
From GPS Traces to a Routable Road Map
Lili Cao

Department of Computer Science
University of California

Santa Barbara, California USA
+1 805 893 3417

lilocao@cs.ucsb.edu

John Krumm
Microsoft Research

Microsoft Corporation
Redmond, Washington USA

+1 425 703 8283

jckrumm@microsoft.com

ABSTRACT

This paper presents a method for automatically converting raw

GPS traces from everyday vehicles into a routable road network.

The method begins by smoothing raw GPS traces using a novel

aggregation technique. This technique pulls together traces that

belong on the same road in response to simulated potential energy

wells created around each trace. After the traces are moved in

response to the potential fields, they tend to coalesce into smooth

paths. To help adjust the parameters of the constituent potential

fields, we present a theoretical analysis of the behavior of our

algorithm on a few different road configurations. With the

resulting smooth traces, we apply a custom clustering algorithm to

create a graph of nodes and edges representing the road network.

We show how this network can be used to plan reasonable driving

routes, much like consumer-oriented mapping Web sites. We

demonstrate our algorithms using real GPS data collected on

public roads, and we evaluate the effectiveness of our approach by

comparing the route planning results suggested by our generated

graph to a commercial route planner.

Categories and Subject Descriptors

I.5.3 [Pattern Recognition]: Clustering algorithms

General Terms

Algorithms, Measurement, Experimentation, Theory.

Keywords

GPS, road map.

1. INTRODUCTION
Vehicle route planning depends on a representation of the road

network. The representation must be accurate in terms of the

connectivity and directionality of the road segments in order to

apply basic route planning algorithms. It must also be

geometrically accurate in order to display routes and give clear

instructions about how far to drive between turns. This paper

describes our method for creating an accurate representation of

the road network starting with GPS traces from regular vehicles.

Our method begins by smoothing the raw traces into a coherent

set of paths. From these paths, we derive a graph of nodes and

edges representing the road network. This graph is suitable for

planning driving routes.

Traditionally, digital representations of the road network have

been derived from data that comes from specialized vehicles

roaming the road network, operated by skilled data gathers. This

is expensive and limited by the number of specialized vehicles. A

more recent approach to building a representation of the road

network is exemplified by OpenStreetMap [4], which uses a

combination of GPS traces and satellite images as input to a

manually edited road map. While this has more scalability

potential than the traditional method, it still depends on manual

editing.

In this paper, we explore the feasibility of creating a road network

representation automatically using GPS traces from non-

specialized vehicles, like delivery trucks or regular cars, driven by

people going about their regular business. This has the advantage

of easy scalability, as it is relatively inexpensive to equip a regular

vehicle with a GPS logger.

2. PROBLEM STATEMENT
In this section, we describe our collected GPS data, formalize the

problem of road network generation, and outline our proposed

approach.

2.1 Raw GPS Data
For our experiments, we collected trace data by deploying GPS

loggers on 55 Microsoft Shuttles, as shown in Figure 1. Our

loggers were RoyalTek RBT-2300 GPS loggers with a SiRF Star

III chipset and WASS enabled. The shuttles roam around the

Microsoft campus in Redmond, Washington, USA, continuously

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. ACM GIS '09 , November

4-6, 2009. Seattle, WA, USA (c) 2009 ACM ISBN 978-1-60558-649-

6/09/11...$10.00.

Figure 1: We used GPS data logged from shuttle vehicles

driving around the Microsoft corporate headquarters

campus in Redmond, WA, USA.

during the day. They service both fixed and on-demand routes

between buildings. The GPS loggers record time-stamped

latitude/longitude coordinates with an interval of 1 second. We

collected the recorded data over approximately 3 weeks. From

each shuttle vehicle, we retrieved an average of about 360,000

time stamped latitude/longitude pairs. This corresponds to about

100 hours of data from each shuttle. While most of the loggers

shut off automatically while the shuttles were parked, some did

not, giving us some data overnight while the vehicles were idle.

We can parse the data into a set of individual “trips” by looking at

gaps in the timestamps when the vehicles were turned off and also

extended periods of near-zero speed. Specifically, we split the

data into discrete trips whenever we found a gap of at least 10

seconds or 100 meters between temporally adjacent GPS samples.

We preprocessed the trip data to reduce the number of points for

more efficient processing. In particular, we only retained points

that were either at least 30 meters away from the previous point or

at least 10 meters away if the change in direction over the last

three points was greater than 10 degrees. This last condition

helped preserve more points when the vehicle made a turn.

Figure 2(b) shows an overview of our collected data, with all trips

plotted together. Each trip is plotted by connecting every two

consecutive points with a straight line. By comparing Figure 2(b)

with Figure 2(a) which is the corresponding area map clipped

from Microsoft Bing Maps, we observe that the data roughly

characterizes the road structure. However, even though the

pictures are in approximate agreement, our aim is to compute an

accurate symbolic representation of the underlying road network

from the raw GPS data.

2.2 The Road Network Generation Problem
Given the raw GPS data, our goal is to infer a road network which

can answer route planning queries. A route planning query takes a

start/end pair as input and results in a route from the start to the

end destination. The route should be optimized in terms of certain

metrics such as length or travel time. The resulting route is often

described in friendly terms, including the names of roads, how far

to drive between turns, and sometimes even landmarks along the

way. To support such a query, the following characteristics of the

roads can be useful:

 The connectivity and geometry of the roads;

 The average speeds and speed limits;

 The type of the roads (e.g. highway);

 The number of lanes for each road.

Obviously, among the above characteristics, the most fundamental

and essential one is the connectivity and geometry, which can be

described as a directed graph, consisting of a set of vertices and

directional edges. For example, for the selected rectangular area in

Figure 2(b), which is shown in detail in Figure 3(a), the ideal

output as a directed graph is shown in Figure 3(b). Each vertex

has an associated latitude/longitude, and connecting edges each

have an associated length in meters. The fact that the graph is

directed means that the resulting routes can respect one-way

streets.

In this paper, we will focus on inferring this most important

characteristic (i.e. connectivity and geometry). As we will show

later, inferring solely this characteristic is already sufficiently

challenging and interesting.

From Figure 3, we identify the biggest challenge of solving this

problem. Since GPS traces have errors due to the inherent noise in

GPS, it is nontrivial to decide whether two closely located

segments of GPS trips are sampled from the same road segment or

from two nearby road segments. Furthermore, for individual

traces, the noise effect in the discrete points mixes with the effect

of a vehicle’s varying speed and direction, making the noise hard

to separate and eliminate.

Besides the GPS noise, there are other challenges caused by the

diversity and complexity of the road/city structure. For instance,

at a parking lot, the GPS traces look like a set of chaotic points,

which should not be mistaken as being from regular roads.

Because of the above challenges, generating the road network for

route planning purposes still requires careful editing by humans.

In the OpenStreetMap [4] community, users upload their GPS

traces from casual trips to the website. There are specialized

members of the community who gather all the traces for a

particular area, analyze them manually, and create or edit the

maps by hand. On the contrary, in this paper we try to automate

the whole process, with minimum human intervention.

(a) Test area (b) Raw GPS traces

Figure 2: (a) A commercial map of our test area. (b) The

raw GPS traces from our experiment.

(a) Raw GPS traces (b) Ideal result

Figure 3: (a) A close-up of the GPS traces from the

rectangle shown in Figure 2(b). (b) The corresponding

ideal output as a directed graph.

2.3 Related Approaches
There are several existing collaborative map editing efforts. One

of the most successful is TomTom’s MapShare [7] feature which

allows users to edit map characteristics from the company’s

portable navigation devices. Users can block or unblock streets,

reverse traffic directions, change turn restrictions, edit speed

limits, edit street names, and add/edit points of interest. Google

Maps [3] allows users to reposition the locations of street

addresses. Both the TomTom and Google edits are eventually

made available for other users of the respective maps.

The relatively well-known OpenStreetMap (OSM) [4] project

uses GPS traces, satellite images, out-of-copyright maps, and

manual editing to create road maps freely available on the Web.

Thousands of volunteers have contributed data and editing, and

about 40 volunteer to create and improve the system’s

infrastructure. In addition to the connectivity and geometry that

we try to infer, OSM volunteers add and edit street names and

other geographic features. Our effort is aimed at automating at

least part of the map creation process without relying on manual

intervention.

Another approach to our problem is to extract the road network

from aerial images, such as in the pioneering work of Tavakoli

and Rosenfeld in [6]. Such techniques could compliment ours, but

our effort here is aimed at extracting as much as we can from GPS

data.

Research efforts most closely related to ours include the work of

Edelkamp and Schrödl [2], Schöredl et al. [5], and Worral and

Nebot [9] who, like us, start with raw GPS traces and create road

maps. Our work differs in that we present a simple, intuitive

method to clarify the GPS traces to account for the inevitable

noise in location measurement. We note, however, that the first

two of the previous three references go beyond our work and infer

lane structure, which we do not attempt.

2.4 Our Approach
As mentioned in the previous subsection, the biggest challenge in

solving the road network generation problem is to account for the

noise in the GPS traces. Inspired by this observation, we propose

our approach which runs in two steps.

Step 1: Clarify the GPS traces to minimize the effect of the GPS

errors. Specifically, we group nearby GPS traces (which are likely

from the same road) together by simulating physical attraction

between them.

Step 2: Based on the results from Step 1, we use a simple graph

generation algorithm to infer the structure of the road network.

It is important to note that Step 1 is the most crucial part of our

approach. Given the clarified GPS traces with minimized noise

effects, it is significantly easier to infer the structure of the road

network. Moreover, we believe that the clarification technique

used in Step 1 has general applicability to the automatic

inferences of road and traffic characteristics, such as speed limits,

road types, and lane structures.

We describe in detail Step 1 and Step 2 in Section 3 and Section

4, respectively.

3. CLARIFYING THE GPS TRACES
We clarify our GPS traces in order to mitigate the effect of

measurement noise in GPS. Our goal is to group together traces

and points that belong to the same road. Furthermore, we want to

separate traces that belong to different directions on the same

road. This step is aimed at simplifying the process of creating a

traditional graph representation of the road network.

3.1 Algorithm Overview
To clarify the GPS traces, we simulate physical attraction between

different GPS traces, such that traces coming from the same road

are grouped together. Figure 4 illustrates the main idea. We

simulate two types of attraction forces, described next. In the

following, our terminology is that a “trace node” is a measured

latitude/longitude point from our GPS logger. For both types of

forces, each trace node is temporarily unfrozen from its original

position and allowed to move in response to forces generated on

it. After the point is moved, the point is refrozen, another point is

unfrozen, and so on for all the points.

Type 1: For each trace node A, we simulate an attraction force

from each of the other trace segments (e.g. segment BC in Figure

4). Specifically, we first find the direction orthogonal to the

vehicle’s movement at position A, i.e. the direction orthogonal to

DE in Figure 4. We then draw a line through A in this direction.

All GPS trace segments intersecting with the line will generate an

attraction force acting on A.

What are the strengths of the forces from nearby traces?

Intuitively, trace segments that are close to A should generate

stronger attractions than trace segments that are far from A. This

is because our goal is to group together traces from the same road,

and nearby traces are more likely to be from the same road. A

simulated gravitational force has the correct characteristics,

because its force decreases with distance. Thus, each nearby trace

pulls trace node A toward it. This tends to pull together trace

nodes that are slightly separated into a tight bundle of traces.

In terms of energy potential, this attractive force corresponds to a

potential energy well shown in Figure 4 (middle), where the force

pulls toward the direction of minimum energy. Suppose the

Attraction from

other traces

Attraction from

original place

Trace point’s

original place

A

A

B C

D E

d1 d2

Potential well

for
Potential well

for

Figure 4: The attraction forces simulated in the clarification algorithm. For each trace node (e.g. A), there are two types of

attractions: attractions from other traces (e.g. segment BC), and attractions from the node’s original position. The potential

well for the second type is a parabola.

distance of A to segment BC is d1. Then the attraction force is the

derivative of the potential well at distance d1 from the center. This

potential well is an inverted Gaussian distribution, and we give

the equation governing this force in section 3.3 on parameter

selection.

Type 2: While the attraction force Type 1 clearly mitigates the

noise effect of GPS traces, only simulating Type 1 is not sufficient

for our algorithm. With only attraction forces among traces, all

traces will finally be grouped together, no matter how far apart

they originally are. Thus it is natural to prevent the traces from

significantly deviating from their original positions.

Inspired by this observation, we simulate an attraction force from

each node’s original position. This force, however, should not be

a gravitation force. Intuitively, the farther the node is from its

original position, the stronger the force should be. Therefore,

force Type 2 is a spring force, which corresponds to a potential

well shown in Figure 4 (right). Suppose the distance of A to its

original position is d2, the attraction force is the derivative of the

potential well at distance d2 from the center. As with the Type 1

force, we give the equation governing this force in section 3.3 on

parameter selection.

For each trace node, we calculate the resultant of the forces that it

receives. We then move each node towards the direction of the

resultant with a small step. We iterate the whole system until it

stabilizes, i.e. all nodes experience resultant forces smaller than a

predefined small constant.

3.2 Differentiating lanes of opposite directions
The basic algorithm in the previous subsection groups nearby

GPS traces together, regardless of their directions of travel. For

the GPS traces in Figure 5(b), the result is shown in Figure 5(c).

Clearly, lanes of opposite directions are not differentiated. It is

beneficial, however, to differentiate lanes of opposite travel

directions, and output a desired result as in Figure 5(e).

Intuitively, this idea could be realized by simply using a repelling

force instead of an attraction force between two trace segments

with opposite directions. Formally, we can multiply the (Type 1)

force generated by a segment with a direction factor:

𝑓𝑜𝑟𝑐𝑒 ← 𝑓𝑜𝑟𝑐𝑒 ∙ cos 𝑑𝑖𝑟𝑛𝑜𝑑𝑒 , 𝑑𝑖𝑟𝑠𝑒𝑔

where 𝑑𝑖𝑟𝑛𝑜𝑑𝑒 is the direction of the vehicle’s movement at the

node (e.g. direction 𝐷𝐸 in Figure 4), 𝑑𝑖𝑟𝑠𝑒𝑔 is the direction of the

trace segment (e.g. direction 𝐵𝐶 in Figure 4), and

cos 𝑑𝑖𝑟𝑛𝑜𝑑𝑒 , 𝑑𝑖𝑟𝑠𝑒𝑔 is the cosine of the angle between the two

directions. Thus when 𝑑𝑖𝑟𝑛𝑜𝑑𝑒 and 𝑑𝑖𝑟𝑠𝑒𝑔 have opposite

directions, cos 𝑑𝑖𝑟𝑛𝑜𝑑𝑒 , 𝑑𝑖𝑟𝑠𝑒𝑔 < 0, and the force is a repelling

force; when 𝑑𝑖𝑟𝑛𝑜𝑑𝑒 and 𝑑𝑖𝑟𝑠𝑒𝑔 have common directions,

cos 𝑑𝑖𝑟𝑛𝑜𝑑𝑒 , 𝑑𝑖𝑟𝑠𝑒𝑔 > 0, and the force is an attraction force.

When 𝑑𝑖𝑟𝑛𝑜𝑑𝑒 and 𝑑𝑖𝑟𝑠𝑒𝑔 are orthogonal, the force equals 0,

which is desired, especially at intersections where traces cross

perpendicularly.

However, instead of giving us the expected output as in Figure

5(e), the revised algorithm actually outputs the result in Figure

5(d). We observe that there is a “twist effect”, i.e. the trace nodes

in one direction are repelled to different sides of the trace in the

other direction. This is because when the traces from two

directions are close to each other, they are randomly repelled to

either side depending on the original positions.

One possible fix for the “twist effect” could be to introduce

another type of force, namely a tension force, which prevents the

traces from being twisted by keeping each trip smooth. This

solution, however, adds more complexity to the algorithm and

generates more parameters that we should potentially tune.

We adopt a simple patch to fix this twist effect. Notice that

whenever two lanes of opposite directions are on the same road, it

is always the case that the opposite direction lanes are on each

other’s left side, at least in the United States where we took our

data. Therefore, it is advisable to limit the repelling force to only

affect a trace’s left side. Formally,

If cos 𝑑𝑖𝑟𝑛𝑜𝑑𝑒 , 𝑑𝑖𝑟𝑠𝑒𝑔 < 0, and 𝑛𝑜𝑑𝑒 on the right side of 𝑠𝑒𝑔,

then 𝑓𝑜𝑟𝑐𝑒 ← 0.

The revised algorithm produces the result in Figure 5(e), which is

exactly what we want.

3.3 Parameter Choices
The two attraction forces used in our algorithm carry a number of

parameters. The potential well of a gravitation force (Type 1) is

decided by two parameters 𝑀 and 𝜎1; The potential well of a

spring force (Type 2) is decided by a parameter 𝑘. Obviously, we

have to judiciously choose these parameters such that the

algorithm groups GPS traces correctly. Instead of guessing and

testing a large set of parameters, we perform theoretical analysis

on typical road scenarios to gain insights on the reasonable values

of the parameters.

(a) Area map (b) GPS data (c) No repelling force (d) With repelling

force

(e) With improved

repelling force

Figure 5: (a) The area map. (b) The original GPS traces. (c) The result without repelling forces between traces of opposite

directions. (d) The result with repelling forces between traces of opposite directions. (e) The improved result with repelling

forces between traces of opposite directions, only towards their left sides.

3.3.1 Adjacent Lanes in Same Direction
As shown in Figure 6(a), we consider a simple case where two

adjacent lanes from the same road are in the same direction.

Ideally, we should choose the parameters such that our algorithm

will group the traces on the two lanes together. On the other hand,

however, if the traces are from two parallel roads that are close to

each other, our algorithm should group the traces into two

separate sets.

We formalize this case into a simple theoretical problem as in

Figure 7(a). Assume there are set of N parallel traces distributed

across the same road. Also assume, due to the GPS noise, the

position of any trace admits a Gaussian distribution with mean 0

(i.e. the center of the road) and variance σ2 (caused by the noise

of the GPS signals). A Gaussian has been advocated as a

reasonable distribution for GPS error [8]

Now let us consider what happens when a probe trace (the bold

line) is placed at position 𝑥. According to the algorithm, it will be

attracted by both the set of traces and its original position.

Suppose it finally stops at position 𝑦 (the dashed bold line).

We are interested in the relationship between 𝑥 and 𝑦. The ideal

relationship is shown in Figure 8(a). Specifically, when 𝑥 is small,

especially when it is smaller than the maximum width of a one-

way road, it is most likely that the probe trace is also drawn from

the same road. Thus, ideally we should have 𝑦 = 0, i.e. the trace

is drawn to the center of the road. On the other hand, when 𝑥 is

large, especially when it is larger than the minimum distance

between two different parallel roads, it is most likely that the

probe trace was taken from a drive on another road. Thus, ideally

we should have 𝑦 = 𝑥 to keep it from being grouped to the wrong

road. Our goal is to choose the parameters such that the

relationship between 𝑥 and 𝑦 is close to this ideal case.

The relationship between 𝑥 and 𝑦 depends on the parameters M,

𝜎1 and k, as follows. We concentrate on an imaginary GPS point

located on the road. Each trace intersected along a line laterally

across the road from this point produces Type 1 potential well:

p t = −
M

σ1 2π
exp −

(t − t0)2

2σ1
2 (1)

In this equation, t0 is the lateral position of the attracting trace

with respect to the unfrozen GPS point that is being subjected to

the forces of all the nearby traces. This potential energy well has

its minimum at t0, which means it is trying to attract the GPS

point to this position. We assume that traces along this segment of

road are distributed randomly according to a Gaussian distribution

centered on the center of the road at a lateral position of zero.

Thus the probability density function of the nearby traces is

f t0 =
1

σ2 2π
exp −

t0
2

2σ2
2 (2)

It is easy to see that the expected potential well that one trace

generates is the convolution of p t and f t . Given N traces, we

can approximate the resultant potential well as

W1 t = p ∗ f t ∙ N

= −
MN

 2π σ1
2 + σ2

2
exp −

t2

2(σ1
2 + σ2

2)

(3)

Since the attractive force is the derivative of the potential energy

function, W1 t results in an attraction force of

F1(t) =
d

dt
W1 t (4)

Next, we can calculate the Type 2 attraction force from the probe

trace’s original position (i.e. position 𝑥) as a spring with spring

constant k:

F2(t) = k(x − t) (5)

Note that y is the position where the unfrozen point stops moving,

so this lateral point is given by

dist θ

(a) Adjacent lanes in same

direction, traces should

merge

(b) Road split, traces should

not merge beyond split

Figure 6: (a) A scenario where two adjacent lanes are in

the same direction. (b) A senario where two roads merge.

x

y

θ

L

D

(a) adjacent lanes (b) road split

Figure 7: (a) A model for analyzing the scenario in Figure

6 (a). The probing trace (bold) is originally at a distance x

from the center of all the traces, and is attracted and stops

(dashed bold) at a distance of y from the center. (b) A

model for analyzing the scenario in Figure 6 (b). Solid

lines represent the original traces and dashed lines

represent the traces after clarification.

Ideal Actual

Max width of
one-way road

Min distance of two roads

(a) ideal y vs. x (b) actual y vs. x

Figure 8: (a) The ideal y as a function of x. (b) The actual

y as a function of x when we choose selected parameters.

F1 y = F2(y) (6)

Given (3), (4), and (5), we can write (6) as

−
M ∙ N

 2π(σ1
2 + σ2

2)

d

dy
exp −

y2

2(σ1
2 + σ2

2)

= k x − y

(7)

Equation (7) is a transcendental equation that can be solved

numerically. In practice, we should choose parameters M, 𝜎1 and

k such that the solution of (7) is close to the ideal case in Figure

8(a).

For instance, with system parameters 𝜎2 = 5 and 𝑁 = 20, we can

choose 𝜎1 = 5, 𝑘 = 0.005, and 𝑀 = 1 to make the solution of

Equation (7) close to ideal, as shown in Figure 8(b). These are

the parameters that we used for the remainder of our processing.

3.3.2 Two roads Split
As shown in Figure 6(b), the second case that we analyze is when

two roads split. For simplicity, suppose the two roads are straight

with angle 𝜃 between them before they split, and traces are

collected from both roads. Our clarification algorithm will make

part of the two traces attract and stick together. We should choose

parameters such that the number of traces that stick together prior

to the split is reasonably small.

We formalize the problem as in Figure 7(b). Solid lines represent

the original traces and dashed lines represent the traces after

clarification. L is the distance prior to the merge that traces start

sticking together, so we seek to minimize the value of L so the

location of the merge is not misrepresented. The analysis below

gives the relationship between 𝜃 and L.

Similar to the analysis in Section 3.3.1 (b), given 𝜃, as well as the

parameters 𝜎2, 𝑁, 𝜎1, 𝑘 and 𝑀, we can numerically calculate the

maximum D such that traces from two roads with distance D

between them are grouped together. As shown in Figure 7(b), L is

uniquely decided by D as

𝐿 =
𝐷

2
𝑡𝑎𝑛

𝜃

2
 (8)

For example, with the same parameters as in Section 3.3.1:

𝜎2 = 5, 𝑁 = 20, 𝜎1 = 5, 𝑘 = 0.005, and 𝑀 = 1, the relationship

between 𝜃 and L is shown in Figure 10.

The advantage of the two analyses above is that we can compute

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

Θ (degree)

L
 (

m
e

te
r)

Figure 10: For a road split as in Figure 6(b), we computed

this relationship between the angle of the merge and how

far after the split traces are mistakenly grouped together.

(a) Original GPS data (b) Clarified GPS data (c) Routable graph

Figure 9: An overview of the results of the clarification and the graph generation. (a) The original GPS traces. (b) The GPS

traces after clarification. (c) The generated routable road network.

reasonable parameters for our clarification algorithm from first

principles, avoiding the need for extensive experimentation.

3.4 Optimization for Efficiency
The clarification algorithm, when implemented naively, could be

computationally expensive: For each trace node, we need to scan

and calculate the potential (Type 1) attraction from all other GPS

trace segments. This yields an immediate complexity of 𝑂 𝑀2
per iteration, where 𝑀 is the number of nodes in the GPS data set.

On our data set, it takes 20 minutes to complete a single iteration.

This number will scale poorly when the map size increases.

To improve the efficiency and scalability, we adopt the following

optimization. For each node, instead of scanning all other GPS

trace segments, we only scan the GPS segments within a small

square (100m x 100m) centered at this node, and ignore all

segments outside the square. The rationale behind this design is

that the segments far from the node generate negligible amount of

(Type 1) attraction, so we can safely ignore them. To efficiently

find all segments within a small square, we use a kD-tree [1] to

index all the GPS nodes.

After the optimization, it takes 15 seconds on our data set to

complete a single iteration, compared to the 20 minutes without

optimization.

3.5. Results
Figure 9(b) shows an overview of the result of clarification on the

raw GPS data in Figure 9(a). To better understand the results, we

also select four typical areas and show the results in Figure 11

(third column). Compared to the raw GPS traces, it is clear that

our algorithm significantly suppresses the noise in the raw traces.

While the noise is not completely eliminated in all areas (e.g. the

third row in Figure 11), we believe that this level of clarity is

sufficient for further processing such as the road network

generation in the next section.

4. ROUTABLE GRAPH GENERATION
In this section, we present Step 2 of our approach. Namely, based

on the results of the last section, we design a simple graph

Satellite image Raw GPS traces After clarification After graph generation

Figure 11: A detailed view of selected areas of our results. In the graph generation results (last row), every graph edge is

drawn with weight proportional to its volume, i.e. the number of GPS trips that go through this edge.

generation algorithm to generate a directed graph describing the

connectivity and geometry of the road network. We then show

that the resulting graph is able to answer route planning queries

satisfactorily.

4.1 The Graph Generation Algorithm
Overview: The graph generation algorithm works in an

incremental way. Initially the graph is empty. Given the set of

clarified GPS traces, we process the trips sequentially and build

up the graph incrementally. For each trip, we process the trace

nodes in time order. For each trace node, we search the graph

(which is under construction) and decide whether it should be

merged with an existing graph node (called a target node). If so,

we merge the trace node with the target node; otherwise, we

create a new graph node. A more formal description is shown in

Algorithm 1 below.

Algorithm 1: The Graph Generation Algorithm. (Input: the

clarified GPS traces, in the form of a set of trips T. Output:

the graph G characterizing the connectivity and geometry of

the road network.)

1: 𝐺 = ∅;

2: for each trip t in T do

3: prevNode = null;

4: for each node n in trip t do

5: if n should be merged to graph node 𝑣 ∈ 𝐺 then

6: if prevNode ≠ null and there is no path in G from

prevNode to v within less than 5 hops, then add edge(prevNode

→ v) to G;

7: prevNode = v;

8: else

9: add node n to G;

10: if prevNode ≠ null, then add edge(prevNode → n)

to G;

11: prevNode = n;

12: end if

13: end for

14: end for

When to merge: We now specify the criteria used in Line 5 of

Algorithm 1 for merging a trace node n to a target node v.

Intuitively, a trace node n is merged to a target node v when the

algorithm infers that the two nodes come from the same road

segment. Specifically, we merge them when there is an edge

𝑒 = 𝑣 → 𝑣′ or 𝑒 = 𝑣′ → 𝑣 in the graph and the following three

conditions are all satisfied: a) the distance from n to e is smaller

than a parameter dm; b) the difference of the directions of n and e

is smaller than a parameter rm (Recall that the direction of a trace

node A is defined by the vector 𝐷𝐸 if D, A, E are subsequent

nodes in the trace, see Figure 4.) c) n is closer to v than to v’.

How to merge: By merging a trace node n to a target graph node

v, we do not create new nodes in the graph. However, we have to

make sure the connectivity information in the trace is recorded by

the graph G (Line 6 of Algorithm 1). To do so, we maintain a

variable prevNode, which is the graph node that the previous trace

node of n maps to. To record the connectivity information, we

require that v is reachable from prevNode in a small number of

hops. If the current graph G does not reflect this information, we

add a new edge from prevNode to v.

Example: Figure 12 illustrates the execution of Algorithm 1 on a

set of 3 trips (Figure 12 (a)). Trip 1 is completely copied to G

since there are no existing graph nodes to merge with (Figure 12

(b)). For Trip 2 (Figure 12(c)), the 2nd, 3rd, 4th and 5th nodes are

merged to existing graph nodes, and the 1st, 6th, and 7th nodes are

copied to G. The edges are created in a way to record the

connectivity described by the trips. For Trip 3 (Figure 12(d)),

none of the nodes are merged, so all the trace nodes are mapped to

new graph nodes.

Recording traffic volume: Along with generating the graph, we

also record the traffic volume of each edge, i.e. the number of

trips that go through the edge. The volume is calculated as

follows. Whenever a new edge is created (Line 6 and 10), the

volume is set to one. Whenever we merge a node n to a target

node v and there is a path in G from prevNode to v within less

than five hops (Line 6), we increase the volumes of the edges

along the path by 1.

Cleanup: From the GPS traces (Figure 9(a)), we observe that

there are random outliers due to GPS signal errors. These

segments usually map to graph edges with volume of one. Also,

road segments that are travelled a very few times are mapped to

graph edges with a low volume number. We regard these road

segments as “unreliable” road segments since they may be closed

or unreliable. Therefore, after we generate the graph, we remove

any edge with volume less than three to obtain a more reliable

graph.

4.2 Results
Figure 9(c) shows an overview of the result of graph generation.

Figure 11 (fourth column) shows the results for selected areas in

detail. In Figure 11, every graph edge is drawn with weight

proportional to its volume. It is clear that the generated graph

captures the most important connectivity and geometry properties

of the road network in the experimental area.

To examine the capability of the produced graph in answering

route planning queries, we select source-destination pairs and use

Dijkstra’s algorithm to find the shortest paths between the pairs.

The results for 3 different source-destination pairs are shown in

Figure 13 (upper row), where the graph is drawn in yellow and the

Trip 1

Trip 2

Trip 3

Graph Node

(a) Three trips to merge (b) Trip 1 merged

(c) Trip 2 merged (d) All trips merged

Figure 12: An illustration of Algorithm 1. (a) The input, in

terms of 3 trips. (b) The graph G after processing Trip 1.

(c) The graph G after processing Trip 2. (d) The graph G

after processing Trip 3.

computed routes are drawn in red. The backgrounds are satellite

images matched to the graph.

We also compare the results with those given by Microsoft Bing

Maps [10] shown in Figure 13 (lower row). We found that the

routes closely match in most cases. There are, however, some

cases when the routes do not match. We analyzed these cases and

found they can be classified into two types:

 The generated graph provides more up-to-date information.

This includes the cases when a road has recently finished

construction while the Bing map was not updated to reflect

this information (Figure 14). Also, we found a road that has

recently been closed for road work is not part of our
generated graph, but is included in the Bing map.

 The generated graph is limited by the trace data’s coverage.

For instance, since Microsoft Shuttles seldom travel on some

freeway segments, those segments are identified as

“unreliable” segments and are not included in the graph.

4.3 Discussions
In this section, we use a simple algorithm to generate the graph

from the clarified GPS traces. While the generated graph answers

route planning queries satisfactorily, it could still be refined by

applying more elaborate techniques. In the following, we discuss
two possible improvements.

Intersection clarification: From the generated graphs we can see

that the road intersections are not elegantly clarified. As shown in

Figure 15(a), while the connectivity is correctly represented by the

graph, there are some redundant edges that should be removed.

A possible technique to clarify the intersections is the following.

First, we identify the intersection using pattern recognition,

locating the square area in Figure 15(b). Next, we analyze the

traces that enter the square and exit the square and identify

Route 1 Route 2 Route 3

Figure 13: Upper row: The route planning results of the generated map graph. The graph is drawn in yellow and the routes

are drawn in red. The background is the satellite image matched to the graph. Lower row: The corresponding route planning

results given by Microsoft Bing Maps [10].

(a) Generated graph (b) Missing roads found

Figure 14: (a) The generated map graph. (b) The map

from Microsoft Bing Maps. The dotted lines represent

newly-constructed roads that were not updated at Bing

Maps, but are present in the generated map graph.

(a) Graph at intersection (b) Possible refinement

Figure 15: (a) An intersection in the generated map

graph. (b) A possible technique to refine the graph. First

identify this intersection (the square), then identify

entrances and exits, and connect them by looking at the

traces.

“entrances” and “exits” of this intersection. Finally, we connect

“entrances” to “exits” by looking at the traces – if there is a trace

that enters from an “entrance” and exits from an “exit”, we

connect the “entrance” and the “exit”.

Parking lot recognition: Our proposed algorithm will generate a

set of messy edges in parking lots. To improve the graph,

particular procedures are needed to recognize and process the

traces at a parking lot. We could use pattern recognition or

computer vision techniques to identify these these areas. Also,

note that the behaviors of vehicles at parking lots are significantly

different from those at regular roads. For instance, the speeds of

vehicles are usually much slower, and the traces from a parking

lot are usually at the beginning or end of a single trip. Thus we

may use the timestamps of the traces to help identify parking lots.

5. CONCLUSION
This paper has demonstrated a new method for creating a routable

road map from GPS traces of everyday drivers. This is an

alternative to the expensive process of creating a map using

dedicated drivers and vehicles. To deal with the inevitable noise

in GPS data, we presented an innovative approach to clarifying

the GPS traces using simulations of physical forces among the

traces. This process groups together traces going in the same

direction on the same road. The physical simulation lends itself to

theoretical analysis, which helps us pick the parameters governing

the simulated forces. We presented a simple algorithm for

merging the clarified traces into a representation of the road

network in terms of nodes and edges. We showed how this graph

representation can be used to plan reasonable driving routes.

We identified future work including the clarification of

intersections and the recognition of parking lots. Other problems

still left to be addressed include finding street names, address

ranges, speed limits, and traffic controls like stoplights. We also

plan to test the robustness of the proposed approach using other

public GPS traces online.

REFERENCES
1. Berg, M.d., et al., Computational Geometry: Algorithms and

Applications. Second ed. 2000: Springer-Verlag.

2. Edelkamp, S. and S. Schrödl, Route Planning and Map

Inference With Global Positioning Traces, in Computer Science in

Perspective: Essays Dedicated to Thomas Ottmann. 2003,

Springer-Verlag: New York. p. 128-151.

3. Google. Google Maps. [cited 2009]; Available from:

http://maps.google.com/.

4. Haklay, M. and P. Weber, OpenStreetMap: User-Generated

Street Maps. IEEE Pervasive Computing, 2008. 7(4).

5. Schoredl, S., et al., Mining GPS Traces for Map Refinement.

Data Mining and Knowledge Discovery, 2004. 9(1): p. 59-87.

6. Tavakoli, M. and A. Rosenfeld, Building and Road Extraction

From Aerial Photographs IEEE Transactions on Systems, Man,

and Cybernetics, 1982. SMC-12: p. 84-91.

7. TomTom. TomTom Map Share Technology. [cited 2009];

Available from: http://www.tomtom.com/page/mapshare.

8. vanDiggelen, F., GNNS Accuracy: Lies, Damn Lies, and

Statistics, in GPS World. 2007. p. 26-32.

9. Worrall, S. and E. Nebot, Automated Process for Generating

Digitised Maps Through GPS Data Compression, in 2007

Australasian Conference on Robotics & Automation. 2007:

Brisbane, Australia.

10. Microsoft. Microsoft Bing Maps. [cited 2009]; Available

from: http://maps.bing.com/.

http://maps.google.com/
http://www.tomtom.com/page/mapshare
http://maps.bing.com/

