
i−1
1 , qi1)) and ti ∈ W2((q

i−1
2 , qi2)),

where i = 1, ··, n. Therefore, we have two valid paths p1 =
(q01 , ··, qn1 ) and p2 = (q02 , ··, qn2 ) in D1 and D2 respectively,
and ts is one of the token sequences represented by both p1
and p2. Therefore, we have ts ∈ JD1K ∧ ts ∈ JD2K.

Theorem 2. Figure 11 implements the semantics of 	:
D = D1	D2 ⇒ JDK = JD1K \ JD2K.

Proof. We prove that for D = D1	D2:
• ∀ ts /∈ JD1K, we have ts /∈ JDK. This shows that we

have JDK ⊆ JD1K.
• ∀ ts ∈ JD1K ∧ ts ∈ JD2K, we have ts /∈ JDK. This

further shows that we have JDK ⊆ JD1K \ JD2K.
• ∀ ts ∈ JD1K ∧ ts /∈ JD2K, we have ts ∈ JDK. This

further shows that we have JDK = JD1K \ JD2K.
Suppose we have D1 = D(Q1, S1, F1, E1,W1), D2 =

D(Q2, S2, F2, E2,W2) and ts = Seq(t1, ··, tn). We prove
each statement as following.
• Since the algorithm does not add any token sequence in

D1, thus if ts /∈ JD1K, we have ts /∈ JDK.
• Since ts ∈ JD2K, there exists a path p2 = (q02 , . . . , q

n
2 )

in D2 where q02 ∈ S2, q
n
2 ∈ F2, and ti ∈W1((q

i−1
2 , qi2)), for

i = 1, ··, n. Similarly, since ts ∈ JD1K, there exists at least

one path p1 = (q01 , ··, qn1 ) in D1 where q01 ∈ S1, q
n
1 ∈ F1,

and ti ∈ W1((q
i−1
1 , qi1)) for i = 1, ··, n. Assume p1 is an

arbitrary path among these paths that contain ts as a token
sequence. We show that we have ts 6∈ JDK by showing that
ts is removed from (the arbitrarily selected) p1.

Since the algorithm exhausts all pairs of starting nodes in
both D1 and D2, there exists an iteration in which it calls
SubPartialDAG(D1,q̈01 ,D2,q02) where q̈1 is a copy of q01 .
We show that the token sequence ts represented in the path
p1 will only be contained along the path (q̈01 , ··, q̈n1 ) where
each q̈i1 is a copy of qi1(i = 0, ··, n) after SubPartialDAG
terminates (call it P ). Then, since the algorithm makes q̈n1
a non-ending node, ts is removed from (q̈01 , ··, q̈n1 ), and thus
also removed from the original path p1.

We now proveP by showing inductively that Seq(t1, ··, tk)
is only contained on the path (q̈01 , ··, q̈k1 ) where k = 1, ··, n
(call it Q). For the base case with k = 1, Q holds triv-
ially because it performs the path isolation. For the inductive
case, the inductive hypothesis assumes that Q holds for k =
m (m ≥ 1), and we show that Q also holds for k = m+ 1.
Before performing the path isolation, we have (q̈m1 , q

m+1
1 ) ∈

E1 with tm ∈ W ((q̈m1 , q
m+1
1 )) as well as (qm1 , q

m+1
1 ) ∈ E1

with tm ∈ W ((qm1 , q
m+1
1 )). It then performs the path iso-

lation by copying qm+1
1 to q̈m+1

1 and updating the labels
on (q̈m1 , q

m+1
1 ) and (q̈m1 , q̈

m+1
1 ) such that we have tm+1 ∈

W ((q̈m1 , q̈
m+1
1 )) and tm+1 6∈ W ((q̈m1 , q

m+1
1 )). Combined

with the inductive hypothesis that Seq(t1, ··, tm) is only con-
tained on path (q̈01 , ··, q̈m1 ), we have Seq(t1, ··, tm+1) is only
contained on path (q̈01 , ··, q̈m+1

1 ).
• We prove this statement by showing that whenever it

removes a path p = (q02 , ··, qn2 ) ∈ D2 from paths in D1, the
algorithm does not remove token sequences other than those
on path p. This is valid since the algorithm always performs
the path isolation to isolate the path with only the tokens
on (qi−12 , qi2), i = 1, ··, n. Then making an end node a non-
ending node removes only the token sequences on the path p
in D2.

Lemma 1. The GenDAG algorithm is sound and complete,
i.e., for a predicate Pred and a string s = σ(v), it learns a
DAG D such that i) ∀ token sequence ts ∈ JDK we have
JPred(v, ts)K σ = True, and ii) if there exists a token
sequence ts in the DSL for a predicate Pred such that
JPred(v, ts)K σ = True, then we have ts ∈ JDK.

Proof. Since the GenDAG algorithm constructs all tokens that
can match each substring of s, and the DAG data structure
represents all possible concatenations (sequences) of those
tokens, this lemma follows.

Theorem 3. The LearnTokenSeqsPred algorithm is sound
and complete for the non-disjunctive predicate expression
fragment in the DSL.

Proof. This theorem follows according to Lemma 1, Theo-
rem 1 and Theorem 2.



Lemma 2. If the input DAG list D̃ of the MergeDAGs al-
gorithm in Figure 18 is not empty, then the output DAG list
D̃res is also not empty.

Proof. This lemma follows since the MergeDAGs algorithm
applies

⊗
only if the resulting DAG is not empty.

Theorem 4. The LearnDisjExprsPred algorithm is sound
and complete for all predicate expressions in the DSL.

Proof. This theorem follows according to Lemma 1, Theo-
rem 2, and Lemma 2.

Theorem 5. The LearnDisjExprsIncPred algorithm is
sound and complete for all predicate expressions in the DSL.

Proof. This theorem follows according to Lemma 1 and
Theorem 2.

Theorem 6. The LearnFilter algorithm is sound and
complete for the Filter expression in the DSL.

Proof. This theorem follows according to Theorem 5 and the
fact that the LearnFilter algorithm always maintains the
full DAG list for all previous examples.
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