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Abstract

Wagering mechanisms allow decision makers to
inexpensively collect forecasts from groups of
experts who reveal their information via bets
with one another. Such mechanisms naturally
induce a game in which strategic considerations
come into play. What happens in the game de-
pends on the reasoning power of the experts. At
one extreme, if experts are fully rational, no-trade
theorems imply no participation. At the other ex-
treme, if experts ignore strategic considerations,
even the least informed will wager as if his be-
liefs are correct. Economists have analyzed the
former case and decision theorists the latter, but
both are arguably unrealistic. In this paper, we
adopt an intermediate model of bounded rational-
ity in wagering mechanisms based on level-k rea-
soning. Under this model, overconfidence allows
some participation to be sustained, but experts
who realize they are at a relative disadvantage do
bow out. We derive conditions on the particular
wagering mechanism used under which partici-
pation is unbiased, and show that unbiasedness
always implies truthful reports. We show that if
participation is unbiased, then participation rates
unavoidably fall as players’ rationality increases,
vanishing for large k. Finally, we zoom in on one
particular information structure to give a com-
plete characterization specifying the conditions
under which mechanisms are unbiased and show
how to maximize participation rates among all
unbiased mechanisms.

1 INTRODUCTION

A wagering mechanism is an inexpensive tool to elicit fore-
casts from a group. Rather than paying for the information
directly, a decision maker can let members of the group
wager with each other and, in the process, capture their be-

liefs. In the ideal case, everyone with information has in-
centive to reveal their true subjective forecasts without bias
at little or no cost to the decision maker.

Kilgour and Gerchak (2004) proposed one such wagering
mechanism, called a shared scoring rule. Theoretically,
this mechanism is individually rational (players prefer par-
ticipating over not participating), truthful, and budget bal-
anced, meaning the decision maker can collect honest, ac-
curate forecasts from every member of the group and pay
nothing. However, individual rationality and truthfulness
rely on the key assumption that players have immutable be-
liefs (Lambert et al., 2008; Chun and Shachter, 2011). That
is, players believe what they believe and do not update their
beliefs even when matched against opponents. They are
oblivious of the fact that they are playing against reasoning
agents in a zero-sum game. They employ what might be
termed level-0 reasoning.

Immutable beliefs yield an inherent contradiction. The sum
of players’ private expected profits is positive: everyone
who agrees to play expects to gain. Yet the true sum of
their profits is zero. Everyone therefore knows that at least
one player must be overly optimistic. The immutable be-
liefs assumption may be defensible for a one-shot, isolated
game, but in an iterative game, at least one player should
rapidly observe a disagreement between what he expects
and what he receives, making it reasonable to assume that
he will adapt and update over time. In an iterative mental
game prior to play, updating may occur ex ante. All players
know that someone’s information must be inaccurate, so it
is natural to imagine revisions even in a one-shot game.

Game theory predicts nearly the opposite behavior in a wa-
gering mechanism. Under the relatively weak assumption
of a common prior, if all players are rational, know that all
players are rational, and know that all players know that
all players are rational, ad infinitum, then speculative wa-
gers should not happen at all (Milgrom and Stokey, 1982).
The decision maker would not get a single report from any
member of the group. Intuitively, every proffered wager
would be declined as evidence of superior information. Pri-
vate expectations could not differ from outcomes in a sys-



tematic way, and an overall bias toward optimism could not
be sustained in a rational equilibrium (Lucas, 1972; Nielsen
et al., 1990).

To design a wagering mechanism that encourages relatively
broad, unbiased, and truthful participation, we need to un-
derstand how people behave. Do they act with immutable
beliefs? Do they reason with complete rationality? Or do
they fall somewhere in between?

The implications of unbounded rationality are absurd. If
true, players could never “agree to disagree” (Aumann,
1976; Geanakoplos and Polemarchakis, 1982) and would
never place any wager or make any investment based on a
difference of opinion. Refuting this is the simple fact that
speculative trade happens in exchanges around the world
during every second of every day. Transactions do occur
between overconfident zero-sum opponents who both ex-
pect to gain (Dubey et al., 1987; Jordan and Radner, 1979).

Yet ignoring game theory altogether is an idealization too.
People are stubborn, but not entirely naive (Plott and Sun-
der, 1988). An opponent eager to make a large bet should
give anyone pause. (Did I miss something? Is there some-
thing my opponent knows that I don’t?) Only the most
unsophisticated player would ignore the inconsistency be-
tween individual and aggregate expectations or repeatedly
ignore a systematic difference between his private belief
and his experience.

In this paper, we adopt what we view as a more realis-
tic model of players and examine its implications for the
design of wagering mechanisms. Our players are bound-
edly rational: they are neither superhuman level-∞ reason-
ers nor oblivious level-0 reasoners. Instead, building on a
vast literature from behavioral game theory, we make the
increasingly common assumption that each player reasons
at an intermediate level k, treating all of her opponents as
level-(k−1) reasoners, with level-0 forming the base of the
induction. When k > 1, players recognize that they are
playing a game against strategic opponents. Still, their rea-
soning is incomplete. They retain a form of overconfidence
in that each player believes that she is one level more capa-
ble than her opponents. We find that even this small dose
of overconfidence is enough to induce participation.

To obtain accurate information from wagers, we seek
shared scoring rules that encourage high rates of partici-
pation, unbiased participation (meaning that players don’t
decide whether to opt in or out based on the direction of
their signals), and truthful participation. We first show that
under very general assumptions, if an instantiation of the
Kilgour-Gerchak mechanism is unbiased, it automatically
leads level-k players to report their beliefs truthfully con-
ditioned on participating. We next give a general character-
ization of which players choose to participate at each level.
Roughly speaking, at low levels of rationality (small k) par-
ticipation rates can be high due to widespread overconfi-

dence, while at high levels of rationality (large k), only the
players with the most accurate information choose to par-
ticipate. We show that for any unbiased instantiation of
Kilgour-Gerchak, participation rates shrink to zero as the
level of rationality of players grows, illustrating that while
unbiasedness is in some ways desirable, it comes at a cost.

The question of how to design unbiased mechanisms does
not have a clean analytical answer in the general case. To
gain intuition, we therefore zoom in on a particular sym-
metric information structure that permits tractable analysis
under the level-k model. For this information structure,
we give a complete characterization specifying the condi-
tions under which the Kilgour-Gerchak mechanism leads
to unbiased participation. Interestingly, we find that among
all instantiations of Kilgour-Gerchak that are unbiased, the
ones that lead to the highest level of participation are those
in which players have the smallest incentive to report their
true beliefs as opposed to any other forecast as they are re-
warded similarly either way. This makes intuitive sense;
since a player can only profit if other players lose, reward-
ing players more evenly has the effect of scaring off fewer
of those who are relatively less informed, leading to higher
overall participation.

We conclude with a brief discussion of how our work
fits into the larger agenda of behavioral mechanism de-
sign (Ghosh and Kleinberg, 2014; Easley and Ghosh,
2015).

1.1 RELATED WORK

Over the past few decades, several theories have emerged
to explain the inconsistencies that often arise between sub-
jects’ observed behavior in both lab and field studies and
their predicted equilibrium behavior. Brocas et al. (2014)
divide these theories into two categories. Theories of im-
perfect choice, such as quantal response equilibrium (McK-
elvey and Palfrey, 1995), assume that players fully analyze
all available information but make noisy decisions or as-
sume that other players make noisy decisions. Theories
of imperfect attention, such as level-k, assume that play-
ers do not fully analyze all available information and there-
fore make imperfect choices compared with fully rational
agents. In this paper we focus on the latter as such theories
provide a middle ground between the extreme assumptions
of immutable beliefs and full rationality under which one-
shot wagering mechanisms have been analyzed in the past.

The earliest proponents of the level-k model were Stahl
and Wilson (1994, 1995) and Nagel (1995). The theory
was further developed, modified, and empirically evaluated
by many others, including Ho et al. (1998), Costa-Gomes
et al. (2001), Bosch-Domènech et al. (2002), Costa-Gomes
and Crawford (2006), Crawford and Iriberri (2007), and
Shapiro et al. (2014). Camerer et al. (2004) introduced a
variant of the level-k model, the cognitive hierarchy model,



in which a player at level k believes that other players’ lev-
els are sampled according to some distribution over levels
k′ < k. In particular, the model assumes that there is a
Poisson distribution with parameter τ over all players’ true
levels, and a player at level k believes that the levels of his
opponents are distributed according to a normalized Pois-
son over levels strictly less than k; that is, his beliefs about
the relative frequencies of lower levels are correct, but he
incorrectly assumes that no other players are capable of rea-
soning that is at least as sophisticated as his own. As Bro-
cas et al. (2014) point out, the cognitive hierarchy model is
typically more difficult to work with analytically than the
basic level-k model, often failing to yield crisp and testable
predictions of behavior, and has the additional parameter τ
to contend with. Additionally, Wright and Leyton-Brown
(2010) found that its predictive performance is similar to
the basic level-k model on a variety of data sets from the
behavioral game theory literature. For these reasons, we
primarily focus on the basic level-k model in our analysis,
though some of our results could be extended to hold under
the cognitive hierarchy model.

There have been several experimental studies examining
behavior in one-shot betting games with private informa-
tion. In early work aimed at testing the predictions of no-
trade theorems in the lab, Sonsino et al. (2001) designed a
betting game in which fully rational agents would choose
not to participate and found substantial rates of betting
among subjects. Sløvik (2009) later replicated these re-
sults. Rogers et al. (2009) used the same betting game
in a new set of experiments in order to compare how well
the quantal response model, cognitive hierarchy model, and
various hybrids fit the behavior of subjects in the lab. They
found evidence of both imperfect choice and imperfect at-
tention in their subjects; the cognitive hierarchy and quan-
tal response models fit the data equally well. Finally, Bro-
cas et al. (2014) used mouse-tracking software in order to
gain a better understanding of the cognitive processes be-
hind subjects’ actions in a betting game. In their clever
design, payoffs of the bet were hidden in opaque boxes.
Subjects could view their own payoffs or their opponents’
payoffs in different states of the world only by clicking on
the appropriate box. By keeping track of which payoffs
subjects viewed, the authors were able to make inferences
about how many levels of reasoning they were performing.
They found a reasonable fit between subjects’ actions and
the basic level-k model, with different clusters of subjects
behaving similarly to what would be expected of level-1,
level-2, and level-3 players, though they observed some ev-
idence of imperfect choice as well.

2 PRELIMINARIES AND MODEL

We begin with a review of strictly proper scoring rules and
the Kilgour-Gerchak mechanism. We then present our gen-

eral model of incomplete information and player beliefs
and review the level-k model of behavior.

2.1 THE KILGOUR-GERCHAK MECHANISM

We consider a simple scenario in which a set N =
{1, · · · , n} of players wager on the value of an unknown
binary random variable X ∈ {0, 1}. This random vari-
able could represent, for example, the winner of an elec-
tion, whether or not a product ships on time, or the outcome
of a game. We use x to denote a realization of X .

The wagering mechanisms that we analyze are those of
Kilgour and Gerchak (2004). All players simultaneously
choose whether or not to make a wager. If player i partici-
pates, he wagers $1 and reports a probability p̂i thatX = 1.
Next, the true state x is revealed, and each player who
chose to participate receives a payment that depends on x
and the reports of all participating players. Payments are
designed to be budget-balanced, meaning that the mech-
anism’s operator takes on no risk. They are also truthful
and individually rational for risk-neutral players with im-
mutable beliefs. This means that such players maximize
their expected utility by choosing to participate and report-
ing their true beliefs about the likelihood that X = 1.

To achieve truthfulness, Kilgour-Gerchak mechanisms
build on the extensive literature on proper scoring
rules (Savage, 1971; Gneiting and Raftery, 2007). A proper
scoring rule is a reward function designed to elicit truthful
predictions from risk-neutral agents. A scoring rule S map-
ping a probability q ∈ [0, 1] and outcome x ∈ {0, 1} to a
real-valued score is proper if for all p ∈ [0, 1], if X = 1
with probability p, then the quantity

E[S(q,X)] = p · S(q, 1) + (1− p) · S(q, 0)

is maximized at q = p. It is strictly proper if this maximum
is unique. A common example of a strictly proper scoring
rule is the Brier score (Brier, 1950), defined as

S(q, x) = 1− (q − x)2.

Note that the Brier score is bounded in [0, 1]. Any bounded
scoring rule can be renormalized to lie in this range.

We make heavy use of the following characterization of
proper scoring rules from Gneiting and Raftery (2007).

Theorem 1 (Gneiting and Raftery (2007)) A scoring
rule S is (strictly) proper if and only if there exists a
(strictly) convex function G, referred to as the entropy
function, such that for all q ∈ [0, 1] and all x ∈ {0, 1},

S(q, x) = G(q) +G′(q)(x− q),

where G′ is any subderivative of G. Moreover, if X = 1
with probability p, then E[S(p,X)] = G(p).



The Kilgour-Gerchak mechanism rewards each player by
comparing his score to the average score of all other par-
ticipants. Let P ⊆ N be the set of players that choose
to participate; P is a random variable that depends on the
model of trader behavior. Let P−i denote all members of
P except i. (We use similar set notation throughout.) The
mechanism is defined as follows.

Definition 1 (Kilgour-Gerchak mechanism) Fix a
strictly proper scoring rule S bounded in [0, 1]. All players
i ∈ P simultaneously report a probability p̂i. If |P| ≥ 2,
then when x is revealed, the mechanism assigns to each
player i ∈ P a net profit (payment minus $1 wager) of

S(p̂i, x)− 1

|P−i|
∑
j∈P−i

S(p̂j , x).

If |P| = 1, it returns the $1 wager to the single participat-
ing player who receives a net profit of 0.

We assume that players are risk-neutral, so if player i
chooses to participate, then his utility is

ui(p̂, x) =

{
S(p̂i, x)−

∑
j∈P−i S(p̂j ,x)

|P−i| if |P| > 1,

0 otherwise.

Since we analyze only the Kilgour-Gerchak mechanism,
the design space we consider is the space of all strictly
proper scoring rules bounded in [0, 1]. Selecting the scoring
rule S (or equivalently, selecting the corresponding entropy
function G) fully defines the mechanism.

2.2 PLAYER BELIEFS AND BEHAVIOR

To discuss level-k behavior, we first need to define the be-
liefs of players. We begin by considering a general model
of incomplete information based on the well-studied model
of Aumann (1976). In later sections, we analyze a specific
special case of this model.

We imagine a process in which Nature first draws the value
of the random variable X ∈ {0, 1} and then, conditioned
on this value, draws (possibly correlated) random signals
Σi ∈ {1, · · · ,mi} for each player i. We define a state
of the world ω = (x, σ1, · · · , σn) as an outcome x paired
with an assignment of signals σi to each player i. Let Ω
be the set of all mutually exclusive and exhaustive states of
the world. Players share a common prior over Ω.

Under the level-k model, the behavior of each player i is
characterized by his level of rationality. Under the most
simple version of the model, a player at some level k ∈
{1, 2, · · · } assumes that every other player is at level k− 1
and best responds to the (distribution over) actions such
players would take. This can be viewed as a form of over-
confidence; every player believes he is slightly “more ra-
tional” than everyone else. We define level-0 players to be

risk-neutral with immutable beliefs. Such players always
participate (as participation is rational under the immutable
beliefs assumption (Lambert et al., 2008)) and truthfully
bid their posterior beliefs conditioned on their signals. We
could have alternatively defined level-0 players to be noise
traders, choosing reports at random, as is common in the
level-k literature. This definition would then give rise to
immutable belief behavior at level 1, and would therefore
not change the nature of our results; it would amount to no
more than a simple renumbering of levels.

The behavior of a player at a level k consists of two de-
cisions: whether or not to participate, and his report. We
denote with z(k)

i (σi) an indicator variable that is 1 if player
i would choose to participate at level k with signal σi and
0 otherwise. We denote with p̂(k)

i (σi) the report of player
i at level k with signal σi conditioned on participating. Let
P(k) denote the set of players who would participate if they
were following level-k behavior; this is a random variable
since it depends on the realized signals of each player. The
functions z(k)

i and p̂(k)
i are valid level-k behaviors if they

maximize a player’s utility under the assumption that every
other player is of level k − 1. More formally, let

U
(k)
i (p̂i, σi)

= E[(S(p̂i, X)−

∑
j∈P(k−1)

−i
S(p̂

(k−1)
j (Σj), X)

|P(k−1)
−i |

)

· 1{P(k−1)
−i 6= ∅} | Σi = σi]

be the expected utility of player i at level k if he participates
and reports p̂i. Then we must have

p̂
(k)
i (σi) ∈ arg max

p̂i∈[0,1]
U

(k)
i (p̂i, σi),

z(k)(σi) = 1

{
Ui

(
p̂

(k)
i (σi)

)
> 0
}
.

Note that we assume players participate only if their ex-
pected utility is strictly positive and do not participate if
their utility is 0. This is consistent with the scoring rule
literature in which it is often assumed that players require
strict incentives to truthfully report beliefs.

3 A GENERAL CHARACTERIZATION
OF LEVEL-k BEHAVIOR

We are broadly interested in understanding when and how
wagering mechanisms can be used to elicit accurate infor-
mation from players in the level-k model of rationality.
With our focus limited to Kilgour-Gerchak mechanisms,
we can rephrase this question as asking which scoring rules
S lead to high levels of participation and accurate reports.



Two crucial notions in our characterization are unbiased
participation and of truthful behavior. Unbiased partici-
pation simply requires that a player’s choice of whether or
not to participate is independent of his signal (and therefore
also independent of the outcome X). This is desirable be-
cause biased participation could lead to a biased collection
of reports, leading in turn to a biased aggregate forecast for
the decision maker.

Definition 2 (Unbiased participation) We say that be-
havior at a level k ∈ {0, 1, · · · } is unbiased if every
player’s decision of whether or not to participate is in-
dependent of the value of his signal, i.e., if ∀i ∈ N ,
∀σi, σ′i ∈ {1, · · · ,mi}, z(k)

i (σi) = z
(k)
i (σ′i).

Using the common prior over Ω, we can define the posterior
belief of player i about the likelihood of X after observing
the signal Σi = σi as

pi(σi) ≡ Pr[X = 1|Σi = σi]. (1)

Players behave truthfully if they report their true posteriors.

Definition 3 (Truthful behavior) We say that behavior at
a level k ∈ {0, 1, · · · } is truthful if for each player who
chooses to participate at level k, reporting his posterior
belief conditioned only on his own signal uniquely max-
imizes his utility, i.e., if ∀i ∈ N , ∀σi ∈ {1, · · · ,mi},
pi(σi) = arg maxp̂i∈[0,1] U

(k)
i (p̂i, σi).

3.1 UNBIASEDNESS IMPLIES TRUTHFULNESS

With these two definitions in hand, we can prove sev-
eral basic characterizations of level-k behavior in Kilgour-
Gerchak mechanisms. The first shows that unbiased partic-
ipation automatically leads to truthfulness, providing an-
other argument that unbiased participation is desirable.

Theorem 2 In the Kilgour-Gerchak mechanism with
strictly proper scoring rule S, if behavior at each level
k′ < k is unbiased, then level-k behavior is truthful.

Proof: By the assumption of unbiased participation, for
any level k′ < k, the decision of a level k′ player of
whether or not to participate is independent of his signal,
and therefore independent of the true state of the world X .
This implies that for any i, the set P(k′)

−i is independent of
X , and in fact, deterministic.

If P(k−1)
−i = ∅ then any wager of player i would yield ex-

pected utility 0, so player i would not participate. Suppose
that P(k−1)

−i 6= ∅. Then

U
(k)
i (p̂i, σi) = E [S(p̂i, X) | Σi = σi]

− 1

|P(k−1)
−i |

∑
j∈P(k−1)

−i

E
[
S(p̂

(k−1)
j (Σj), X) | Σi = σi

]
.

The second term is independent of the player’s report p̂i.
Thus the player will behave truthfully if and only if doing
so maximizes the first term, i.e., if and only if

pi(σi) = arg max
p̂i∈[0,1]

E [S(p̂i, X) | Σi = σi] ,

which must hold by definition of pi(σi) and the fact that S
is a strictly proper scoring rule.

Thus to design a truthful mechanism, it is sufficient to de-
sign a mechanism that encourages unbiased participation.

3.2 CHARACTERIZING PARTICIPATION

Our next few characterization results examine the con-
ditions under which players choose to participate in the
wagering mechanism when the mechanism is unbiased.
Lemma 1 examines participation at level k when the mech-
anism is unbiased at all levels k′ < k. This lemma will
prove useful later when we wish to show that a mechanism
is unbiased at all levels for specific signal structures.

Lemma 1 In the Kilgour-Gerchak mechanism with strictly
proper scoring rule S, if behavior at each level k′ < k is
unbiased, then a player i at level k with signal σi partici-
pates if and only if |P(k−1)

−i | > 0 and

E[S(pi(σi), X)|Σi = σi]

>
1

|P(k−1)
−i |

∑
j∈P(k−1)

−i

E[S(pj(Σj), X)|Σi = σi]. (2)

Proof: Consider any player i ∈ N at level k. This player
would never participate if |P(k−1)

−i | = 0 since his expected

utility would be 0, so assume that |P(k−1)
−i | > 0. By Theo-

rem 2, since participation is unbiased at every level k′ < k,
players at level k and at level k−1 behave truthfully. Using
this and the form of player utilities immediately yields the
lemma.

Theorem 3 builds on the previous lemma to show that when
participation is unbiased at levels k′ ≤ k, a player at level
k chooses to participate if and only if his a priori expected
score is higher than the average a priori expected score of
all other players who participate at level k − 1.

Theorem 3 In the Kilgour-Gerchak mechanism with
strictly proper scoring rule S with associated entropy G,
if behavior at each level k′ ≤ k is unbiased, then player i
at level k participates if and only if |P(k−1)

−i | > 0 and

E[G(pi(Σi))] >
1

|P(k−1)
−i |

∑
j∈P(k−1)

−i

E[G(pj(Σj))].



Proof: Consider any i ∈ N at level k. Since this player
would never participate if |P(k−1)

−i | = 0, assume that

|P(k−1)
−i | > 0. Since we have assumed that participation

is unbiased at level k (as well as lower levels), we know
that i either chooses to participate at level k regardless of
his signal, or chooses not to participate at level k regardless
of his signal. If he chooses to participate, then by Lemma 1,
Equation (2) holds for all σi ∈ {1, · · · ,mi} and therefore

mi∑
σi=1

Pr[Σi = σi]E[S(pi(Σi), X)|Σi = σi]

>

mi∑
σi=1

Pr[Σi = σi]

|P(k−1)
−i |

∑
j∈P(k−1)

−i

E[S(pj(Σj), X)|Σi = σi]

implying that

E[S(pi(Σi), X)] >
1

|P(k−1)
−i |

∑
j∈P(k−1)

−i

E[S(pj(Σj), X)].

Similarly, if he chooses not to participate then Lemma 1
implies that

E[S(pi(Σi), X)] ≤ 1

|P(k−1)
−i |

∑
j∈P(k−1)

−i

E[S(pj(Σj), X)].

The proof is completed by observing that by Theorem 1 for
any i ∈ N ,

E[S(pi(Σi), X)] = EΣi
[EX [S(pi(Σi), X)|Σi]]

= E [G(p(Σi))] .

This theorem implies that if the mechanism is unbiased at
all levels, then at every level k, at least the player with the
smallest a priori expected score among those who partic-
ipate at level k − 1 stops participating. Additionally, no
player who stops participating at some level k ever par-
ticipates at a higher level, since the average score of other
(fictitious) participating players is an increasing function of
k. Therefore participation goes to zero as the level of ratio-
nality grows, coinciding with fully rational behavior. This
illustrates that while unbiasedness is in some ways desir-
able, it also has its costs.

Corollary 1 In the Kilgour-Gerchak mechanism with
strictly proper scoring rule S, if behavior at every level
is unbiased, then participation shrinks to zero as the level
of rationality of players grows.

4 THE SYMMETRIC SETTING

We have shown that under the level-k model of reason-
ing, any instantiation of the Kilgour-Gerchak mechanism

for which participation is unbiased yields truthful reports.
We have also explored the criteria for participation in such
mechanisms. A natural question is how to design mecha-
nisms with unbiased participation. This question does not
have a clean analytical answer in the general case. To gain
some intuition about this question, we therefore turn our at-
tention to one particular information structure that permits
tractable analysis under the level-k model.

We consider a scenario in which signals are binary, that is,
Σi ∈ {0, 1} for all i, and are drawn independently for each
player, conditional on the state of the world X . Further-
more, each player i’s signal is “correct” with some fixed
and known probability ci, that is, Pr[Σi = x |X = x] = ci
for x ∈ {0, 1}. Finally, to simplify analysis and presenta-
tion, we assume that, a priori, Pr[X = 1] = Pr[X = 0] =
1/2. One way of viewing this assumption is that prior pub-
lic information does not favor either outcome, but rather all
information in favor of some outcome is received privately
by the players through their signals. We refer to this setting
as the symmetric setting.

In the symmetric setting, the posterior in (1) is simply

pi(σi) =

{
ci if σi = 1,
1− ci if σi = 0.

(3)

4.1 FULLY CHARACTERIZING MECHANISMS
WITH UNBIASED PARTICIPATION

The next two results provide matching sufficient and neces-
sary conditions for achieving unbiased participation in the
symmetric setting. First, Theorem 4 shows that to achieve
unbiased participation it is sufficient to use the Kilgour-
Gerchak mechanism with a scoring rule that is symmetric
in the sense that S(p, x) = S(1 − p, 1 − x) for all p and
x, or equivalently, has associated entropy function G with
G(p) = G(1− p) for all p. In this case, a player i chooses
to participate at level k if and only if his expected score is
higher than the average expected score of all other players
who would participate at level k−1. Theorem 5 then shows
that this symmetry is also necessary in order to achieve un-
biased participation in this setting.

Theorem 4 (Sufficient condition for unbiasedness) In
the symmetric setting, the Kilgour-Gerchak mechanism
with strictly proper scoring rule S exhibits unbiased
participation at all levels if S(p, x) = S(1 − p, 1 − x) for
all p ∈ [0, 1] and x ∈ {0, 1}. Moreover, player i at level k
participates if and only if

G(ci) >
1

|P(k−1)
−i |

∑
j∈P(k−1)

−i

G(cj), (4)

where G is the entropy function associated with S.

Proof: The proof is by induction. By definition, all players
participate at level 0, so participation is unbiased. Consider



any k > 0 and suppose that for all levels k′ < k, partici-
pation is unbiased. Then by the entropy characterization of
scoring rules in Theorem 1 and by Lemma 1, we have that
player i with signal Σi = σi participates only if

G(pi(σi)) >
1

|P(k−1)
−i |

∑
j∈P(k−1)

−i

E[S(pj(Σj), X)|Σi = σi].

The symmetry of S implies that G(p) = G(1 − p) for all
p ∈ [0, 1]. Using this symmetry and the fact that pi(σi) is
either ci or 1 − ci, we have G(pi(σi)) = G(ci) regardless
of the signal realization σi. To complete the proof, we then
need only to show that for any j 6= i and any σi ∈ {0, 1},

E[S(pj(Σj), X)|Σi = σi] = G(cj). (5)

Since G(cj) does not depend on player i’s signal, this
would imply that participation is unbiased at level k.

By exploiting symmetry as described below, we have that

E[S(pj(Σj), X)|Σi = 1]

= E[S(1− pj(Σj), 1−X)|Σi = 1]

= E[S(pj(1− Σj), 1−X)|Σi = 1]

= E[S(pj(Σj), X)|Σi = 0].

The first equality follows from the symmetry of S. The
second follows from (3), which implies that 1− pj(Σj) =
pj(1 − Σj). The third can be easily verified by expanding
out the expressions and exploiting the symmetry in both the
prior and the signal error. Hence, we have

E[S(pj(Σj), X)]

= Pr[Σi = 1]E[S(pj(Σj), X)|Σi = 1]

+ Pr[Σi = 0]E[S(pj(Σj), X)|Σi = 0]

= E[S(pj(Σj), X)|Σi = 1]

= E[S(pj(Σj), X)|Σi = 0].

Moreover, we have

E[S(pj(Σj), X)]

= Pr[Σj = 1]E[S(pj(Σj), X)|Σj = 1]

+ Pr[Σj = 0]E[S(pj(Σj), X)|Σj = 0]

=
1

2
G(cj) +

1

2
G(1− cj) = G(cj).

Combining the previous two equalities gives us Equa-
tion (5), completing the proof.

The next result provides a matching necessary condition.
Note that for any symmetric scoring rule S, adding a con-
stant payment that depends on the outcome x but not on
the report p would break symmetry but would not affect
the resulting Kilgour-Gerchak payments; since this con-
stant amount is added to all players’ scores, it cancels out

when comparing player i’s score to the average score of
other participants. The necessary condition states that un-
biased participation is achievable only if the scoring rule
used is “equivalent to” a symmetric scoring rule in this way.

Theorem 5 (Necessary condition for unbiasedness) In
the symmetric setting, if the Kilgour-Gerchak mechanism
exhibits unbiased participation for level-k players with all
possible signal accuracies for all levels k, then the pay-
ments are equivalent to those using Kilgour-Gerchak with
a scoring rule S that satisfies S(p, x) = S(1 − p, 1 − x)
for all p ∈ [0, 1] and x ∈ {0, 1}.

Proof: Assume that the Kilgour-Gerchak mechanism using
scoring rule S̄ exhibits unbiased participation for level-k
players for all possible vectors of signal accuracies and all
levels k.

First note that for any scoring rule S̄ bounded in [0, 1], the
scoring rule S defined by S(q, 1) = S̄(q, 1)+(1− S̄(1, 1))
and S(q, 0) = S̄(q, 0) + (1 − S̄(0, 0)) remains bounded
in [0, 1] and results in identical payments to each player
when used in the Kilgour-Gerchak mechanism. For the pur-
poses of this proof, we therefore consider the alternative
representation of the mechanism as the Kilgour-Gerchak
mechanism with this modified scoring rule S. Note that
S(1, 1) = S(0, 0) = 1 and therefore G(1) = G(0) = 1.

Suppose there are only two players, i and j, with equal ac-
curacies ci = cj = c, and consider the level-1 behavior of
agent i. At level 0, agent j always participates. By Lemma
1, Theorem 1, and (3), we have that player i with signal
Σi = 1 participates if and only if

G(c) > E[S(pj(Σj), X)|Σi = 1].

Expanding out the terms on both sides and rearranging, this
inequality is equivalent to

S(c, 1) + S(c, 0) > S(1− c, 1) + S(1− c, 0). (6)

Similarly, player i participates with signal Σi = 0 if and
only if

G(1− c) > E[S(pj(Σj), X)|Σi = 0].

Expanding out terms in a similar way and rearranging, this
condition reduces to

S(1− c, 1) + S(1− c, 0) > S(c, 1) + S(c, 0). (7)

For participation to be unbiased it must be that (6) and (7)
either both hold or both do not hold. Clearly they cannot
both hold simultaneously. The only way that both could
simultaneously not hold is if

S(c, 1) + S(c, 0) = S(1− c, 1) + S(1− c, 0).



By the characterization of scoring rules in Theorem 1, the
corresponding entropy function must then satisfy

G(c) +G′(c)(1− c) +G(c) +G′(c)(−c)
= G(1− c)+G′(1− c)c+G(1− c)+G′(1− c)(c− 1)

which reduces to

G(1−c)+(c−1/2)G′(1−c) = G(c)+(1/2−c)G′(c). (8)

Since c was chosen arbitrarily, in order for participation to
be unbiased for all vectors of signal accuracies, this equal-
ity must hold for all c ∈ [1/2, 1].

It remains to show that this implies symmetry in S. It must
be the case that G(c) = G(1 − c) at c = 1/2 and c =
1. (The latter is true because we have replaced S̄ with S.)
Suppose that there is some c ∈ (1/2, 1) such that G(c) >
G(1− c). Then by continuity of G, there must be some c1
and c2 such that

(a) G(c1) = G(1− c1),
(b) G(c2) = G(1− c2),
(c) G(c) > G(1− c) for all c ∈ (c1, c2).

Condition (c) and (8) imply that for all c ∈ (c1, c2),
G′(c) > −G′(1 − c). But this contradicts conditions (a)
and (b). Therefore, there cannot exist any c with G(c) >
G(1− c).

A symmetric argument can be made for the case in which
G(c) < G(1 − c) for some c ∈ (1/2, 1), so we must have
G(c) = G(1 − c) for all c. The characterization in Theo-
rem 1 can be used to easily show that this implies the de-
sired symmetry in S.

4.2 MAXIMIZING PARTICIPATION RATES

Unbiased participation is desirable for information aggre-
gation. However, as shown in Corollary 1, it necessarily
leads to participation shrinking to zero as players’ level of
rationality grows. Our final result for the symmetric setting
shows how to select the scoring rule that maximizes par-
ticipation among those that lead to unbiased participation.
This is accomplished in the limit as the entropy function G
becomes very close to linear, that is, as the scoring rule S
becomes very close to being only weakly proper.

Theorem 6 (Maximal participation) Among all symmet-
ric strictly proper scoring rules, maximal participation can
be achieved as the limit of a sequence of strictly proper
scoring rules with corresponding entropy functions of the
form G(p) = |2p− 1|β with β > 1 as β → 1.

Proof: Consider any symmetric scoring rule with symmet-
ric entropy function G. By Equation (4) in Theorem 4 and
the convexity of the entropy function, player i at level k

would never participate unless

G(ci) ≥ G

 1

|P(k−1)
−i |

∑
j∈P(k−1)

−i

cj

 .

Since we have assumed G is symmetric around 1/2 and
strictly convex, any such function G must be increasing on
[1/2, 1]. Since cj ∈ [1/2, 1] for all j, we have that at level
k, player i would never participate unless

ci > ĉ
(k−1)
−i ≡ 1

|P(k−1)
−i |

∑
j∈P(k−1)

−i

cj . (9)

This is an “only if” condition that holds for any symmetric
entropy function G. To maximize participation, we would
like to select G to have a matching “if” condition that is as
close to this as possible.

Consider the family of scoring rules defined by entropy
function Gβ(p) = |2p − 1|β with β > 1. By Equation
(4), player i would participate at level k under this scoring
rule if and only if

2ci − 1 >
1∣∣∣P(k−1)

−i (β)
∣∣∣1/β

 ∑
j∈P(k−1)

−i (β)

(2cj − 1)β


1/β

=
1∣∣∣P(k−1)

−i (β)
∣∣∣1/β

∥∥∥{2cj − 1}
j∈P(k−1)

−i (β)

∥∥∥
β

where ‖ · ‖β denotes the Lβ norm and we use the nota-
tion P(k−1)

−i (β) to emphasize the dependence of the set of

participating players P(k−1)
−i on β.

We first use this to show that for any β, β′ > 1 with β′ < β,
participation declines more gradually under the scoring
rule defined by Gβ

′
than it does under the scoring rule de-

fined by Gβ . We do so by induction. Since all players par-
ticipate at level 0, for any i we have P(0)

−i (β) = P(0)
−i (β′).

Assume that for all k′ < k, P(k′)
−i (β) ⊆ P(k′)

−i (β′). By
standard properties of norms, we then have

1∣∣∣P(k−1)
−i (β)

∣∣∣1/β
∥∥∥{2cj − 1}

j∈P(k−1)
−i (β)

∥∥∥
β

≥ 1∣∣∣P(k−1)
−i (β)

∣∣∣1/β′
∥∥∥{2cj − 1}

j∈P(k−1)
−i (β)

∥∥∥
β′

≥ 1∣∣∣P(k−1)
−i (β′)

∣∣∣1/β′
∥∥∥{2cj − 1}

j∈P(k−1)
−i (β′)

∥∥∥
β′
.

The last line follows from the fact that since the players
who choose to participate are always those with the highest
quality (corresponding to higher values of 2cj − 1), if a
larger group participates they are lower quality on average.



This implies that if a player participates at level k under the
scoring rule defined byGβ then he also participates for any
β′ < β, completing the inductive step.

In the limit as β → 1, we get that the participation con-
straint at each level k converges to the constraint ci >

ĉ
(k−1)
−i , which, from Equation 9, is the participation limit

for any symmetric strictly proper scoring rule.

This result shows that participation levels rise as the scor-
ing rule used becomes “closer to” weakly proper, providing
experts less incentive to report their true beliefs rather than
make a false report. In fact, it is easy to see that maximum
participation could be achieved using the weakly proper
scoring rule with entropy functionG(p) = |2p−1|, though
this would result in a loss of strict truthfulness. This result
is somewhat intuitive. Since the Kilgour-Gerchak mecha-
nism is a zero-sum game, bigger rewards for the most ac-
curate players require bigger punishments for the least ac-
curate, causing those with less information to drop out at
lower levels of rationality. By rewarding all players more
evenly, less accurate players do not drop out as quickly.
However, this may have consequences in real-world sce-
narios in which an expert may not find it worth his time to
participate if the rewards for highly accurate information
are low, even if he stands to make a profit on expectation.

4.3 UNCERTAINTY ABOUT OPPONENTS

One potential objection to our model is the assumption that
each player i knows the accuracy parameter cj of every
other player j. This assumption is certainly unrealistic in
settings in which the number of players is large or the pool
of players anonymous. We briefly remark that most of our
results can be extended to the Bayesian setting in which
it is necessary only for each player i to know a distribu-
tion over the types (in this case, accuracy parameters) of
other players. However, this extension requires modifying
the definition of unbiasedness so that a player’s decision to
participate may depend on parts of his private information
(in particular, his type), but remains independent of the out-
come X . To preserve the clarity of our analysis, we omit
the details and present only the more simple setting here.

5 DISCUSSION

In order to design wagering mechanisms to elicit honest,
unbiased beliefs from groups of experts, it is necessary to
understand how experts behave. Previous analyses have as-
sumed extreme behavior; either experts are fully rational,
in which case standard no-trade theorems apply, or experts
have immutable beliefs and are essentially oblivious to the
fact that they are participating in a zero-sum game. In this
paper, we search for middle ground, analyzing the behavior
of boundedly rational level-k players who recognize they
are in a game but are still overconfident in their reasoning.

We examine the design implications of this model, seeking
instantiations of Kilgour and Gerchak’s shared scoring rule
wagering mechanism that encourage unbiased and truthful
participation at high rates.

This paper can be viewed as a contribution to the new
but growing research area of behavioral mechanism de-
sign (Ghosh and Kleinberg, 2014; Easley and Ghosh, 2015)
in which insights from behavioral game theory are applied
to design mechanisms tailored to real (or at least more re-
alistic) human participants as opposed to idealized ratio-
nal agents. Of course any theory is only as good as the
model on which it is based. While the behavioral game
theory literature provides support that the level-k model
is a decent predictor of human behavior in game theo-
retic settings—including one-shot betting games in which
the no-trade theorem would typically apply (Brocas et al.,
2014)—additional experimental work is needed to under-
stand how well it models the behavior of real experts par-
ticipating in wagering mechanisms like Kilgour-Gerchak.
Still, we believe that our analysis takes a valuable first step
towards understanding the ability of wagering mechanisms
to aggregate information from experts who are neither fully
rational nor fully naive.
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