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ABSTRACT
This paper surveys a variety of subsystems designed to be the build-
ing blocks from which sophisticated infrastructures for ubiquitous
computing are assembled. Our experience shows that many of these
building blocks fit neatly into one of five categories, each con-
taining functionally-equivalent components. Effectively identify-
ing the best-fit “lego pieces”, which in turn determines the compos-
ite functionality of the resulting infrastructure, is critical. The se-
lection process, however, is impeded by the lack of convention for
labeling these classes of building blocks. The lack of clarity with
respect to what ready-made subsystems are available within each
class often results in naive re-implementation of ready-made com-
ponents, monolithic and clumsy implementations, and implemen-
tations that impose non-standard interfaces onto the applications
above. This paper explores each class of subsystems in light of
the experience gained over two years of active development of both
ubiquitous computing applications and software infrastructures for
their deployment.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Networking Pro-
tocols—Protocol Architecture (OSI Model); D.2.1 [Software En-
gineering]: Requirements/Specifications—Methodologies; D.2.11
[Software Engineering]: Software Architectures—Patterns
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1. INTRODUCTION
A ubiquitous computing (UbiComp) environment entails (1) an

extensive and complex computer architecture deployment, (2) so-
phisticated conduits for dynamic data flow and control across this
architecture, and (3) a judicious external interface facilitating user
interaction with the system. A ubiquitous infrastructure must act
very much like a telephone patch board i.e., a software layer which
various assets are “hooked” into and where logical and physical
connections between these assets are instantiated. Assets, in the
broadest sense, refer to physical devices, bandwidth, processors, as
well as services made available through the patch board. This anal-
ogy suggests a standard and uniform, but not necessarily central,
interface. It is only through this middleware layer that the vast ar-
ray of disparate assets can be brought together to create the type of
rich ubiquitous applications we are excited about.

A necessary precondition for deployment of a UbiComp appli-
cation is a distributed system composed of (1) computational re-
sources including network-connected sensors and actuators, and
(2) a mechanism to generalize patterns of interaction with these
resources. The reusable corpora of middleware can speed the sec-
ond step, but in our own experience, we have often overextended
or mis-used existing UbiComp middleware subsystems. A standard
language for describing middleware subsystems or a simple taxon-
omy for classifying subsystems could aid in the identification of
potential candidates for a middleware deployment.

Different distributed applications, each using middleware for intra-
application communication, have very diverse needs. Similarly, an
individual distributed application might, at times, require very dif-
ferent things of middleware subsystems. In these cases, multiple,
complementary middleware subsystems might be used simultane-
ously across a single computer architecture deployment to provide
the most effective communication tools to all applications. Here the
middleware taxonomy must also provide aid in choosing what mul-
tiple middleware subsystems might be deployed simultaneously to
the greatest effect.

To arrive at a reasonable taxonomy describing UbiComp infras-
tructure and to understand the possible infrastructure interactions,
we begin by examining some current and potential UbiComp in-
frastructures such as UPnP, MediaBroker, and the GRID. By parti-
tioning these varied middleware subsystems into categories/ equiv-
alence classes, it becomes possible to reason about entire infras-
tructures piecemeal. Thus a whole infrastructure may be evaluated



in terms of its constituent parts, streamlining the evaluation process
and the infrastructure’s subsequent refinement.

In addition, standard subsystem classes can improve develop-
ment of standard intra-infrastructure, subsystem-to-subsystem in-
teraction patterns. With a clearer picture of what infrastructure ca-
pabilities exist and where they are located, developers are better
positioned to leverage these capabilities in their applications. Once
the application requirements have been identified, developers may
be able to pick existing infrastructure pieces to develop the appli-
cation quickly and effectively.

This paper proposes a five-class infrastructure taxonomy based
on the orthogonal functionalities of most commonly occurring sub-
systems. These include Registration and Discovery, Service and
Subscription, Data Storage and Streaming, Computation Sharing
and Context Management.

Figure 1, appearing later in the paper, shows a stack correspond-
ing to top to bottom interaction between the equivalence classes.
The user application is provided the APIs for interacting with Ser-
vices, Streams and Storage Locations, and Process Migration/ Dis-
tribution. Context Management Services and Ontologies are also
common among all applications.

This paper continues in Section 2 discussing the imagined com-
puter architecture deployment for UbiComp as well as some initial
application deployment experience using middleware to bridge be-
tween application and hardware deployment. Section 3 details the
five taxonomy classes. We conclude in Section 4.

2. EXAMINING EXISTING
INFRASTRUCTURE COMPONENTS

The intrinsic nature of common UbiComp applications builds
on connecting distributed nodes into a over-arching application.
This application might distribute itself onto multiple computers as
a common Internet messaging client is deployed on multiple com-
puters throughout the world, while each individual client connects
into a larger whole that is a global messaging application. An ap-
plication might also run in a single location but request and access
resources throughout an environment the same way a cable set-top
box might request resources from the cable company and display
those resources on, what in the future might be, an autonomous
display.

A common infrastructure built to support UbiComp applications
must then provide the ability for applications to access computa-
tion and data resources throughout the environment. Previously we
discussed UbiComp infrastructure as the combination of deployed
computer hardware and the middleware stitching it together. Before
we discuss the middleware subsystems running across the hard-
ware, we will discuss the hardware deployment paradigm we are
working from and our previous experiences building applications
on top of hardware deployed according to this paradigm.

2.1 A Deployment Paradigm
Striving toward the deployment of UbiComp applications in smart

spaces, we have been developing both applications and infrastruc-
tures with a simple paradigm in mind. This paradigm is constructed
of simple, modular, moderately-capable computing devices being
connected directly to sensors or sinks throughout a space. In this
paradigm each computer can proxy access to its directly connected
devices onto network-accessible interfaces. Transient devices and
stationary devices are connected together abstracting over connec-
tion media to form connected graphs of computational devices.
Each device then is a node in the graph.

Each of these distributed nodes will provide simple building block

resources that applications might query and use. This way, an ap-
plication might require a camera stream or a speaker, query for de-
vices containing that service in the area requested, then request and
use the resource. Each of these resources as well as the infrastruc-
tures exposing these resources to the outside world are managed as
modular building blocks.

2.2 Development Case Study
Our software intercom is an example of an application built on

hardware and middleware, deployed with the above paradigm in
mind, in the Aware Home at Georgia Tech [17]. Using consumer
electronics computers and our middleware—MediaBroker [20]—
this software intercom allows users throughout a home to commu-
nicate through walls and floors as if they were in the same room.

In accordance with the paradigm described above, applications
expose resources which other applications use. The user interacts
with an intercom interface application which controls a set of mod-
ular audio applications deployed throughout the Aware Home. The
user interface application projects a control-information resource
which outputs current state information while the audio applica-
tions provide audio resources which stream captured audio. While
running, The interface application queries the state of the audio re-
sources and actuates end-to-end connections through its single con-
trol resource. In turn each audio application listens to the interface
application’s control resource for direction.

Our initial deployment, built entirely on MediaBroker, relied on
one-way data streams to transfer audio information between audio
inputs and outputs between audio access applications while using
the same one-way data streams to distribute control information
from the interface application to the audio applications. The nature
of these one-way, relatively static, connections between controller
and controlled made the deployment of the intercom much less dy-
namic than anticipated.

Recently, the intercom has been redesigned to use MediaBroker
as an infrastructure for low latency audio data streams and UPnP
for distributing discrete control messages between a set of control
applications and the audio applications they control.

In this case, taking advantage of UPnP for low-bandwidth mes-
sage passing allows us to apply MediaBroker to the problem it bet-
ter solves —moving audio data from sources to sinks according
to data requests— while offloading control message handling to
UPnP. UPnP has better facility for creating the interface applica-
tion’s control resource and for allowing the many audio access ap-
plications to better listen to multiple interface applications at once.

Using the strength of each subsystem and the scaffolding each
offers, the job of programming the audio application and the con-
trol application is greatly simplified. Using the standard interfaces
provided by UPnP and MediaBroker cleanly, the programmer can
concentrate on the individual concerns of each application and not
how to translate those concerns into something the middleware can
do.With a well-defined taxonomy with which to understand Ubi-
Comp middleware subsystems, implementation of this intercom
would begin with brief modeling of all intra-application and inter-
application interactions based on the capabilities of each middle-
ware subsystem categories’ abilities.

3. SUBSYSTEM CATEGORY OVERVIEW
In the brief case study above, system deployment and applica-

tion development were made simpler through leveraging an exist-
ing technology in the context of a novel problem. This anecdotal
evidence is in fact exemplary of the benefits derived through clean
separation of subsystems. As we have seen, the delineation and
choosing of subsystems along functional boundaries enables us to
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Figure 1: OSI Application Layer with added UbiComp Infras-
tructure Component Classes

better reason about the infrastructure as a whole as well to improve
the quality of a specific application. Each of these existing subsys-
tems filled a specific role in the development of the application and
in the larger infrastructure deployment.

Similar in functionality to UPnP [8], most WebServices imple-
mentations provide the ability to make remote calls to procedure
located in other applications on other hosts. We argue, then, that
UPnP and WebServices provide interchangeable functionality, which
means that they belong to the same category of subsystems, namely
Service and Subscription, and might be fairly compared to each
other when selecting the best-fit subsystem for the job at hand. In
turn, their current limitations may serve as a driver for development
of a more robust replacement.

In turn, the high-bandwidth, low-latency streaming facilities of-
fered by MediaBroker is what earns it its place in a different cat-
egory of subsystems, namely Data Storage and Streaming. Other
subsystems exist to accomplish similar stream-oriented tasks: GnuS-
tream [16] and D-Stampede [1], while still other provide shared
network accessible data stores: Coda [24] and T-Spaces [18].

3.1 Registration and Discovery
Communication between applications running on top of the dis-

tributed nodes of a UbiComp infrastructure begins with discovery
of available resources. Once different applications connect, they
can share descriptions of their capabilities and begin to collaborate
on higher order tasks.

Myriad languages, protocols and frameworks exist for the dis-
covery of hosts on the network, applications running on hosts, and
services and resources provided by those applications. Common
to the WebServices and UPnP world are protocols like SSDP [14],
UDDI [3], and WSDL [15]. These allow robust and systematic de-
scription and discovery of services. Jini provides significant func-
tionality in the area of service discovery as well as actual resource
migration once it is discovered. Many lightweight services like
DNS [19] and LDAP provide a more static registration mechanism
suitable for resources with considerably longer lifetimes. Special-
ized facilities like BSDP, which is tied to Bluetooth protocol stack,
are also popular.

Evaluating registration and discovery subsystems based on their
capabilities must take into account efficiency and extensibility. Some

subsystems will require strict and complex registration as well as
manual discovery and iterative search of what is available. Other
subsystems will provide functionality to automate much of this.

3.2 Service and Subscription
Service and subscription encompasses the passing of discrete

messages to accomplish distributed service registration and access.
For example, an application might offer a resource capable of con-
verting Unites States zip codes to map images [27]. Applications
can then access this resource to accomplish this. Applications might
also want to know when some event happens and they might sub-
scribe to be notified of some change. Both service and subscription
rely on discrete messages being reliably passed between applica-
tions.

According the paradigm discussed above, UbiComp applications
will consist of many smaller parts that will require intra-application
communication for synchronization. The discrete information ex-
change provided by a service and subscription subsystem allows
distributed application entities to keep state between themselves
and provides the necessary abstractions for setting state on adja-
cent nodes and being updated with their states when other nodes’
states change.

The service and subscription component must provide an exten-
sible application programming interface. The component must also
be able to scale with respect to the number of applications using
the subsystem and the size of data being transfered between appli-
cations. The speed with which remote services are called and with
which subscription updates are propagated is also integral to the
evaluation.

The service and subscription subsystem we have discussed previ-
ously in this paper, UPnP, is really only mediocre at message pass-
ing and has limited functionality allowing extensibility. UPnP’s
scalability is also limited to a single network subnet without resort-
ing to complex bridging technology. Context Toolkit [23] provides
a service and subscription component as well as some basic context
reasoning ability but it has many of the same limitations of UPnP
in its inefficiency. Webservice implementations vary greatly, but
many provide very efficient messaging and fairly extensible appli-
cation programing interfaces.

3.3 Data Storage and Streaming
Beyond the simple, extensible message passing described above,

many UbiComp applications, especially those geared toward multi-
media capture and access, require significant, structured data trans-
fer. We define the data sharing and streaming component as a
component capable of handling significant structured data move-
ment between distributed nodes. This data movement might in-
volve streaming multimedia from a media provider to a media con-
sumer or it might encompass more complex requirements for data
archival and retrieval.

Streaming middleware subsystems like MediaBroker [20], GnuS-
tream [16], Indiva [22] and D-Stampede [1] allow distributed nodes
to ship streams of data to each other, while other subsystems like
Serverless File Systems [2] and Coda [24] provide distributed ac-
cess to common file systems. Infrastructures like T-Spaces [18] or
JavaSpaces [26] provide more generic shareable network memory.
All of these classes provide access to large amounts of data in a
structured manner.

Measuring the performance of a data storage and streaming sub-
system might be difficult if we only take into account efficiency at
providing quality of service. Many data storage and streaming sub-
systems provide varied types of functionality including different
delivery or data set management schemes.



3.4 Computation Sharing
Computation sharing allows a running application to make use

of remote computational resources on demand. For example, a
surveillance application running on a sensor network may decide
to offload complicated vision tracking components onto more ca-
pable high performance computing resources (HPC) strategically
placed throughout the ubiquitous infrastructure. Furthermore, in
order to accommodate mobile clients to deliver required quality of
service, such computation must be allowed to move from one HPC
resource to another. In order to support such unfettered, yet highly-
specialized access to computing cycles, a mechanism for discover-
ing unclaimed CPU time and dynamically scheduling computations
on the HPC resources is essential.

Many tools for enabling distribution of compute-intensive tasks
have emerged over the years. The scientific computing community
is largely responsible for this variety. Regrettably, the focus has
often been on batch processing, which alone is insufficient to sup-
port rich ubiquitous computing applications we envision. Only re-
cently, the grid computing [11, 12] community has started to focus
on applications that require capabilities beyond batch processing.
Grid computing allows controlled sharing of computation resources
across many different physical organizations in order to deliver a
quality of service. Open Grid Service Infrastructure(OGSI) [11]
has extended web services by providing standard mechanism for
creating, naming and discovering grid services, providing virtual-
ization through location transparency, and supporting integration
with underlying native platform facilities. The Globus Toolkit [10]
built on OGSI model, provides the middleware support needed to
build grid computing applications.

Grid services provide support for service and subscription as
well as computation sharing. Computation sharing is provided through
the resource management systems [21] built for the grid. Con-
dor [4], nimrod-g [5] and legion [7] are some of the projects that
have emphasized building meta-schedulers for running batch jobs
on the grid. Grid Resource Allocation and Management (GRAM)
framework in Globus provides remote access to individual resources
and also integrates with the native facility on each resource. In sum-
mary, computation sharing is provided through the resource man-
agement system of the grid. Moreover, since grid services are built
on top of web services, service and subscription component of our
taxonomy is provided through appropriately built grid services.

MPI [9], PVM [13] are some of the other tools that can be used
for resource sharing within a cluster. These tools provide libraries
for building scientific computing applications and running them on
the cluster. However, the capabilities of these tools doesn’t extend
very well for streaming applications. Moreover, they don’t provide
capabilities for dynamically asking additional resources or dynamic
joining of computational entities.

Facilities for computation sharing must be dynamic enough to
provide for application, thread or even function migration across
multiple distributed entities. Applications might want to dynami-
cally move through the environment in order to physically follow
a user. Applications might also simply want to spread computa-
tionally intensive processes to more capable elements in the envi-
ronment. The tools for computation sharing should also support
dynamism in terms of the resources being allocated, the computa-
tion being performed as well as the mobility of the user.

3.5 Context Management
A context management subsystem defines a common language to

describe the context of an environment and also defines a language
to discuss described context state. This middleware subsystem is
built on both the service and subscription components as well as

the data sharing and streaming components as it will commonly
differentiate streaming sensor data into discrete values. While this
differentiation will happen at the ubiquitous application level, the
differentiation process can be represented inside the context state.

Much of UbiComp relies on having access to a consistent view
of the world so that applications might correctly actuate themselves
according to the environment and those in the environment. This
common context management subsystem component allows appli-
cations to keep current on the state of the world by communicating
with each other in a language common to all possible applications
in the space.

Important in the realm of context management, synonym and
unique naming management have been studied fairly thoroughly
by multiple projects under the SemanticWeb [6] umbrella and also
by projects like OntoWeb [25] and Context ToolKit [23].

4. CONCLUSION
In this paper we have presented a comprehensive UbiComp mid-

dleware taxonomy to ease discussion and facilitate the process of
building both ubiquitous middleware subsystems as well as ubiqui-
tous applications. We also discussed where in our taxonomy exist-
ing middleware subsystems fit. In our experience, the sampling of
industrial and academic experience and the combination of knowl-
edge across groups allows better middleware construction and this
paper hopes to further these interactions through the creation of
a common language for middleware discussion. We are not en-
tirely sure about the feasibility of creating complex infrastructures
by picking and choosing subsystems from each taxonomy category,
but we look to examine it. Much research is still to be done at the
intersections of these subsystem categories to explain the gaps that
exist and also to examine their interactions. Research can also be
directed to survey entire middleware categories; learning from the
state of the art and designing and building new class-complete in-
frastructures.
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