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Abstract 

Segmenting 3D textured surfaces is critical for general image understanding. 
Unfortunately, current efforts at automatically understanding image texture are 
based on assumptions that make this goal impossible. Texture segmentation 
research assumes that the textures are flat and viewed from the front, while 
shape-from-texture work assumes that the textures have already been segmented. 
This deadlock means that none of these algorithms will work reliably on images 
of 3D textured surfaces. 

We have developed an algorithm that can segment an image containing nonfron- 
tally viewed, planar, periodic textures. We use the spectrogram (local power 
spectrum) to compute local surface normals from small regions of the image. 
This algorithm does not require unreliable image feature detection. Based on 
these surface normals, we compute a “frontalized” version of the local power 
spectrum which shows what the region’s power spectrum would look like if 
viewed from the front. If neighboring regions have similar frontalized power 
spectra, they are merged. The merge criteria is based on a description length for- 
mula. We demonstrate the segmentation on images with real textures. To our 
knowledge, this is the first program that can segment 3D textured surfaces by 
explicitly accounting for shape effects. 
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1 The Problem and What We’re Doing About It 

Automatic recognition and understanding of image texture is critical for machine under- 
standing of general images. Almost every scene, either natural or man-made, contains some 
texture. In fact, everything is textured at some level of magnification. Texture can tell us 
much about a scene. Julesz[28] and Gibson[l9] did early work that shows how humans use 
texture to segment images and to estimate surface normals, respectively. Both of these capa- 
bilities have been reproduced by computers. Unfortunately, many computer vision algo- 
rithms give disastrous results on texture. For instance, segmentation algorithms are usually 
based on an assumption of smoothly varying gray levels, which is not true for texture. Ste- 
reo matching often fails on repetitive texture. Thus, to avoid errors with other algorithms 
and to exploit what we can from texture, we need to explicitly account for it. 

Past efforts at automatically understanding texture in images are inherently insufficient 
because of their assumptions about the underlying textured surfaces. The current state of the 
art is advancing on two distinct, mutually exclusive fronts (see Figure 1). One effort, corre- 
sponding to Julesz’ observations, is aimed at segmenting images into regions of similar tex- 
ture, where it is assumed the textures are flat and viewed frontally. Differences or 
similarities in some characteristic of the image texture are used to find texture boundaries or 
to group regions of similar texture. The other effort, based on Gibson’s observations, is tar- 
geted at finding the shape of uniformly textured objects, assuming the objects themselves 
have been segmented. Here, changes in otherwise uniform texture are attributed to 3D 
effects and used to compute surface normals. The two efforts have conflicting assumptions 
that prevent their ever being applied to the same image. If the textures are not flat and 
viewed frontally, the image can’t be segmented. If the texture is not segmented, its shape 
can’t be found. 

Traditional texture segmen- Traditional shape-from- We solve the combined prob- 
tation requires a flat, frontal lem. 
view. texture in the image. 

Figure 1: Combining old texture problems into a new one 

texture must have only one 
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Figure 2: These random textures can be preattentively discriminated even 
though there are no texture elements. (Both textures have the same mean and 
variance in gray level. They are from Brodatz[9], D2 fieldstone and D12 bark of 
tree.) 

Some years after the important observations of Julesz and Gibson, researchers are trying 
to explain human abilities in texture understanding in terms of local spatial frequency filter- 
ing (e.g. Malik and Perona[38]). These theories stand in sharp contrast to Julesz’ texton the- 
ory. His response has been to point out that textons can still be preattentively discriminated 
by humans even after filtering out the spatial frequencies that appear to have the most dis- 
criminatory power[30]. We suspect this difference will be resolved someday with a local 
spatial frequency theory that subsumes Julesz’ theory, whose observations will serve as a 
critical test. 

Our goal is not to explain human vision, but to program a computer to imitate a human’s 
abilities. And while this lets us develop algorithms with no psychophysical justification, 
some computer vision researchers are advocating the same types of local spatial frequency 
mechanisms as the psychophysicists. In particular, local spatial frequency can be used in 
computer vision for texture segmentation and shape-from-texture, as we show in this paper. 
These are attractive theories, because they use the same representation for both tasks, 
because they admit to a quantitative formulation, and because they do not require feature 
detection. 
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2 The SpaceLFrequency Representation 

Signals are traditionally analyzed in either the space (time) or frequency domain, but this 
dichotomy inadequate for texture segmentation. An example is shown in Figure 4. The dis- 
tinct parts of this signal, i.e. the low frequency parts on the outside and the high frequency 
part in the middle, are characterized by their frequency. But, the power spectrum of the sig- 
nal (with u as the frequency variable) shows only that the constituent frequencies exist 
somewhere in the signal, not where they are. We need a representation that shows both the 
spatial and frequency characteristics simultaneously. This “space/frequency” representation 
for a 1D signal is a 2D function that shows the instantaneous frequency distribution of every 
part of the signal. It is like having a little power spectrum plotted vertically at every point 
along the spatial axis. For image analysis, the input signal is 2D, and the resulting space/fre- 
quency representation is 4D (two spatial and two frequency variables). 

1 D Texture Signal 
Ideal SpaceErequency Representation 

Power Spectrum 

5 0  
20  40 60 80 100120 U 

Figure 4: A signal, its power spectrum, and its spacdfrequency representation 

The space/frequency representation shown in Figure 4 is ideal, and it cannot be computed 
by any commonly used techniques. We use the image spectrogram as our instantiation of the 
representation. For each point in the image, we extract a square block of surrounding pixels 
and multiply this block of intensities by a window function that falls off at the block’s edges. 
We compute the two-dimensional Fourier transform of this product and take the squared 
magnitude as the local frequency representation, giving the local power spectrum. This is 
the image spectrogram S(x, y, u, v), defined as 

I 
where f ( x ,  y) is the image and w ( x ,  y) is the window function. The frequency variables 
are (u, v) , measured in cycles per pixel. This is what we used to compute the light-colored 
blocks in Figure 3. 

Our particular window function is the “Blackman-Harris minimum 4-sample” window, 
recommended by experts[21][ 121 for Fourier analysis. Its equation is 

2x 4x 671: 
L -  1 L -  1 L -  1 w(Z) = wo + w1 cos (- 1 )  + w2cos (- I) + w3cos (-Z) 
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Figure 6c shows some of the Gaussian-modulated sinusoids (an example of wavelets) 
used by Super and Bovik[Sl] for their work in shape-from-texture. These differ from the 
variable window spectrogram in that they are normalized to have equal energy. The impor- 
tant difference between their space/frequency representation and ours is that we compute a 
dense sampling in frequency, effectively using about 2000 filters at each pixel’, while they 
use only 72 for images the same size as ours. We find the dense sampling makes it easier to 
track small frequency shifts in the typically “peaky” Fourier transforms of periodic texture. 

Figure 6d shows the filters used by Mal& and Perona[38] for their work in modeling pre- 
attentive, frontal texture segmentation. These are not modulated sinusoids like the rest, but 
linear combinations of two or three Gaussians, meant to approximate the physiological 
mechanisms of early vision. They use 96 different filters and process their outputs nonlin- 
early. Their filters’ sparse sampling and small size would give inadequate resolution in 
space and frequency for detecting small frequency shifts due to shape effects. 

a 

0 6 

0 6 

A“ 1- A 
v1 0 “  6 3  

A .- A 
0 v ”  6 3  

.,- vv - 
0 63 

b C d 
Figure 6: Spacdfrequency basis functions 

a) Constant-sized windowed sinusoids that we use (spectrogram) 
b) Window size a constant multiple of wavelength (variable window spectrogram) 
e) Gabor functions used by Super & Bovik[Sl] for shape-from-texture (wavelets) 
d) Linear combinations of Gaussians used by Malik & Perona[38] for texture segmentation 

‘A Fourier transform over L2 pixels gives L2 separate frequency components, each of which can be thought of as the result of 
one filter. Since the Fourier transform of a real signal is Hermitian symmetric, this reduces the number of independent frequen- 
cies IO L ( L / 2  + 1 )  if L is even. 
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Figure 7: Coordinate frames used in derivation 
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This was derived by making a single rotation of the (s, f, n) frame around the unit vector 

1 dP2 + q2 
r (-4, p ,  0) / (,/-) by an angle (I with cos4 = - and sin4 = r 

3.2 Projected Texture 

This subsection concludes with an expression for a perspectively projected sinusoid. We 
begin by assuming the texture on the surface is "painted" on and not a relief pattern. It is 
locally characterized in the (s, t, n) surface frame as a pattern of surface markings given by 
g(s, t )  . Points on this locally planar surface are given by coordinates (s, t, 0) . Applying the 
transformation matrix, the corresponding world coordinates are 

x =  '11s+t12t+Xj 

Y = t 2 p  + t22t + Yi 
2 = r 3 p  + '321 + zi 

Under perspective, these points project to the image plane at 

(4) 

i 

13 



with 

and we have substituted the 

A =  

ralue of tij from Equation (3). The projected version of g(s, r )  

is then approximately g(s,x' + syy' ,  txx' + t y y ' ) ,  which is just an affine transformation (with- 

out translation) of the coordinates. 

3.3 Relation Between Projected Sinusoids 

If we show how the projection affects a single, sinusoidal texture pattern, we can easily 
see what happens to periodic textures, because they are just summed sinusoids (according to 
the Fourier series). Suppose the brightness pattern on a textured surface is given by 
cos (27t ( uos + vot )  ) , then the corresponding projected textures from two different points 

on this surface would be given by 

cos(27t((sxlx'+s y ' ) u  + ( t  x ' + t  y ' ) v  ) )  
YI 0 XI Y l  0 

1 2  y2 0 x2 Y 2  0 
cos (2x ( ( s  x ' + s  y ' ) ~  + ( t  x ' + t  Y ' ) V  ) )  

where we have started subscripting with "1" and "2" to indicate two distinct points on the 
image plane. The frequencies of the projected sinusoids are 
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4.1 Periodic Texture Representation 

If we assume the texture on the plane is periodic, then any physically realizable such tex- 
ture can be represented by a Fourier series. Thus, we assume the frontal texture brightness 
pattern is given by 

where we are unconcerned with the values of the fundamental frequency ( uo, vo) and the 

complex Fourier series coefficients cm, . Using upper-case letters to represent Fourier trans- 

forms of their corresponding lower-case functions in space, along with this definition of the 
Fourier transform, 

-00 -w 

we have 

This is a grid of delta functions, with each delta at one component frequency. For example, a 
periodic cotton canvas (Brodatz[9] D77) and its power spectrum are shown in Figure 8. We 
note that the delta functions are slightly spread. This is because we are computing the Fou- 
rier transform with only local support. 

We showed in Section 3 that the local brightness pattern from a surface patch in the scene 
undergoes approximately an affine transformation when it is projected onto the image plane. 
Since an affine transformation in space corresponds to an affine transform in frequency[ 181, 
the Fourier transform of the projected texture patch will be a scaled and skewed grid of delta 
functions, with each delta representing one frequency component. 

In order to represent the spectrogram more efficiently and to speed subsequent computa- 
tions, we only store the peak frequencies from each power spectrum patch. Our spectrogram 
preprocessor finds the peaks in each patch in order of size. It keeps looking until the current 
peak is less than 20% of the magnitude of the largest peak, or until it finds six peaks, which- 
ever comes first. It also ignores peaks below a frequency of 0.03 cycles/pixel. This helps 
eliminate low frequencies due to shading. 
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This will be small if we have the correct surface normal and the correct matches among the 
peaks. We perform an exhaustive search over a grid in (p, q)  and take the surface normal 
that minimizes eSSd as the solution. If we have more than two patches to use, we find the 

surface normal that minimizes the sum of the eSSd’s for all unique, adjacent pairs of patches i 

i in the region. We only consider adjacent pairs of patches, that is, the patches that have had 
their frequency peaks matched by the preprocessor. This algorithm is similar to one devel- 
oped by Super and Bovik[SO]. One difference is that ours uses multiple frequency peaks 
from a single texture, while theirs uses a single, dominant frequency at each point. 

4.3 Results 

Two important parameters that affect the accuracy of our solution are the number of 
patches used to compute the surface normal and the center-to-center spacing of the power 
spectrum patches. For a given center-to-center spacing, we would like to use as many 
patches as possible, as long as they all fall on the same textured plane, in order to have more 
data contributing to the solution. We would also like to avoid small center-to-center dis- 
tances, because the shape-induced frequency shifts could then be dominated by noise and 
approximation errors. 

Figure 9 shows four identical plates with different Brodatz[9] textures mapped onto them 
using a computer graphics program. The actual surface normal is (p, q )  = (0.614,0.364) . 
We tested our algorithm on these images using different numbers of patches and different 
center-to-center spacing. In each trial, the center-to-center spacing was equal in x and y . We 
let this parameter vary from 5 to 50 pixels in increments of 5. For each center-to-center dis- 
tance, we computed (p, q )  using as many unique n x n squares of adjacent patches as 
would fit on the textured part of the image, starting with n = 2. 

Figure 10a shows the average errors in degrees of our surface normal estimates for differ- 
ent numbers of patches and different center-to-center spacings. Each average was taken over 
all four images and over all the n x n squares of patches that would fit on the texture. As 
expected, the error decreases for larger numbers of widely spaced patches, with the best esti- 
mates being in error by about six degrees. Our shape-from-texture algorithm succeeds in 
giving good results on periodic textures without the need for image feature detection. Since 
it uses the space/frequency representation, it is possible to integrate it into a segmentation 
algorithm that works on 3D textured, planar surfaces. 
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Average Surface Normal Error 
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Figure 10: Average errors in surface normal from the four test images for 
different patch center-to-center distances and different numbers of patches. 

Unfortunately the need for accuracy conflicts with the requirements of our segmentation 
algorithm in terms of the number of patches and center-to-center spacing. Our segmentation 
algorithm begins by estimating surface normals using small parts of the image. Using small 
support for these estimates is important, because we do not want the support to overlap tex- 
ture boundaries. This means we have to keep n and the center-to-center spacing small, 
which tends to compromise accuracy according to Figure loa. Fortunately, though, some of 
the estimates from the n x n squares are still good, even with small support and small n. 
Figure lob shows the average minimum error in surface normal, where the minimum is 
taken over all the n x n squares and the average is taken over the four images. In almost 
every case, at least one of the n x n squares gave a fairly accurate surface normal. Since we 

21 



We cannot simply invert this relationship for the frontalization, because we don't know the 
Z i  coordinate of the surface, and this is required to compute the matrix Si. In fact, we can 

never compute [ uo, vo] ', because we never know the depth of the patch. 

Imagine we have a frontalized reference patch, ( p ,  q )  = (0,O) , with a depth of Zref 

from the same plane and with the same texture. The 4x4 homogeneous transformation locat- 
ing the surface patch's local coordinate frame would be 

['I1 '12 '13 '14 [' ' r e j  

r l  '22 '23 'yI = 1 
'31 '32 '33 '34 :j . 0 0 0 1  0 0 0  

Using these transformation parameters and solving Equation (6) for s and t gives 

Then the projected frequency from this frontal patch will be approximated as before as an 
affine transformation of the scene frequency. The affine transformation parameters come 
from the first partial derivative terms of the Taylor series of s (XI, y ' )  and t r e f ( x l ,  y ' )  . ref 
The frontalized frequency is then 

Solving Equation ( 18) for [ uo, vO] T and inserting this into Equation (2 1) gives 
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The frontalization step works this way: For a group of patches hypothesized to be on the 
same plane, we arbitrarily pick one patch as the reference patch. In our case we pick the first 
in the list. The affine frontalization transformation is then computed for each patch accord- 
ing to Equation (25), and each peak frequency is transformed accordingly. This does not tell 
us what the true frontalized frequencies are, but it tells us what the frequencies would be if 
all the patches had the same depth as the reference patch, which is good enough for segmen- 
tation. 

5.3 Creating a Dendrogram of Hypotheses i 

i 
Our segmentation algorithm consists of building a dendrogram of the image. A dendro- 

gram, defined by Duda and Hart[l3], is a hierarchical clustering represented by a tree with 
individual feature vectors as the leaves. At the beginning, each feature vector is its own clus- 
ter. We can build a dendrogram by successively merging the two clusters that are most simi- 
lar (by some measure) into a new cluster. Different levels of the dendrogram represent 
different clusterings. In our algorithm, clusters correspond to hypotheses. After each merge, 
the number of hypotheses is reduced by one. We only allow merges between four-connected 
hypotheses, and at all times each patch is a member of only one hypothesis. Different levels 
of our dendrogram correspond to different segmentations of the images. We show selected 
levels of three dendrograms in the results in Figure 11, where each of the 25 squares is a lit- 
tle version of the image with merged patches shaded the same. The first level has every 
patch as a separate region, while the last level has every patch in the same region. For our 
three example images, the best segmentation occurs when there are four regions. 

Building a good dendrogram (one that shows a good segmentation at some level) 
depends critically on the merge criterion. For simple feature vectors, a suitable merge crite- 
ria is Euclidean or Mahalanobis distance. Our problem is more complex, and we have cho- 
sen a description length criterion instead. The idea, whose primary advocate is Jarma 
Rissanen[46], is that the best grouping of data is the one that requires the least number of 
bits to describe. If two hypotheses are similar, an efficient coding scheme can describe their 
union plus their deviations from each other in fewer bits that it can describe them separately. 
This means they should be merged. The description length criteria is desirable because it has 
only a few arbitrary parameters, and because it formalizes the trade-off between the com- 
plexity of the model and the quality of the fit. 
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The first addend of this formula gives the number of bits it takes to label each peak with an 
integer giving its cluster number. The second addend is Rissanen’s estimate of the number 
of bits to describe the mean and standard deviation vectors of each cluster. The third addend 
is the number of bits it takes to describe the deviation of the peaks from their cluster centers. 
It is based on a Gaussian probability distribution, and is essentially -log,P (peaks1 p, 0) . 
The standard deviation for this term could be computed from the clusters themselves, how- 
ever small clusters will give unstable values. We set the standard deviation to 0.01 for our 
experiments. This value is reasonable, since the Nyquist-limited range of frequencies is [- 
0.5 ,Os] .  

The dendrogram of hypotheses is built this way: At the beginning, each patch is its own 
hypothesis. To compute the next level in the dendrogram, all pairs 4-connected hypotheses 
are temporarily merged into new, trial hypotheses. Each trial merge involves computing the 
surface normal of the merged region, frontalizing the peaks, and building a dendrogram of 
the frontalized peaks. We take the merge that gives the largest reduction in description 
length. The “magic numbers” are Leclerc’s value of b for the chain-code description length, 
the standard deviation of the peaks, and the level in the dendrogram of hypotheses to choose 
as the final segmentation. The first two parameters are easy to choose. The final dendrogram 
level is more difficult. As our algorithm stands now, we must choose this manually, although 
some measure based on description length would be appropriate here. 

5.4 Results 

The results of our segmentation algorithm on three different images are shown in Figure 
11. These images were generated with the same program used for the images in Figure 9 
using Brodatz textures. Selected levels of the dendrograms are in the left column and the 
edges corresponding to the four-region level of the dendrogram are in the right column. The 
algorithm clearly finds the correct regions. The regions are blocky because we compute the 
local frequency spectra on 15-pixel centers, rather than centered at every pixel. There are 
some errors in the edges near the texture boundaries due mostly to patches that overlap into 
two or more textures. These results demonstrate an advantage of region-growing over edge- 
finding, in that all the edges are closed, and there is no “leaking” from one region to another. 
In Figure 12 we show the surface normals associated with each of the final hypotheses. The 
average error in surface normal for the three images is 6.7”, 3.8”, and 3.4” respectively. 

(We take the uniform backgrounds to have a surface normal of (p, q )  = (0,O) .) 
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image 1 

image 2 image 3 

Figure 12: Surface normals of segmented images. The average error in surface 
normal in the three images is 6.7'. 3.8'. and 3.4" respectively. 

It could be argued that accounting for the effect of surface normals is not necessary, 
because the differences in frequency content of distinct textures will be enough to over- 
shadow the deformations caused by shape on a single textured surface. Using our algorithm, 
this is apparently not true. The segmentation shown in Figure 13 was computed by making 
one small change to our program: we altered the surface normal subroutine such that it 
always returned (p, q )  = ( 0 , O )  . This meant that all the textures were considered to be 
already frontalized, so the deformations caused by 3D effects were not factored out. The 
resulting four regions give a segmentation that is quite poor. The center region contains sig- 
nificant amounts of two distinct textures. None of the other levels in the dendrogram is any 
better. 
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It should not be a surprise that local spatial frequency is a good way to do shape and seg- 
mentation simultaneously, because the representation has already been used to solve both 
problems separately, as shown in Figure 14. The space/frequency representation is the natu- 
ral choice for solving the combined problem. In fact, we expect the space/frequency repre- 
sentation to help in solving many combined problems in computer vision. All the work cited 
in Figure 14 is computer vision research based on either the Fourier transform of the whole 
image or the space/frequency representation. Our earlier work in moire patterns[33] was 
based in the frequency domain, and this meant we were prepared to account for aliasing in 
the shape-from-texture algorithm we presented in [34]. This represents another unification 
of algorithms. Since so many other algorithms are based on the same representation, we pre- 
dict a gradual unification of all these algorithms in terms of the space/frequency representa- 
tion. We give this final theory the grand title of “The Unified Theory of Spatial Vision”. 

i 

i 
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