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ABSTRACT 

This paper presents a method for automatically converting raw 

GPS traces from everyday vehicles into a routable road network. 

The method begins by smoothing raw GPS traces using a novel 

aggregation technique. This technique pulls together traces that 

belong on the same road in response to simulated potential energy 

wells created around each trace. After the traces are moved in 

response to the potential fields, they tend to coalesce into smooth 

paths. To help adjust the parameters of the constituent potential 

fields, we present a theoretical analysis of the behavior of our 

algorithm on a few different road configurations. With the 

resulting smooth traces, we apply a custom clustering algorithm to 

create a graph of nodes and edges representing the road network. 

We show how this network can be used to plan reasonable driving 

routes, much like consumer-oriented mapping Web sites. We 

demonstrate our algorithms using real GPS data collected on 

public roads, and we evaluate the effectiveness of our approach by 

comparing the route planning results suggested by our generated 

graph to a commercial route planner. 

Categories and Subject Descriptors 

I.5.3 [Pattern Recognition]: Clustering algorithms 

General Terms 

Algorithms, Measurement, Experimentation, Theory. 

Keywords 

GPS, road map. 

1. INTRODUCTION 
Vehicle route planning depends on a representation of the road 

network. The representation must be accurate in terms of the 

connectivity and directionality of the road segments in order to 

apply basic route planning algorithms. It must also be 

geometrically accurate in order to display routes and give clear 

instructions about how far to drive between turns. This paper 

describes our method for creating an accurate representation of 

the road network starting with GPS traces from regular vehicles. 

Our method begins by smoothing the raw traces into a coherent 

set of paths. From these paths, we derive a graph of nodes and 

edges representing the road network. This graph is suitable for 

planning driving routes. 

Traditionally, digital representations of the road network have 

been derived from data that comes from specialized vehicles 

roaming the road network, operated by skilled data gathers. This 

is expensive and limited by the number of specialized vehicles. A 

more recent approach to building a representation of the road 

network is exemplified by OpenStreetMap [4], which uses a 

combination of GPS traces and satellite images as input to a 

manually edited road map. While this has more scalability 

potential than the traditional method, it still depends on manual 

editing. 

In this paper, we explore the feasibility of creating a road network 

representation automatically using GPS traces from non-

specialized vehicles, like delivery trucks or regular cars, driven by 

people going about their regular business. This has the advantage 

of easy scalability, as it is relatively inexpensive to equip a regular 

vehicle with a GPS logger. 

2. PROBLEM STATEMENT 
In this section, we describe our collected GPS data, formalize the 

problem of road network generation, and outline our proposed 

approach. 

2.1 Raw GPS Data 
For our experiments, we collected trace data by deploying GPS 

loggers on 55 Microsoft Shuttles, as shown in Figure 1. Our 

loggers were RoyalTek RBT-2300 GPS loggers with a SiRF Star 

III chipset and WASS enabled. The shuttles roam around the 

Microsoft campus in Redmond, Washington, USA, continuously 
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Figure 1: We used GPS data logged from shuttle vehicles 

driving around the Microsoft corporate headquarters 

campus in Redmond, WA,  USA. 



during the day. They service both fixed and on-demand routes 

between buildings. The GPS loggers record time-stamped 

latitude/longitude coordinates with an interval of 1 second. We 

collected the recorded data over approximately 3 weeks. From 

each shuttle vehicle, we retrieved an average of about 360,000 

time stamped latitude/longitude pairs. This corresponds to about 

100 hours of data from each shuttle. While most of the loggers 

shut off automatically while the shuttles were parked, some did 

not, giving us some data overnight while the vehicles were idle. 

We can parse the data into a set of individual “trips” by looking at 

gaps in the timestamps when the vehicles were turned off and also 

extended periods of near-zero speed. Specifically, we split the 

data into discrete trips whenever we found a gap of at least 10 

seconds or 100 meters between temporally adjacent GPS samples.  

We preprocessed the trip data to reduce the number of points for 

more efficient processing. In particular, we only retained points 

that were either at least 30 meters away from the previous point or 

at least 10 meters away if the change in direction over the last 

three points was greater than 10 degrees. This last condition 

helped preserve more points when the vehicle made a turn. 

Figure 2(b) shows an overview of our collected data, with all trips 

plotted together. Each trip is plotted by connecting every two 

consecutive points with a straight line. By comparing Figure 2(b) 

with Figure 2(a) which is the corresponding area map clipped 

from Microsoft Bing Maps, we observe that the data roughly 

characterizes the road structure. However, even though the 

pictures are in approximate agreement, our aim is to compute an 

accurate symbolic representation of the underlying road network 

from the raw GPS data. 

2.2 The Road Network Generation Problem 
Given the raw GPS data, our goal is to infer a road network which 

can answer route planning queries. A route planning query takes a 

start/end pair as input and results in a route from the start to the 

end destination. The route should be optimized in terms of certain 

metrics such as length or travel time. The resulting route is often 

described in friendly terms, including the names of roads, how far 

to drive between turns, and sometimes even landmarks along the 

way. To support such a query, the following characteristics of the 

roads can be useful: 

 The connectivity and geometry of the roads; 

 The average speeds and speed limits; 

 The type of the roads (e.g. highway); 

 The number of lanes for each road. 

 

Obviously, among the above characteristics, the most fundamental 

and essential one is the connectivity and geometry, which can be 

described as a directed graph, consisting of a set of vertices and 

directional edges. For example, for the selected rectangular area in 

Figure 2(b), which is shown in detail in Figure 3(a), the ideal 

output as a directed graph is shown in Figure 3(b). Each vertex 

has an associated latitude/longitude, and connecting edges each 

have an associated length in meters. The fact that the graph is 

directed means that the resulting routes can respect one-way 

streets. 

In this paper, we will focus on inferring this most important 

characteristic (i.e. connectivity and geometry). As we will show 

later, inferring solely this characteristic is already sufficiently 

challenging and interesting. 

From Figure 3, we identify the biggest challenge of solving this 

problem. Since GPS traces have errors due to the inherent noise in 

GPS, it is nontrivial to decide whether two closely located 

segments of GPS trips are sampled from the same road segment or 

from two nearby road segments. Furthermore, for individual 

traces, the noise effect in the discrete points mixes with the effect 

of a vehicle’s varying speed and direction, making the noise hard 

to separate and eliminate. 

Besides the GPS noise, there are other challenges caused by the 

diversity and complexity of the road/city structure. For instance, 

at a parking lot, the GPS traces look like a set of chaotic points, 

which should not be mistaken as being from regular roads. 

Because of the above challenges, generating the road network for 

route planning purposes still requires careful editing by humans. 

In the OpenStreetMap [4] community, users upload their GPS 

traces from casual trips to the website. There are specialized 

members of the community who gather all the traces for a 

particular area, analyze them manually, and create or edit the 

maps by hand. On the contrary, in this paper we try to automate 

the whole process, with minimum human intervention. 

  

(a) Test area (b) Raw GPS traces 

Figure 2: (a) A commercial map of our test area. (b) The 

raw GPS traces from our experiment. 

  

(a) Raw GPS traces (b) Ideal result 

Figure 3: (a) A close-up of the GPS traces from the 

rectangle shown in Figure 2(b). (b) The corresponding 

ideal output as a directed graph. 



2.3 Related Approaches 
There are several existing collaborative map editing efforts. One 

of the most successful is TomTom’s MapShare [7] feature which 

allows users to edit map characteristics from the company’s 

portable navigation devices. Users can block or unblock streets, 

reverse traffic directions, change turn restrictions, edit speed 

limits, edit street names, and add/edit points of interest. Google 

Maps [3] allows users to reposition the locations of street 

addresses. Both the TomTom and Google edits are eventually 

made available for other users of the respective maps. 

The relatively well-known OpenStreetMap (OSM) [4] project 

uses GPS traces, satellite images, out-of-copyright maps, and 

manual editing to create road maps freely available on the Web. 

Thousands of volunteers have contributed data and editing, and 

about 40 volunteer to create and improve the system’s 

infrastructure. In addition to the connectivity and geometry that 

we try to infer, OSM volunteers add and edit street names and 

other geographic features. Our effort is aimed at automating at 

least part of the map creation process without relying on manual 

intervention. 

Another approach to our problem is to extract the road network 

from aerial images, such as in the pioneering work of Tavakoli 

and Rosenfeld in [6]. Such techniques could compliment ours, but 

our effort here is aimed at extracting as much as we can from GPS 

data. 

Research efforts most closely related to ours include the work of 

Edelkamp and Schrödl [2], Schöredl et al. [5], and Worral and 

Nebot [9] who, like us, start with raw GPS traces and create road 

maps. Our work differs in that we present a simple, intuitive 

method to clarify the GPS traces to account for the inevitable 

noise in location measurement. We note, however, that the first 

two of the previous three references go beyond our work and infer 

lane structure, which we do not attempt. 

2.4 Our Approach 
As mentioned in the previous subsection, the biggest challenge in 

solving the road network generation problem is to account for the 

noise in the GPS traces. Inspired by this observation, we propose 

our approach which runs in two steps. 

Step 1: Clarify the GPS traces to minimize the effect of the GPS 

errors. Specifically, we group nearby GPS traces (which are likely 

from the same road) together by simulating physical attraction 

between them. 

Step 2: Based on the results from Step 1, we use a simple graph 

generation algorithm to infer the structure of the road network. 

It is important to note that Step 1 is the most crucial part of our 

approach. Given the clarified GPS traces with minimized noise 

effects, it is significantly easier to infer the structure of the road 

network. Moreover, we believe that the clarification technique 

used in Step 1 has general applicability to the automatic 

inferences of road and traffic characteristics, such as speed limits, 

road types, and lane structures. 

We describe in detail Step 1 and Step 2 in Section 3 and Section 

4, respectively. 

3. CLARIFYING THE GPS TRACES 
We clarify our GPS traces in order to mitigate the effect of 

measurement noise in GPS. Our goal is to group together traces 

and points that belong to the same road. Furthermore, we want to 

separate traces that belong to different directions on the same 

road. This step is aimed at simplifying the process of creating a 

traditional graph representation of the road network. 

3.1 Algorithm Overview 
To clarify the GPS traces, we simulate physical attraction between 

different GPS traces, such that traces coming from the same road 

are grouped together. Figure 4 illustrates the main idea. We 

simulate two types of attraction forces, described next. In the 

following, our terminology is that a “trace node” is a measured 

latitude/longitude point from our GPS logger. For both types of 

forces, each trace node is temporarily unfrozen from its original 

position and allowed to move in response to forces generated on 

it. After the point is moved, the point is refrozen, another point is 

unfrozen, and so on for all the points. 

Type 1: For each trace node A, we simulate an attraction force 

from each of the other trace segments (e.g. segment BC in Figure 

4). Specifically, we first find the direction orthogonal to the 

vehicle’s movement at position A, i.e. the direction orthogonal to 

DE in Figure 4. We then draw a line through A in this direction. 

All GPS trace segments intersecting with the line will generate an 

attraction force acting on A. 

What are the strengths of the forces from nearby traces? 

Intuitively, trace segments that are close to A should generate 

stronger attractions than trace segments that are far from A. This 

is because our goal is to group together traces from the same road, 

and nearby traces are more likely to be from the same road. A 

simulated gravitational force has the correct characteristics, 

because its force decreases with distance. Thus, each nearby trace 

pulls trace node A toward it. This tends to pull together trace 

nodes that are slightly separated into a tight bundle of traces. 

In terms of energy potential, this attractive force corresponds to a 

potential energy well shown in Figure 4 (middle), where the force 

pulls toward the direction of minimum energy. Suppose the 
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Figure 4: The attraction forces simulated in the clarification algorithm. For each trace node (e.g. A), there are two types of 

attractions: attractions from other traces (e.g. segment BC), and attractions from the node’s original position. The potential 

well for the second type is a parabola. 



distance of A to segment BC is d1. Then the attraction force is the 

derivative of the potential well at distance d1 from the center. This 

potential well is an inverted Gaussian distribution, and we give 

the equation governing this force in section 3.3 on parameter 

selection. 

Type 2: While the attraction force Type 1 clearly mitigates the 

noise effect of GPS traces, only simulating Type 1 is not sufficient 

for our algorithm. With only attraction forces among traces, all 

traces will finally be grouped together, no matter how far apart 

they originally are. Thus it is natural to prevent the traces from 

significantly deviating from their original positions. 

Inspired by this observation, we simulate an attraction force from 

each node’s original position. This force, however, should not be 

a gravitation force. Intuitively, the farther the node is from its 

original position, the stronger the force should be. Therefore, 

force Type 2 is a spring force, which corresponds to a potential 

well shown in Figure 4 (right). Suppose the distance of A to its 

original position is d2, the attraction force is the derivative of the 

potential well at distance d2 from the center. As with the Type 1 

force, we give the equation governing this force in section 3.3 on 

parameter selection. 

For each trace node, we calculate the resultant of the forces that it 

receives. We then move each node towards the direction of the 

resultant with a small step. We iterate the whole system until it 

stabilizes, i.e. all nodes experience resultant forces smaller than a 

predefined small constant. 

3.2 Differentiating lanes of opposite directions 
The basic algorithm in the previous subsection groups nearby 

GPS traces together, regardless of their directions of travel. For 

the GPS traces in Figure 5(b), the result is shown in Figure 5(c). 

Clearly, lanes of opposite directions are not differentiated. It is 

beneficial, however, to differentiate lanes of opposite travel 

directions, and output a desired result as in Figure 5(e). 

Intuitively, this idea could be realized by simply using a repelling 

force instead of an attraction force between two trace segments 

with opposite directions. Formally, we can multiply the (Type 1) 

force generated by a segment with a direction factor: 

𝑓𝑜𝑟𝑐𝑒 ← 𝑓𝑜𝑟𝑐𝑒 ∙ cos 𝑑𝑖𝑟𝑛𝑜𝑑𝑒 , 𝑑𝑖𝑟𝑠𝑒𝑔   

where 𝑑𝑖𝑟𝑛𝑜𝑑𝑒  is the direction of the vehicle’s movement at the 

node (e.g. direction 𝐷𝐸       in Figure 4),  𝑑𝑖𝑟𝑠𝑒𝑔  is the direction of the 

trace segment (e.g. direction 𝐵𝐶       in Figure 4), and 

cos 𝑑𝑖𝑟𝑛𝑜𝑑𝑒 , 𝑑𝑖𝑟𝑠𝑒𝑔   is the cosine of the angle between the two 

directions. Thus when 𝑑𝑖𝑟𝑛𝑜𝑑𝑒  and 𝑑𝑖𝑟𝑠𝑒𝑔  have opposite 

directions, cos 𝑑𝑖𝑟𝑛𝑜𝑑𝑒 , 𝑑𝑖𝑟𝑠𝑒𝑔  < 0, and the force is a repelling 

force; when 𝑑𝑖𝑟𝑛𝑜𝑑𝑒  and 𝑑𝑖𝑟𝑠𝑒𝑔  have common directions, 

cos 𝑑𝑖𝑟𝑛𝑜𝑑𝑒 , 𝑑𝑖𝑟𝑠𝑒𝑔  > 0, and the force is an attraction force. 

When 𝑑𝑖𝑟𝑛𝑜𝑑𝑒  and 𝑑𝑖𝑟𝑠𝑒𝑔  are orthogonal, the force equals 0, 

which is desired, especially at intersections where traces cross 

perpendicularly. 

However, instead of giving us the expected output as in Figure 

5(e), the revised algorithm actually outputs the result in Figure 

5(d). We observe that there is a “twist effect”, i.e. the trace nodes 

in one direction are repelled to different sides of the trace in the 

other direction. This is because when the traces from two 

directions are close to each other, they are randomly repelled to 

either side depending on the original positions. 

One possible fix for the “twist effect” could be to introduce 

another type of force, namely a tension force, which prevents the 

traces from being twisted by keeping each trip smooth. This 

solution, however, adds more complexity to the algorithm and 

generates more parameters that we should potentially tune. 

We adopt a simple patch to fix this twist effect. Notice that 

whenever two lanes of opposite directions are on the same road, it 

is always the case that the opposite direction lanes are on each 

other’s left side, at least in the United States where we took our 

data. Therefore, it is advisable to limit the repelling force to only 

affect a trace’s left side. Formally, 

If cos 𝑑𝑖𝑟𝑛𝑜𝑑𝑒 , 𝑑𝑖𝑟𝑠𝑒𝑔  < 0, and 𝑛𝑜𝑑𝑒 on the right side of 𝑠𝑒𝑔, 

then 𝑓𝑜𝑟𝑐𝑒 ← 0. 

The revised algorithm produces the result in Figure 5(e), which is 

exactly what we want. 

3.3 Parameter Choices 
The two attraction forces used in our algorithm carry a number of 

parameters. The potential well of a gravitation force (Type 1) is 

decided by two parameters 𝑀 and 𝜎1; The potential well of a 

spring force (Type 2) is decided by a parameter 𝑘. Obviously, we 

have to judiciously choose these parameters such that the 

algorithm groups GPS traces correctly. Instead of guessing and 

testing a large set of parameters, we perform theoretical analysis 

on typical road scenarios to gain insights on the reasonable values 

of the parameters. 

     

(a) Area map (b) GPS data (c) No repelling force (d) With repelling 

force 

(e) With improved 

repelling force 

Figure 5: (a) The area map. (b) The original GPS traces. (c) The result without repelling forces between traces of opposite 

directions. (d) The result with repelling forces between traces of opposite directions. (e) The improved result with repelling 

forces between traces of opposite directions, only towards their left sides. 



3.3.1 Adjacent Lanes in Same Direction 
As shown in Figure 6(a), we consider a simple case where two 

adjacent lanes from the same road are in the same direction. 

Ideally, we should choose the parameters such that our algorithm 

will group the traces on the two lanes together. On the other hand, 

however, if the traces are from two parallel roads that are close to 

each other, our algorithm should group the traces into two 

separate sets. 

We formalize this case into a simple theoretical problem as in 

Figure 7(a). Assume there are set of N parallel traces distributed 

across the same road. Also assume, due to the GPS noise, the 

position of any trace admits a Gaussian distribution with mean 0 

(i.e. the center of the road) and variance σ2 (caused by the noise 

of the GPS signals). A Gaussian has been advocated as a 

reasonable distribution for GPS error [8] 

Now let us consider what happens when a probe trace (the bold 

line) is placed at position 𝑥. According to the algorithm, it will be 

attracted by both the set of traces and its original position. 

Suppose it finally stops at position 𝑦 (the dashed bold line). 

We are interested in the relationship between 𝑥 and 𝑦. The ideal 

relationship is shown in Figure 8(a). Specifically, when 𝑥 is small, 

especially when it is smaller than the maximum width of a one-

way road, it is most likely that the probe trace is also drawn from 

the same road. Thus, ideally we should have 𝑦 = 0, i.e. the trace 

is drawn to the center of the road. On the other hand, when 𝑥 is 

large, especially when it is larger than the minimum distance 

between two different parallel roads, it is most likely that the 

probe trace was taken from a drive on another road. Thus, ideally 

we should have 𝑦 = 𝑥 to keep it from being grouped to the wrong 

road. Our goal is to choose the parameters such that the 

relationship between 𝑥 and 𝑦 is close to this ideal case. 

The relationship between 𝑥 and 𝑦 depends on the parameters M, 

𝜎1 and k, as follows. We concentrate on an imaginary GPS point 

located on the road. Each trace intersected along a line laterally 

across the road from this point produces Type 1 potential well: 

p t = −
M

σ1 2π
exp −

(t − t0)2

2σ1
2   ( 1 ) 

In this equation, t0 is the lateral position of the attracting trace 

with respect to the unfrozen GPS point that is being subjected to 

the forces of all the nearby traces. This potential energy well has 

its minimum at t0, which means it is trying to attract the GPS 

point to this position. We assume that traces along this segment of 

road are distributed randomly according to a Gaussian distribution 

centered on the center of the road at a lateral position of zero. 

Thus the probability density function of the nearby traces is 

f t0 =  
1

σ2 2π
exp −

t0
2

2σ2
2  ( 2 ) 

It is easy to see that the expected potential well that one trace 

generates is the convolution of p t  and f t . Given N traces, we 

can approximate the resultant potential well as 

W1 t =  p ∗ f  t ∙ N

=  −
MN

 2π σ1
2 + σ2

2 
exp −

t2

2(σ1
2 + σ2

2)
  

( 3 ) 

Since the attractive force is the derivative of the potential energy 

function, W1 t  results in an attraction force of 

F1(t) =  
d

dt
W1 t  ( 4 ) 

Next, we can calculate the Type 2 attraction force from the probe 

trace’s original position (i.e. position 𝑥) as a spring with spring 

constant k: 

F2(t) =  k(x − t) ( 5 ) 

Note that y is the position where the unfrozen point stops moving, 

so this lateral point is given by 

dist θ
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Figure 6: (a) A scenario where two adjacent lanes are in 

the same direction. (b) A senario where two roads merge. 
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(a) adjacent lanes (b) road split 

Figure 7: (a) A model for analyzing the scenario in Figure 

6 (a). The probing trace (bold) is originally at a distance x 

from the center of all the traces, and is attracted and stops 

(dashed bold) at a distance of y from the center. (b) A 

model for analyzing the scenario in Figure 6 (b). Solid 

lines represent the original traces and dashed lines 

represent the traces after clarification. 

Ideal Actual

Max width of
one-way road

Min distance of two roads  

(a) ideal y vs. x (b) actual y vs. x 

Figure 8: (a) The ideal y as a function of x. (b) The actual 

y as a function of x when we choose selected parameters. 



F1 y =  F2(y) ( 6 ) 

 

Given ( 3 ), ( 4 ), and ( 5 ), we can write ( 6 ) as 

−
M ∙ N

 2π(σ1
2 + σ2

2)

d

dy
exp  −

y2

2(σ1
2 + σ2

2)
 

=  k x − y  

( 7 ) 

 

Equation ( 7 ) is a transcendental equation that can be solved 

numerically. In practice, we should choose parameters M, 𝜎1 and 

k such that the solution of ( 7 ) is close to the ideal case in Figure 

8(a). 

For instance, with system parameters 𝜎2 = 5 and 𝑁 = 20, we can 

choose 𝜎1 = 5, 𝑘 = 0.005, and 𝑀 = 1 to make the solution of 

Equation ( 7 ) close to ideal, as shown in Figure 8(b). These are 

the parameters that we used for the remainder of our processing. 

3.3.2 Two roads Split 
As shown in Figure 6(b), the second case that we analyze is when 

two roads split. For simplicity, suppose the two roads are straight 

with angle 𝜃 between them before they split, and traces are 

collected from both roads. Our clarification algorithm will make 

part of the two traces attract and stick together. We should choose 

parameters such that the number of traces that stick together prior 

to the split is reasonably small. 

We formalize the problem as in Figure 7(b). Solid lines represent 

the original traces and dashed lines represent the traces after 

clarification. L is the distance prior to the merge that traces start 

sticking together, so we seek to minimize the value of L  so the 

location of the merge is not misrepresented. The analysis below 

gives the relationship between 𝜃 and L. 

Similar to the analysis in Section 3.3.1 (b), given 𝜃, as well as the 

parameters 𝜎2, 𝑁, 𝜎1, 𝑘 and 𝑀, we can numerically calculate the 

maximum D such that traces from two roads with distance D 

between them are grouped together. As shown in Figure 7(b), L is 

uniquely decided by D as 

𝐿 =  
𝐷

2
𝑡𝑎𝑛

𝜃

2
  ( 8 ) 

For example, with the same parameters as in Section 3.3.1: 

𝜎2 = 5, 𝑁 = 20, 𝜎1 = 5, 𝑘 = 0.005, and 𝑀 = 1, the relationship 

between  𝜃 and L is shown in Figure 10. 

The advantage of the two analyses above is that we can compute 
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Figure 10: For a road split as in Figure 6(b), we computed 

this relationship between the angle of the merge and how 

far after the split traces are mistakenly grouped together. 

   

(a) Original GPS data (b) Clarified GPS data (c) Routable graph 

Figure 9: An overview of the results of the clarification and the graph generation. (a) The original GPS traces. (b) The GPS 

traces after clarification. (c) The generated routable road network. 



reasonable parameters for our clarification algorithm from first 

principles, avoiding the need for extensive experimentation. 

3.4 Optimization for Efficiency 
The clarification algorithm, when implemented naively, could be 

computationally expensive: For each trace node, we need to scan 

and calculate the potential (Type 1) attraction from all other GPS 

trace segments. This yields an immediate complexity of 𝑂 𝑀2  
per iteration, where 𝑀 is the number of nodes in the GPS data set. 

On our data set, it takes 20 minutes to complete a single iteration. 

This number will scale poorly when the map size increases.  

To improve the efficiency and scalability, we adopt the following 

optimization. For each node, instead of scanning all other GPS 

trace segments, we only scan the GPS segments within a small 

square (100m x 100m) centered at this node, and ignore all 

segments outside the square. The rationale behind this design is 

that the segments far from the node generate negligible amount of 

(Type 1) attraction, so we can safely ignore them. To efficiently 

find all segments within a small square, we use a kD-tree [1] to 

index all the GPS nodes. 

After the optimization, it takes 15 seconds on our data set to 

complete a single iteration, compared to the 20 minutes without 

optimization.  

3.5. Results 
Figure 9(b) shows an overview of the result of clarification on the 

raw GPS data in Figure 9(a). To better understand the results, we 

also select four typical areas and show the results in Figure 11 

(third column). Compared to the raw GPS traces, it is clear that 

our algorithm significantly suppresses the noise in the raw traces. 

While the noise is not completely eliminated in all areas (e.g. the 

third row in Figure 11), we believe that this level of clarity is 

sufficient for further processing such as the road network 

generation in the next section. 

4. ROUTABLE GRAPH GENERATION 
In this section, we present Step 2 of our approach. Namely, based 

on the results of the last section, we design a simple graph 

Satellite image Raw GPS traces After clarification After graph generation 

    

    

    

    

Figure 11: A detailed view of selected areas of our results. In the graph generation results (last row), every graph edge is 

drawn with weight proportional to its volume, i.e. the number of GPS trips that go through this edge. 



generation algorithm to generate a directed graph describing the 

connectivity and geometry of the road network. We then show 

that the resulting graph is able to answer route planning queries 

satisfactorily. 

4.1 The Graph Generation Algorithm 
Overview: The graph generation algorithm works in an 

incremental way. Initially the graph is empty. Given the set of 

clarified GPS traces, we process the trips sequentially and build 

up the graph incrementally. For each trip, we process the trace 

nodes in time order. For each trace node, we search the graph 

(which is under construction) and decide whether it should be 

merged with an existing graph node (called a target node). If so, 

we merge the trace node with the target node; otherwise, we 

create a new graph node. A more formal description is shown in 

Algorithm 1 below. 

Algorithm 1: The Graph Generation Algorithm. (Input: the 

clarified GPS traces, in the form of a set of trips T. Output: 

the graph G characterizing the connectivity and geometry of 

the road network.) 

1: 𝐺 =  ∅; 

2: for each trip t in T do 

3:       prevNode = null; 

4:       for each node n in trip t do 

5:             if n should be merged to graph node 𝑣 ∈ 𝐺 then 

6:            if prevNode ≠ null and there is no path in G from 

prevNode to v within less than 5 hops, then add edge(prevNode 

→ v) to G; 

7:                   prevNode = v; 

8:             else 

9:                   add node n to G; 

10:                if prevNode ≠ null,  then add edge(prevNode → n) 

to G; 

11:                 prevNode = n; 

12:           end if 

13:       end for 

14: end for 

 

When to merge: We now specify the criteria used in Line 5 of 

Algorithm 1 for merging a trace node n to a target node v. 

Intuitively, a trace node n is merged to a target node v when the 

algorithm infers that the two nodes come from the same road 

segment. Specifically, we merge them when there is an edge 

𝑒 = 𝑣 → 𝑣′ or 𝑒 = 𝑣′ → 𝑣 in the graph and the following three 

conditions are all satisfied: a) the distance from n to e is smaller 

than a parameter dm; b) the difference of the directions of n and e 

is smaller than a parameter rm (Recall that the direction of a trace 

node A is defined by the vector 𝐷𝐸       if D, A, E are subsequent 

nodes in the trace, see Figure 4.) c) n is closer to v than to v’. 

How to merge: By merging a trace node n to a target graph node 

v, we do not create new nodes in the graph. However, we have to 

make sure the connectivity information in the trace is recorded by 

the graph G (Line 6 of Algorithm 1). To do so, we maintain a 

variable prevNode, which is the graph node that the previous trace 

node of n maps to. To record the connectivity information, we 

require that v is reachable from prevNode in a small number of 

hops. If the current graph G does not reflect this information, we 

add a new edge from prevNode to v. 

Example: Figure 12 illustrates the execution of Algorithm 1 on a 

set of 3 trips (Figure 12 (a)). Trip 1 is completely copied to G 

since there are no existing graph nodes to merge with (Figure 12 

(b)). For Trip 2 (Figure 12(c)), the 2nd, 3rd, 4th and 5th nodes are 

merged to existing graph nodes, and the 1st, 6th, and 7th nodes are 

copied to G. The edges are created in a way to record the 

connectivity described by the trips. For Trip 3 (Figure 12(d)), 

none of the nodes are merged, so all the trace nodes are mapped to 

new graph nodes. 

Recording traffic volume: Along with generating the graph, we 

also record the traffic volume of each edge, i.e. the number of 

trips that go through the edge. The volume is calculated as 

follows. Whenever a new edge is created (Line 6 and 10), the 

volume is set to one. Whenever we merge a node n to a target 

node v and there is a path in G from prevNode to v within less 

than five hops (Line 6), we increase the volumes of the edges 

along the path by 1. 

Cleanup: From the GPS traces (Figure 9(a)), we observe that 

there are random outliers due to GPS signal errors. These 

segments usually map to graph edges with volume of one. Also, 

road segments that are travelled a very few times are mapped to 

graph edges with a low volume number. We regard these road 

segments as “unreliable” road segments since they may be closed 

or unreliable. Therefore, after we generate the graph, we remove 

any edge with volume less than three to obtain a more reliable 

graph. 

4.2 Results 
Figure 9(c) shows an overview of the result of graph generation. 

Figure 11 (fourth column) shows the results for selected areas in 

detail. In Figure 11, every graph edge is drawn with weight 

proportional to its volume. It is clear that the generated graph 

captures the most important connectivity and geometry properties 

of the road network in the experimental area. 

To examine the capability of the produced graph in answering 

route planning queries, we select source-destination pairs and use 

Dijkstra’s algorithm to find the shortest paths between the pairs. 

The results for 3 different source-destination pairs are shown in 

Figure 13 (upper row), where the graph is drawn in yellow and the 
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(a) Three trips to merge (b) Trip 1 merged 

  

(c) Trip 2 merged (d) All trips merged 

Figure 12: An illustration of Algorithm 1. (a) The input, in 

terms of 3 trips. (b) The graph G after processing Trip 1. 

(c) The graph G after processing Trip 2. (d) The graph G 

after processing Trip 3. 



computed routes are drawn in red. The backgrounds are satellite 

images matched to the graph. 

We also compare the results with those given by Microsoft Bing 

Maps [10] shown in Figure 13 (lower row). We found that the 

routes closely match in most cases. There are, however, some 

cases when the routes do not match. We analyzed these cases and 

found they can be classified into two types: 

 The generated graph provides more up-to-date information. 

This includes the cases when a road has recently finished 

construction while the Bing map was not updated to reflect 

this information (Figure 14). Also, we found a road that has 

recently been closed for road work is not part of our 
generated graph, but is included in the Bing map. 

 The generated graph is limited by the trace data’s coverage. 

For instance, since Microsoft Shuttles seldom travel on some 

freeway segments, those segments are identified as 

“unreliable” segments and are not included in the graph. 

4.3 Discussions 
In this section, we use a simple algorithm to generate the graph 

from the clarified GPS traces. While the generated graph answers 

route planning queries satisfactorily, it could still be refined by 

applying more elaborate techniques. In the following, we discuss 
two possible improvements. 

Intersection clarification: From the generated graphs we can see 

that the road intersections are not elegantly clarified. As shown in 

Figure 15(a), while the connectivity is correctly represented by the 

graph, there are some redundant edges that should be removed. 

A possible technique to clarify the intersections is the following. 

First, we identify the intersection using pattern recognition, 

locating the square area in Figure 15(b). Next, we analyze the 

traces that enter the square and exit the square and identify 

   

   

Route 1 Route 2 Route 3 

Figure 13: Upper row: The route planning results of the generated map graph. The graph is drawn in yellow and the routes 

are drawn in red. The background is the satellite image matched to the graph. Lower row: The corresponding route planning 

results given by Microsoft Bing Maps [10]. 

  

(a) Generated graph (b) Missing roads found 

Figure 14: (a) The generated map graph. (b) The map 

from Microsoft Bing Maps. The dotted lines represent 

newly-constructed roads that were not updated at Bing 

Maps, but are present in the generated map graph. 

  

(a) Graph at intersection (b) Possible refinement 

Figure 15: (a) An intersection in the generated map 

graph. (b) A possible technique to refine the graph. First 

identify this intersection (the square), then identify 

entrances and exits, and connect them by looking at the 

traces. 



“entrances” and “exits” of this intersection. Finally, we connect 

“entrances” to “exits” by looking at the traces – if there is a trace 

that enters from an “entrance” and exits from an “exit”, we 

connect the “entrance” and the “exit”. 

Parking lot recognition: Our proposed algorithm will generate a 

set of messy edges in parking lots. To improve the graph, 

particular procedures are needed to recognize and process the 

traces at a parking lot. We could use pattern recognition or 

computer vision techniques to identify these these areas. Also, 

note that the behaviors of vehicles at parking lots are significantly 

different from those at regular roads. For instance, the speeds of 

vehicles are usually much slower, and the traces from a parking 

lot are usually at the beginning or end of a single trip. Thus we 

may use the timestamps of the traces to help identify parking lots. 

5. CONCLUSION 
This paper has demonstrated a new method for creating a routable 

road map from GPS traces of everyday drivers. This is an 

alternative to the expensive process of creating a map using 

dedicated drivers and vehicles. To deal with the inevitable noise 

in GPS data, we presented an innovative approach to clarifying 

the GPS traces using simulations of physical forces among the 

traces. This process groups together traces going in the same 

direction on the same road. The physical simulation lends itself to 

theoretical analysis, which helps us pick the parameters governing 

the simulated forces. We presented a simple algorithm for 

merging the clarified traces into a representation of the road 

network in terms of nodes and edges. We showed how this graph 

representation can be used to plan reasonable driving routes. 

We identified future work including the clarification of 

intersections and the recognition of parking lots. Other problems 

still left to be addressed include finding street names, address 

ranges, speed limits, and traffic controls like stoplights. We also 

plan to test the robustness of the proposed approach using other 

public GPS traces online. 
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